Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Emerging roles of lysine lactyltransferases and lactylation

Abstract

Given its various roles in cellular functions, lactate is no longer considered a waste product of metabolism and lactate sensing is a pivotal step in the transduction of lactate signals. Lysine lactylation is a recently identified post-translational modification that serves as an intracellular mechanism of lactate sensing and transfer. Although acetyltransferases such as p300 exhibit general acyl transfer activity, no bona fide lactyltransferases have been identified. Recently, the protein synthesis machinery, alanyl-tRNA synthetase 1 (AARS1), AARS2 and their Escherichia coli orthologue AlaRS, have been shown to be able to sense lactate and mediate lactyl transfer and are thus considered pan-lactyltransferases. Here we highlight the mechanisms and functions of these lactyltransferases and discuss potential strategies that could be exploited for the treatment of human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of lactate sensing.
Fig. 2: Enzymatic mechanisms of protein lactylation.
Fig. 3: Cellular functions of AARS1/2.

Similar content being viewed by others

References

  1. Ippolito, L., Morandi, A., Giannoni, E. & Chiarugi, P. Lactate: a metabolic driver in the tumour landscape. Trends Biochem. Sci. 44, 153–166 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Jansen, T. C., van Bommel, J. & Bakker, J. Blood lactate monitoring in critically ill patients: a systematic health technology assessment. Crit. Care Med. 37, 2827–2839 (2009).

    PubMed  Google Scholar 

  3. Pucino, V., Bombardieri, M., Pitzalis, C. & Mauro, C. Lactate at the crossroads of metabolism, inflammation, and autoimmunity. Eur. J. Immunol. 47, 14–21 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Bergman, B. C. et al. Active muscle and whole body lactate kinetics after endurance training in men. J. Appl. Physiol. 87, 1684–1696 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Jin, N. et al. Identification of metabolic vulnerabilities of receptor tyrosine kinases-driven cancer. Nat. Commun. 10, 2701 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brooks, G. A. Cell–cell and intracellular lactate shuttles. J. Physiol. 587, 5591–5600 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tang, F. et al. Lactate-mediated glia–neuronal signalling in the mammalian brain. Nat. Commun. 5, 3284 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou, L. et al. Hepatitis B virus rigs the cellular metabolome to avoid innate immune recognition. Nat. Commun. 12, 98 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Doherty, J. R. et al. Blocking lactate export by inhibiting the Myc target MCT1 disables glycolysis and glutathione synthesis. Cancer Res. 74, 908–920 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Ždralević, M. et al. Disrupting the ‘Warburg effect’ re-routes cancer cells to OXPHOS offering a vulnerability point via ‘ferroptosis’-induced cell death. Adv. Biol. Regul. 68, 55–63 (2018).

    Article  PubMed  Google Scholar 

  12. Zong, Z. et al. Alanyl-tRNA synthetase, AARS1, is a lactate sensor and lactyltransferase that lactylates p53 and contributes to tumorigenesis. Cell 187, 2375–2392.e33 (2024).

    Article  CAS  PubMed  Google Scholar 

  13. Ju, J. et al. The alanyl-tRNA synthetase AARS1 moonlights as a lactyltransferase to promote YAP signaling in gastric cancer.J. Clin. Invest. 134, e174587 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mao, Y. et al. Hypoxia induces mitochondrial protein lactylation to limit oxidative phosphorylation. Cell Res. 34, 13–30 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, H. et al. AARS1 and AARS2 sense l-lactate to regulate cGAS as global lysine lactyltransferases. Nature 634, 1229–1237 (2024).

    Article  CAS  PubMed  Google Scholar 

  16. Martinez-Outschoorn, U. E., Peiris-Pages, M., Pestell, R. G., Sotgia, F. & Lisanti, M. P. Cancer metabolism: a therapeutic perspective. Nat. Rev. Clin. Oncol. 14, 11–31 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Sharma, N. K. & Pal, J. K. Metabolic ink lactate modulates epigenomic landscape: a concerted role of pro-tumor microenvironment and macroenvironment during carcinogenesis. Curr. Mol. Med. 21, 177–181 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Warburg, O., Wind, F. & Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 8, 519–530 (1927).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  Google Scholar 

  20. Markert, C. L., Shaklee, J. B. & Whitt, G. S. Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation. Science 189, 102–114 (1975).

    Article  CAS  PubMed  Google Scholar 

  21. Claps, G. et al. The multiple roles of LDH in cancer. Nat. Rev. Clin. Oncol. 19, 749–762 (2022).

    Article  PubMed  Google Scholar 

  22. Jha, M. K., Lee, I. K. & Suk, K.Metabolic reprogramming by the pyruvate dehydrogenase kinase–lactic acid axis: linking metabolism and diverse neuropathophysiologies. Neurosci. Biobehav. Rev. 68, 1–19 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Li, X. et al. Lactate metabolism in human health and disease. Signal Transduct. Target. Ther. 7, 305 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cai, T. Q. et al. Role of GPR81 in lactate-mediated reduction of adipose lipolysis. Biochem. Biophys. Res. Commun. 377, 987–991 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, C. et al. Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. J. Biol. Chem. 284, 2811–2822 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Ahmed, K. et al. An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81. Cell Metab. 11, 311–319 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Liu, X. et al. Activation of GPR81 by lactate drives tumour-induced cachexia. Nat. Metab. 6, 708–723 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Feng, J. et al. Tumor cell-derived lactate induces TAZ-dependent upregulation of PD-L1 through GPR81 in human lung cancer cells. Oncogene 36, 5829–5839 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Yao, Z. et al. Dietary lactate supplementation protects against obesity by promoting adipose browning in mice. J. Agric. Food Chem. 68, 14841–14849 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Brown, T. P. et al. The lactate receptor GPR81 promotes breast cancer growth via a paracrine mechanism involving antigen-presenting cells in the tumor microenvironment. Oncogene 39, 3292–3304 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, P. et al. Gpr132 sensing of lactate mediates tumor–macrophage interplay to promote breast cancer metastasis. Proc. Natl Acad. Sci. USA 114, 580–585 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun, J., Feng, Q., He, Y., Wang, M. & Wu, Y.Lactate activates CCL18 expression via H3K18 lactylation in macrophages to promote tumorigenesis of ovarian cancer. Acta Biochim. Biophys. Sin. 56, 1373–1386 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luo, F. et al. Enhanced glycolysis, regulated by HIF-1α via MCT-4, promotes inflammation in arsenite-induced carcinogenesis. Carcinogenesis 38, 615–626 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Duan, Q. et al. Proton-coupled monocarboxylate transporters in cancer: from metabolic crosstalk, immunosuppression and anti-apoptosis to clinical applications. Front. Cell Dev. Biol. 10, 1069555 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Semenza, G. L. HIF-1: upstream and downstream of cancer metabolism. Curr. Opin. Genet. Dev. 20, 51–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Pucino, V., Cucchi, D. & Mauro, C.Lactate transporters as therapeutic targets in cancer and inflammatory diseases. Expert Opin. Ther. Targets 22, 735–743 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Li, H. et al. SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers. Proc. Natl Acad. Sci. USA 100, 8412–8417 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gopal, E. et al. Cloning and functional characterization of human SMCT2 (SLC5A12) and expression pattern of the transporter in kidney. Biochim. Biophys. Acta 1768, 2690–2697 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Haas, R. et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol. 13, e1002202 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pucino, V. et al. Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4+ T cell metabolic rewiring. Cell Metab. 30, 1055–1074.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Romero, M. et al. Immunometabolic effects of lactate on humoral immunity in healthy individuals of different ages. Nat. Commun. 15, 7515 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, D. et al. Metabolic regulation of gene expression by histone lactylation. Nature 574, 575–580 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gaffney, D. O. et al. Non-enzymatic lysine lactoylation of glycolytic enzymes. Cell Chem. Biol. 27, 206–213.e6 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Rabbani, N., Xue, M. & Thornalley, P. J. Activity, regulation, copy number and function in the glyoxalase system. Biochem. Soc. Trans. 42, 419–424 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, D. et al. Lysine l-lactylation is the dominant lactylation isomer induced by glycolysis. Nat. Chem. Biol. 21, 91–99 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yu, J. et al. Histone lactylation drives oncogenesis by facilitating m6A reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 22, 85 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, W. et al. Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer. Autophagy 20, 114–130 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Xie, B. et al. CircXRN2 suppresses tumor progression driven by histone lactylation through activating the Hippo pathway in human bladder cancer. Mol. Cancer 22, 151 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rho, H., Terry, A. R., Chronis, C. & Hay, N. Hexokinase 2-mediated gene expression via histone lactylation is required for hepatic stellate cell activation and liver fibrosis. Cell Metab. 35, 1406–1423.e8 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xiong, J. et al. Lactylation-driven METTL3-mediated RNA m6A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol. Cell 82, 1660–1677.e10 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Raychaudhuri, D. et al. Histone lactylation drives CD8+ T cell metabolism and function. Nat. Immunol. 25, 2140–2151 (2024).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, N. et al. Histone lactylation boosts reparative gene activation post-myocardial infarction. Circ. Res. 131, 893–908 (2022).

    Article  CAS  PubMed  Google Scholar 

  53. Lin, X. et al. Augmentation of scleral glycolysis promotes myopia through histone lactylation. Cell Metab. 36, 511–525.e7 (2024).

    Article  CAS  PubMed  Google Scholar 

  54. Yang, L. et al. Nucleolin lactylation contributes to intrahepatic cholangiocarcinoma pathogenesis via RNA splicing regulation of MADD. J. Hepatol. 81, 651–666 (2024).

    Article  CAS  PubMed  Google Scholar 

  55. Pan, R. Y. et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease. Cell Metab. 34, 634–648.e6 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, H. et al. NBS1 lactylation is required for efficient DNA repair and chemotherapy resistance. Nature 631, 663–669 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sun, L. et al. Lactylation of METTL16 promotes cuproptosis via m6A-modification on FDX1 mRNA in gastric cancer. Nat. Commun. 14, 6523 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gu, J. et al. Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-β signaling in regulatory T cells. Cell Rep. 39, 110986 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Jin, J. et al. SIRT3-dependent delactylation of cyclin E2 prevents hepatocellular carcinoma growth. EMBO Rep. 24, e56052 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Broder, G. & Weil, M. H. Excess lactate: an index of reversibility of shock in human patients. Science 143, 1457–1459 (1964).

    Article  CAS  PubMed  Google Scholar 

  61. Yang, K. et al. Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis. Cell Death Differ. 29, 133–146 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. An, S. et al. PDHA1 hyperacetylation-mediated lactate overproduction promotes sepsis-induced acute kidney injury via Fis1 lactylation. Cell Death Dis. 14, 457 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, X. et al. YY1 lactylation in microglia promotes angiogenesis through transcription activation-mediated upregulation of FGF2. Genome Biol. 24, 87 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhou, J. et al. Astrocytic LRP1 enables mitochondria transfer to neurons and mitigates brain ischemic stroke by suppressing ARF1 lactylation. Cell Metab. 36, 2054–2068.e14 (2024).

    Article  CAS  PubMed  Google Scholar 

  65. Yan, Q. et al. Lactylation of NAT10 promotes N4-acetylcytidine modification on tRNASer-CGA-1-1 to boost oncogenic DNA virus KSHV reactivation. Cell Death Differ. 31, 1362–1374 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gao, R. et al. Mitochondrial pyruvate carrier 1 regulates fatty acid synthase lactylation and mediates treatment of nonalcoholic fatty liver disease. Hepatology 78, 1800–1815 (2023).

    Article  PubMed  Google Scholar 

  67. Zhang, X. et al. Screening, expression, purification and characterization of CoA-transferases for lactoyl-CoA generation. J. Ind. Microbiol. Biotechnol. 46, 899–909 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Dong, H. et al. YiaC and CobB regulate lysine lactylation in Escherichia coli. Nat. Commun. 13, 6628 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu, R. et al. Nuclear GTPSCS functions as a lactyl-CoA synthetase to promote histone lactylation and gliomagenesis. Cell Metab. 37, 377–394.e9 (2025).

  70. Zhu, R. et al. ACSS2 acts as a lactyl-CoA synthetase and couples KAT2A to function as a lactyltransferase for histone lactylation and tumor immune evasion. Cell Metab. 37, 361–376.e7 (2025).

  71. Trujillo, M. N. et al. Lactoylglutathione promotes inflammatory signaling in macrophages through histone lactoylation. Mol. Metab. 81, 101888 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhao, S., Zhang, X. & Li, H. Beyond histone acetylation—writing and erasing histone acylations. Curr. Opin. Struct. Biol. 53, 169–177 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Sun, L., Zhang, H. & Gao, P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell 13, 877–919 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Cui, H. et al. Lung myofibroblasts promote macrophage profibrotic activity through lactate-induced histone lactylation. Am. J. Respir. Cell Mol. Biol. 64, 115–125 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Niu, Z. et al. HBO1 catalyzes lysine lactylation and mediates histone H3K9la to regulate gene transcription. Nat. Commun. 15, 3561 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Xie, B. et al. KAT8-catalyzed lactylation promotes eEF1A2-mediated protein synthesis and colorectal carcinogenesis. Proc. Natl Acad. Sci. USA 121, e2314128121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Akella, J. S. et al. MEC-17 is an α-tubulin acetyltransferase. Nature 467, 218–222 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shida, T., Cueva, J. G., Xu, Z., Goodman, M. B. & Nachury, M. V. The major α-tubulin K40 acetyltransferase αTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proc. Natl Acad. Sci. USA 107, 21517–21522 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sun, S. et al. Metabolic regulation of cytoskeleton functions by HDAC6-catalyzed α-tubulin lactylation. Nat. Commun. 15, 8377 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Christensen, D. G. et al. Identification of novel protein lysine acetyltransferases in Escherichia coli. mBio 9, e01905–e01918 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Liu, X. et al. The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature 451, 846–850 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Kaczmarska, Z. et al. Structure of p300 in complex with acyl-CoA variants. Nat. Chem. Biol. 13, 21–29 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Wang, Y. et al. KAT2A coupled with the α-KGDH complex acts as a histone H3 succinyltransferase. Nature 552, 273–277 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ringel, A. E. & Wolberger, C. Structural basis for acyl-group discrimination by human Gcn5L2. Acta Crystallogr. D Struct. Biol. 72, 841–848 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Han, Z. et al. Revealing the protein propionylation activity of the histone acetyltransferase MOF (males absent on the first). J. Biol. Chem. 293, 3410–3420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Varner, E. L. et al. Quantification of lactoyl-CoA (lactyl-CoA) by liquid chromatography mass spectrometry in mammalian cells and tissues. Open Biol. 10, 200187 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wishart, D. S. et al. HMDB: the Human Metabolome Database. Nucleic Acids Res. 35, D521–D526 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Matsumoto, K. et al. In vitro analysis of d-lactyl-CoA-polymerizing polyhydroxyalkanoate synthase in polylactate and poly(lactate-co-3-hydroxybutyrate) syntheses. Biomacromolecules 19, 2889–2895 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Sabari, B. R., Zhang, D., Allis, C. D. & Zhao, Y.Metabolic regulation of gene expression through histone acylations. Nat. Rev. Mol. Cell Biol. 18, 90–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Shvedunova, M. & Akhtar, A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 23, 329–349 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Sun, L. et al. Evolutionary gain of alanine mischarging to noncognate tRNAs with a G4:U69 base pair. J. Am. Chem. Soc. 138, 12948–12955 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sun, L., Song, Y., Blocquel, D., Yang, X. L. & Schimmel, P. Two crystal structures reveal design for repurposing the C-Ala domain of human AlaRS. Proc. Natl Acad. Sci. USA 113, 14300–14305 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Han, J. M. et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149, 410–424 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. He, X. D. et al. Sensing and transmitting intracellular amino acid signals through reversible lysine aminoacylations. Cell Metab. 27, 151–166.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. D’Hulst, G. et al. PHD1 controls muscle mTORC1 in a hydroxylation-independent manner by stabilizing leucyl tRNA synthetase. Nat. Commun. 11, 174 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zhou, Q. et al. Phenylalanine impairs insulin signaling and inhibits glucose uptake through modification of IRβ. Nat. Commun. 13, 4291 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Brizel, D. M. et al. Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 51, 349–353 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Carter, C. W. JrCognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu. Rev. Biochem. 62, 715–748 (1993).

    Article  CAS  PubMed  Google Scholar 

  99. Beebe, K., Ribas De Pouplana, L. & Schimmel, P. Elucidation of tRNA-dependent editing by a class II tRNA synthetase and significance for cell viability. EMBO J. 22, 668–675 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lee, J. W. et al. Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature 443, 50–55 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Guo, M. et al. Paradox of mistranslation of serine for alanine caused by AlaRS recognition dilemma. Nature 462, 808–812 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kamagata, K. et al. Liquid-like droplet formation by tumor suppressor p53 induced by multivalent electrostatic interactions between two disordered domains. Sci. Rep. 10, 580 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen, C., Fu, G., Guo, Q., Xue, S. & Luo, S. Z. Phase separation of p53 induced by its unstructured basic region and prevented by oncogenic mutations in tetramerization domain. Int. J. Biol. Macromol. 222, 207–216 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Chen, Q., Wu, Y., Dai, Z., Zhang, Z. & Yang, X. Phosphorylation and specific DNA improved the incorporation ability of p53 into functional condensates. Int. J. Biol. Macromol. 230, 123221 (2023).

    Article  CAS  PubMed  Google Scholar 

  105. Dai, Z., Li, G., Chen, Q. & Yang, X. Ser392 phosphorylation modulated a switch between p53 and transcriptional condensates. Biochim. Biophys. Acta Gene Regul. Mech. 1865, 194827 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Yang, Z. et al. Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma. Nat. Metab. 5, 61–79 (2023).

    Article  CAS  PubMed  Google Scholar 

  107. Kalderon, D., Roberts, B. L., Richardson, W. D. & Smith, A. E. A short amino acid sequence able to specify nuclear location. Cell 39, 499–509 (1984).

    Article  CAS  PubMed  Google Scholar 

  108. Wang, J., Wang, Z., Wang, Q., Li, X. & Guo, Y. Ubiquitous protein lactylation in health and diseases. Cell. Mol. Biol. Lett. 29, 23 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chen, Y. et al. Metabolic regulation of homologous recombination repair by MRE11 lactylation. Cell 187, 294–311 e221 (2024).

    Article  CAS  PubMed  Google Scholar 

  110. Sun, T. et al. Oxamate enhances the efficacy of CAR-T therapy against glioblastoma via suppressing ectonucleotidases and CCR8 lactylation. J. Exp. Clin. Cancer Res. 42, 253 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Xu, K., Zhang, K., Wang, Y. & Gu, Y.Comprehensive review of histone lactylation: structure, function, and therapeutic targets. Biochem. Pharmacol. 225, 116331 (2024).

    Article  CAS  PubMed  Google Scholar 

  112. Yu, X. et al. Histone lactylation: from tumor lactate metabolism to epigenetic regulation. Int. J. Biol. Sci. 20, 1833–1854 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang, Y., Song, H., Li, M. & Lu, P. Histone lactylation bridges metabolic reprogramming and epigenetic rewiring in driving carcinogenesis: oncometabolite fuels oncogenic transcription. Clin. Transl. Med. 14, e1614 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Qu, J., Li, P. & Sun, Z.Histone lactylation regulates cancer progression by reshaping the tumor microenvironment. Front. Immunol. 14, 1284344 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li, J. et al. Lactate regulates major zygotic genome activation by H3K18 lactylation in mammals. Natl Sci. Rev. 11, nwad295 (2024).

    Article  CAS  PubMed  Google Scholar 

  116. Dai, S. K. et al. Dynamic profiling and functional interpretation of histone lysine crotonylation and lactylation during neural development. Development 149, dev200049 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Merkuri, F., Rothstein, M. & Simoes-Costa, M. Histone lactylation couples cellular metabolism with developmental gene regulatory networks. Nat. Commun. 15, 90 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Li, L. et al. Glis1 facilitates induction of pluripotency via an epigenome–metabolome–epigenome signalling cascade. Nat. Metab. 2, 882–892 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Yue, Q. et al. Histone H3K9 lactylation confers temozolomide resistance in glioblastoma via LUC7L2-mediated MLH1 intron retention. Adv. Sci. 11, e2309290 (2024).

    Article  Google Scholar 

  120. Wan, N. et al. Cyclic immonium ion of lactyllysine reveals widespread lactylation in the human proteome. Nat. Methods 19, 854–864 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. Yang, D. et al. Identification of lysine-lactylated substrates in gastric cancer cells. iScience 25, 104630 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Duan, Y. et al. Integrated lactylome characterization reveals the molecular dynamics of protein regulation in gastrointestinal cancers. Adv. Sci. 11, e2400227 (2024).

    Article  Google Scholar 

  123. Amorini, A. M. et al. Serum lactate as a novel potential biomarker in multiple sclerosis. Biochim. Biophys. Acta 1842, 1137–1143 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Hsu, Y. C. & Hsu, C. W. Septic acute kidney injury patients in emergency department: the risk factors and its correlation to serum lactate. Am. J. Emerg. Med. 37, 204–208 (2019).

    Article  PubMed  Google Scholar 

  125. Jia, M. et al. ULK1-mediated metabolic reprogramming regulates Vps34 lipid kinase activity by its lactylation. Sci. Adv. 9, eadg4993 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang, J. et al. Lactylation of PKM2 suppresses inflammatory metabolic adaptation in pro-inflammatory macrophages. Int. J. Biol. Sci. 18, 6210–6225 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. De Ruijter, A. J., van Gennip, A. H., Caron, H. N., Kemp, S. & van Kuilenburg, A. B. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 370, 737–749 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Zu, H. et al. SIRT2 functions as a histone delactylase and inhibits the proliferation and migration of neuroblastoma cells. Cell Discov. 8, 54 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jennings, E. Q. et al. Sirtuin 2 regulates protein lactoylLys modifications. ChemBioChem 22, 2102–2106 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Moreno-Yruela, C. et al. Class I histone deacetylases (HDAC1-3) are histone lysine delactylases. Sci. Adv. 8, eabi6696 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Millard, C. J., Watson, P. J., Fairall, L. & Schwabe, J. W. R. Targeting class I histone deacetylases in a “complex” environment. Trends Pharmacol. Sci. 38, 363–377 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Zessin, M. et al. Uncovering robust delactoylase and depyruvoylase activities of HDAC isoforms. ACS Chem. Biol. 17, 1364–1375 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Du, R. et al. Sirtuin 1/sirtuin 3 are robust lysine delactylases and sirtuin 1-mediated delactylation regulates glycolysis. iScience 27, 110911 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang, N. et al. α-myosin heavy chain lactylation maintains sarcomeric structure and function and alleviates the development of heart failure. Cell Res. 33, 679–698 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bell, E. L. & Guarente, L. The SirT3 divining rod points to oxidative stress. Mol. Cell 42, 561–568 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dai, W. et al. Lactate promotes myogenesis via activating H3K9 lactylation-dependent up-regulation of Neu2 expression. J. Cachexia Sarcopenia Muscle 14, 2851–2865 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Guo, Z. et al. Natural product fargesin interferes with H3 histone lactylation via targeting PKM2 to inhibit non-small cell lung cancer tumorigenesis. Biofactors 50, 592–607 (2024).

    Article  CAS  PubMed  Google Scholar 

  138. Wang, Y. et al. Novel strategies to improve tumour therapy by targeting the proteins MCT1, MCT4 and LAT1. Eur. J. Med. Chem. 226, 113806 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Tasdogan, A. et al. Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature 577, 115–120 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Sisignano, M., Fischer, M. J. M. & Geisslinger, G. Proton-sensing GPCRs in health and disease. Cells 10, 2050 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Obinata, H. & Izumi, T. G2A as a receptor for oxidized free fatty acids. Prostaglandins Other Lipid Mediat. 89, 66–72 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Damaghi, M., Wojtkowiak, J. W. & Gillies, R. J. pH sensing and regulation in cancer. Front. Physiol. 4, 370 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Lasko, L. M. et al. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature 550, 128–132 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Saunders, B. et al. β-alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis. Br. J. Sports Med. 51, 658–669 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The current work was supported by the Chinese National Natural Science Fund (31925013, 32125016, T2321005, U20A20393, 32070907, 31871405, 31870902, W2411011 and U24A20371), a special program of the Ministry of Science and Technology of China (2024YFC2707400, 2021YFA1101000, 2022YFA1105200 and 2023YFA1800200), a Key Research and Development Program of Zhejiang Province (2024C03142), a joint project of the Pinnacle Disciplinary Group, the Second Affiliated Hospital of Chongqing Medical University, the Science Foundation of Jiangsu Province (19KJA550003), the Suzhou Innovation and Entrepreneurship Leading Talent Program (ZXL2022505), a Suzhou Medical College Basic Frontier Innovation cross-research project (YXY2303027), key cross-research projects of the School of Medicine at Soochow University (YXY2303027) and the Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases. We apologize to those researchers whose related work we were not able to cite in this Perspective. Figures were created using BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. conceived of and drafted the manuscript and produced the figures. J.R., B.Y., L.Z. and F.Z. discussed the concepts of the manuscript, provided valuable discussion and revised the manuscript.

Corresponding authors

Correspondence to Bing Yang, Long Zhang or Fangfang Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cell Biology thanks Claudio Mauro, James Galligan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, Z., Ren, J., Yang, B. et al. Emerging roles of lysine lactyltransferases and lactylation. Nat Cell Biol 27, 563–574 (2025). https://doi.org/10.1038/s41556-025-01635-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41556-025-01635-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing