Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effects of embryonic origin, tissue cues and pathological signals on fibroblast diversity in humans

Abstract

Fibroblasts, once perceived as a uniform cell type, are now recognized as a mosaic of distinct populations with specialized roles in tissue homeostasis and pathology. Here we provide a global overview of the expanding compendium of fibroblast cell types and states, their diverse lineage origins and multifaceted functions across various human organs. By integrating insights from developmental biology, lineage tracing and single-cell technologies, we highlight the complex nature of fibroblasts. We delve into their origination from embryonic mesenchyme and tissue-resident populations, elucidating lineage-specific behaviours in response to physiological cues. Furthermore, we highlight the pivotal role of fibroblasts in orchestrating tissue repair, connective tissue remodelling and immune modulation across diverse pathologies. This knowledge is essential to develop novel fibroblast-targeted therapies to restore steady-state fibroblast function and advance regenerative medicine strategies across multiple diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of different fibroblast populations throughout embryo development.
Fig. 2: Stromal cells in health and disease.

Similar content being viewed by others

References

  1. Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Driskell, R. R. et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504, 277–281 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Philippeos, C. et al. Spatial and single-cell transcriptional profiling identifies functionally distinct human dermal fibroblast subpopulations. J. Invest. Dermatol. 138, 811–825 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. LeBleu, V. S. & Neilson, E. G. Origin and functional heterogeneity of fibroblasts. FASEB J. 34, 3519–3536 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Soundararajan, M. & Kannan, S. Fibroblasts and mesenchymal stem cells: two sides of the same coin? J. Cell. Physiol. 233, 9099–9109 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Almeida de, D. C. et al. Epigenetic classification of human mesenchymal stromal cells. Stem Cell Rep. 6, 168–175 (2016).

    Article  Google Scholar 

  8. Roson-Burgo, B., Sanchez-Guijo, F., Del Cañizo, C. & De Las Rivas, J. Insights into the human mesenchymal stromal/stem cell identity through integrative transcriptomic profiling. BMC Genom. 17, 944 (2016).

    Article  Google Scholar 

  9. Kumar, A. et al. Specification and diversification of pericytes and smooth muscle cells from mesenchymoangioblasts. Cell Rep. 19, 1902–1916 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ospelt, C. et al. Expression, regulation, and signaling of the pattern-recognition receptor nucleotide-binding oligomerization domain 2 in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 60, 355–363 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Nestle, F. O., Di Meglio, P., Qin, J.-Z. & Nickoloff, B. J. Skin immune sentinels in health and disease. Nat. Rev. Immunol. 9, 679–691 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miller, L. S. & Cho, J. S. Immunity against Staphylococcus aureus cutaneous infections. Nat. Rev. Immunol. 11, 505–518 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hinz, B. & Lagares, D. Myofibroblasts (Springer, 2021).

  14. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Rivera-Gonzalez, G. C. et al. Skin adipocyte stem cell self-renewal is regulated by a PDGFA/AKT-signaling axis. Cell Stem Cell 19, 738–751 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maity, P. et al. Persistent JunB activation in fibroblasts disrupts stem cell niche interactions enforcing skin aging. Cell Rep. 36, 109634 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Kim, B.-C. et al. Fibroblasts from chronic wounds show altered TGF-β-signaling and decreased TGF-β type II receptor expression. J. Cell. Physiol. 195, 331–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Wei, K. et al. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 582, 259–264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lujano Olazaba, O., Farrow, J. & Monkkonen, T. Fibroblast heterogeneity and functions: insights from single-cell sequencing in wound healing, breast cancer, ovarian cancer and melanoma. Front. Genet. 15, 1304853 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kiecker, C., Bates, T. & Bell, E. Molecular specification of germ layers in vertebrate embryos. Cell. Mol. Life Sci. 73, 923–947 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Usansky, I. et al. A developmental basis for the anatomical diversity of dermis in homeostasis and wound repair. J. Pathol. 253, 315–325 (2021).

    Article  PubMed  Google Scholar 

  23. Rinkevich, Y. et al. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science 348, aaa2151 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Thulabandu, V., Chen, D. & Atit, R. P. Dermal fibroblast in cutaneous development and healing. Wiley Interdiscip. Rev. Dev. Biol. 7, e307 (2018).

    Article  Google Scholar 

  25. Jinno, H. et al. Convergent genesis of an adult neural crest-like dermal stem cell from distinct developmental origins. Stem Cells 28, 2027–2040 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Buckingham, M., Meilhac, S. & Zaffran, S. Building the mammalian heart from two sources of myocardial cells. Nat. Rev. Genet. 6, 826–835 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Pærregaard, S. I. et al. The small and large intestine contain related mesenchymal subsets that derive from embryonic Gli1+ precursors. Nat. Commun. 14, 2307 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chang, H. Y. et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc. Natl Acad. Sci. USA 99, 12877–12882 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rinn, J. L., Bondre, C., Gladstone, H. B., Brown, P. O. & Chang, H. Y. Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Genet. 2, e119 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ganier, C. et al. Multiscale spatial mapping of cell populations across anatomical sites in healthy human skin and basal cell carcinoma. Proc. Natl Acad. Sci. USA 121, e2313326120 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Koch, C. M. et al. Specific age-associated DNA methylation changes in human dermal fibroblasts. PLoS ONE 6, e16679 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rinn, J. L. et al. A dermal HOX transcriptional program regulates site-specific epidermal fate. Genes Dev. 22, 303–307 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thompson, S. M., Phan, Q. M., Winuthayanon, S., Driskell, I. M. & Driskell, R. R. Parallel single-cell multiomics analysis of neonatal skin reveals the transitional fibroblast states that restrict differentiation into distinct fates. J. Invest. Dermatol. 142, 1812–1823.e3 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Phan, Q. M. et al. Lineage commitment of dermal fibroblast progenitors is controlled by Kdm6b‐mediated chromatin demethylation. EMBO J. 42, e113880 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Van Camp, J. K., Beckers, S., Zegers, D. & van Hul, W. Wnt signaling and the control of human stem cell fate. Stem Cell Rev. Rep. 10, 207–229 (2014).

    Article  PubMed  Google Scholar 

  36. Sakaki-Yumoto, M., Katsuno, Y. & Derynck, R. TGF-β family signaling in stem cells. Biochim. Biophys. Acta 1830, 2280–2296 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Gao, Y. et al. Cross-tissue human fibroblast atlas reveals myofibroblast subtypes with distinct roles in immune modulation. Cancer Cell 42, 1764–1783.e10 (2024).

    Article  CAS  PubMed  Google Scholar 

  38. Driskell, R. R., Jahoda, C. A. B., Chuong, C.-M., Watt, F. M. & Horsley, V. Defining dermal adipose tissue. Exp. Dermatol. 23, 629–631 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Correa-Gallegos, D. et al. CD201+ fascia progenitors choreograph injury repair. Nature 623, 792–802 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leavitt, T. et al. Prrx1 fibroblasts represent a pro-fibrotic lineage in the mouse ventral dermis. Cell Rep. 33, 108356 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wiedemann, J. et al. Differential cell composition and split epidermal differentiation in human palm, sole, and hip skin. Cell Rep. 42, 111994 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Marangoni, R. G. et al. Thy-1 plays a pathogenic role and is a potential biomarker for skin fibrosis in scleroderma. JCI Insight 7, e149426 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Williams, D. W. et al. Human oral mucosa cell atlas reveals a stromal–neutrophil axis regulating tissue immunity. Cell 184, 4090–4104.e15 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vorstandlechner, V. et al. The serine proteases dipeptidyl-peptidase 4 and urokinase are key molecules in human and mouse scar formation. Nat. Commun. 12, 6242 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Korosec, A. et al. Lineage identity and location within the dermis determine the function of papillary and reticular fibroblasts in human skin. J. Invest. Dermatol. 139, 342–351 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Tabib, T., Morse, C., Wang, T., Chen, W. & Lafyatis, R. SFRP2/DPP4 and FMO1/LSP1 define major fibroblast populations in human skin. J. Invest. Dermatol. 138, 802–810 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Haydont, V. et al. Fibroblasts from the human skin dermo-hypodermal junction are distinct from dermal papillary and reticular fibroblasts and from mesenchymal stem cells and exhibit a specific molecular profile related to extracellular matrix organization and modeling. Cells 9, 368 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Solé-Boldo, L. et al. Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming. Commun. Biol. 3, 188 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Takaya, K., Asou, T. & Kishi, K. Identification of apolipoprotein D as a dermal fibroblast marker of human aging for development of skin rejuvenation therapy. Rejuvenation Res. 26, 42–50 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Hsia, C. C. W., Hyde, D. M. & Weibel, E. R. Lung structure and the intrinsic challenges of gas exchange. Compr. Physiol. 6, 827–895 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tsukui, T. et al. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat. Commun. 11, 1920 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Madissoon, E. et al. A spatially resolved atlas of the human lung characterizes a gland-associated immune niche. Nat. Genet. 55, 66–77 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Travaglini, K. J. et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 587, 619–625 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Valenzi, E. et al. Single-cell analysis reveals fibroblast heterogeneity and myofibroblasts in systemic sclerosis-associated interstitial lung disease. Ann. Rheum. Dis. 78, 1379–1387 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Pereira, M. S. et al. Loss of SPINT2 expression frequently occurs in glioma, leading to increased growth and invasion via MMP2. Cell. Oncol. 43, 107–121 (2020).

    Article  CAS  Google Scholar 

  56. Straus, M. R., Kinder, J. T., Segall, M., Dutch, R. E. & Whittaker, G. R. SPINT2 inhibits proteases involved in activation of both influenza viruses and metapneumoviruses. Virology 543, 43–53 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Said, S. I., Dey, R. D. & Dickman, K. Glutamate signalling in the lung. Trends Pharmacol. Sci. 22, 344–345 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Murthy, P. K. L. et al. Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature 604, 111–119 (2022).

    Article  Google Scholar 

  59. Xie, T. et al. Abnormal respiratory progenitors in fibrotic lung injury. Stem Cell Res. Ther. 13, 64 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Habermann, A. C. et al. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci. Adv. 6, eaba1972 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. El Agha, E. et al. Two-way conversion between lipogenic and myogenic fibroblastic phenotypes marks the progression and resolution of lung fibrosis. Cell Stem Cell 20, 261–273.e3 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Park, J. et al. The Tcf21 lineage constitutes the lung lipofibroblast population. Am. J. Physiol. Lung Cell. Mol. Physiol. 316, L872–L885 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bowers, S. L. K., Meng, Q. & Molkentin, J. D. Fibroblasts orchestrate cellular crosstalk in the heart through the ECM. Nat. Cardiovasc. Res. 1, 312–321 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Doll, S. et al. Region and cell-type resolved quantitative proteomic map of the human heart. Nat. Commun. 8, 1469 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tallquist, M. D. Cardiac fibroblast diversity. Annu. Rev. Physiol. 82, 63–78 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Moore-Morris, T., Cattaneo, P., Puceat, M. & Evans, S. M. Origins of cardiac fibroblasts. J. Mol. Cell. Cardiol. 91, 1–5 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Cui, Y. et al. Single-cell transcriptome analysis maps the developmental track of the human heart. Cell Rep. 26, 1934–1950.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Passman, J. N. et al. A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proc. Natl Acad. Sci. USA 105, 9349–9354 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, X. et al. Comparative analysis of cell lineage differentiation during hepatogenesis in humans and mice at the single-cell transcriptome level. Cell Res. 30, 1109–1126 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Geerts, A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin. Liver Dis. 21, 311–335 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Andrews, T. S. et al. Single-cell, single-nucleus, and spatial RNA sequencing of the human liver identifies cholangiocyte and mesenchymal heterogeneity. Hepatol. Commun. 6, 821–840 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Park, H.-J. et al. Cellular heterogeneity and plasticity during NAFLD progression. Front. Mol. Biosci. 10, 1221669 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wells, R. G. The portal fibroblast: not just a poor man’s stellate cell. Gastroenterology 147, 41–47 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Perepelyuk, M. et al. Hepatic stellate cells and portal fibroblasts are the major cellular sources of collagens and lysyl oxidases in normal liver and early after injury. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G605-14 (2013).

    Article  PubMed  Google Scholar 

  76. Lua, I. et al. Characterization of hepatic stellate cells, portal fibroblasts, and mesothelial cells in normal and fibrotic livers. J. Hepatol. 64, 1137–1146 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kisseleva, T. et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc. Natl Acad. Sci. USA 109, 9448–9453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Elmentaite, R. et al. Single-cell sequencing of developing human gut reveals transcriptional links to childhood Crohn’s disease. Dev. Cell 55, 771–783.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Brügger, M. D. & Basler, K. The diverse nature of intestinal fibroblasts in development, homeostasis, and disease. Trends Cell Biol. 33, 834–849 (2023).

    Article  PubMed  Google Scholar 

  80. Smillie, C. S. et al. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178, 714–730.e22 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kinchen, J. et al. Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell 175, 372–386.e17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Huang, B. et al. Mucosal profiling of pediatric-onset colitis and IBD reveals common pathogenics and therapeutic pathways. Cell 179, 1160–1176.e24 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Li, S. et al. An integrated map of fibroblastic populations in human colon mucosa and cancer tissues. Commun. Biol. 5, 1326 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Knoop, K. A. et al. RANKL is necessary and sufficient to initiate development of antigen-sampling M cells in the intestinal epithelium. J. Immunol. 183, 5738–5747 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Nagashima, K. et al. Identification of subepithelial mesenchymal cells that induce IgA and diversify gut microbiota. Nat. Immunol. 18, 675–682 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Willemsen, L. E. M., Koetsier, M. A., van Deventer, S. J. H. & van Tol, E. A. F. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E1 and E2 production by intestinal myofibroblasts. Gut 52, 1442–1447 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dorofeyev, A. E., Vasilenko, I. V., Rassokhina, O. A. & Kondratiuk, R. B. Mucosal barrier in ulcerative colitis and Crohn’s disease. Gastroenterol. Res. Pract. 2013, 431231 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Larsson, J. M. H. et al. Altered O-glycosylation profile of MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation. Inflamm. Bowel Dis. 17, 2299–2307 (2011).

    Article  PubMed  Google Scholar 

  89. Korsunsky, I. et al. Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases. Med. 3, 481–518.e14 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. He, H. et al. Single-cell transcriptome analysis of human skin identifies novel fibroblast subpopulation and enrichment of immune subsets in atopic dermatitis. J. Allergy Clin. Immunol. 145, 1615–1628 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Huang, X. et al. CD39+ fibroblasts enhance myofibroblast activation by promoting IL-11 secretion in hypertrophic scars. J. Invest. Dermatol. 142, 1065–1076.e19 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Friedrich, M. et al. IL-1-driven stromal–neutrophil interactions define a subset of patients with inflammatory bowel disease that does not respond to therapies. Nat. Med. 27, 1970–1981 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yang, D., Liu, J., Qian, H. & Zhuang, Q. Cancer-associated fibroblasts: from basic science to anticancer therapy. Exp. Mol. Med. 55, 1322–1332 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gong, Z. et al. Lung fibroblasts facilitate pre-metastatic niche formation by remodeling the local immune microenvironment. Immunity 55, 1483–1500.e9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Younesi, F. S., Miller, A. E., Barker, T. H., Rossi, F. M. V. & Hinz, B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat. Rev. Mol. Cell Biol. 25, 617–638 (2024).

    Article  CAS  PubMed  Google Scholar 

  96. Plikus, M. V. et al. Regeneration of fat cells from myofibroblasts during wound healing. Science 355, 748–752 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xie, T. et al. Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis. J. Clin. Invest. 126, 3063–3079 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Talbott, H. E., Mascharak, S., Griffin, M., Wan, D. C. & Longaker, M. T. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 29, 1161–1180 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Correa-Gallegos, D. et al. Patch repair of deep wounds by mobilized fascia. Nature 576, 287–292 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Dulauroy, S., Di Carlo, S. E., Langa, F., Eberl, G. & Peduto, L. Lineage tracing and genetic ablation of ADAM12+ perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat. Med. 18, 1262–1270 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Kalgudde Gopal, S. et al. Wound infiltrating adipocytes are not myofibroblasts. Nat. Commun. 14, 3020 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shook, B. A. et al. Dermal adipocyte lipolysis and myofibroblast conversion are required for efficient skin repair. Cell Stem Cell 26, 880–895.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Melms, J. C. et al. A molecular single-cell lung atlas of lethal COVID-19. Nature 595, 114–119 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Derynck, R. & Budi, E. H. Specificity, versatility, and control of TGF-β family signaling. Sci. Signal. 12, eaav5183 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Massagué, J. & Sheppard, D. TGF-β signaling in health and disease. Cell 186, 4007–4037 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Tabib, T. et al. Myofibroblast transcriptome indicates SFRP2hi fibroblast progenitors in systemic sclerosis skin. Nat. Commun. 12, 4384 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mascharak, S. et al. Multi-omic analysis reveals divergent molecular events in scarring and regenerative wound healing. Cell Stem Cell 29, 315–327.e6 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Currie, J. D. et al. The Prrx1 limb enhancer marks an adult subpopulation of injury-responsive dermal fibroblasts. Biol. Open 8, bio043711 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wan, L. et al. Connexin43 gap junction drives fascia mobilization and repair of deep skin wounds. Matrix Biol. 97, 58–71 (2021).

    Article  CAS  PubMed  Google Scholar 

  110. Jiang, D. et al. Injury triggers fascia fibroblast collective cell migration to drive scar formation through N-cadherin. Nat. Commun. 11, 5653 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tarzemany, R., Jiang, G., Larjava, H. & Häkkinen, L. Expression and function of connexin 43 in human gingival wound healing and fibroblasts. PLoS ONE 10, e0115524 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ezzo, M. et al. Acute contact with profibrotic macrophages mechanically activates fibroblasts via αvβ3 integrin-mediated engagement of Piezo1. Sci. Adv. 10, eadp4726 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lodyga, M. et al. Cadherin-11-mediated adhesion of macrophages to myofibroblasts establishes a profibrotic niche of active TGF-β. Sci. Signal. 12, eaao3469 (2019).

    Article  CAS  PubMed  Google Scholar 

  114. Moss, B. J., Ryter, S. W. & Rosas, I. O. Pathogenic mechanisms underlying idiopathic pulmonary fibrosis. Annu. Rev. Pathol. 17, 515–546 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Koenig, A. L. et al. Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure. Nat. Cardiovasc. Res. 1, 263–280 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Peisker, F. et al. Mapping the cardiac vascular niche in heart failure. Nat. Commun. 13, 3027 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kuppe, C. et al. Spatial multi-omic map of human myocardial infarction. Nature 608, 766–777 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rao, M. et al. Resolving the intertwining of inflammation and fibrosis in human heart failure at single-cell level. Basic Res. Cardiol. 116, 55 (2021).

    Article  PubMed  Google Scholar 

  119. Dobie, R. et al. Single-cell transcriptomics uncovers zonation of function in the mesenchyme during liver fibrosis. Cell Rep. 29, 1832–1847.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Brügger, M. D., Valenta, T., Fazilaty, H., Hausmann, G. & Basler, K. Distinct populations of crypt-associated fibroblasts act as signaling hubs to control colon homeostasis. PLoS Biol. 18, e3001032 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Correa-Gallegos, D., Jiang, D. & Rinkevich, Y. Fibroblasts as confederates of the immune system. Immunol. Rev. 302, 147–162 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Deng, C.-C. et al. Single-cell RNA-seq reveals fibroblast heterogeneity and increased mesenchymal fibroblasts in human fibrotic skin diseases. Nat. Commun. 12, 3709 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Gur, C. et al. LGR5 expressing skin fibroblasts define a major cellular hub perturbed in scleroderma. Cell 185, 1373–1388.e20 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhu, H. et al. Fibroblast subpopulations in systemic sclerosis: functional implications of individual subpopulations and correlations with clinical features. J. Invest. Dermatol. 144, 1251–1261.e13 (2024).

    Article  CAS  PubMed  Google Scholar 

  125. Ma, F. et al. Systems-based identification of the Hippo pathway for promoting fibrotic mesenchymal differentiation in systemic sclerosis. Nat. Commun. 15, 210 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Di Sabatino, A. et al. Transforming growth factor β signalling and matrix metalloproteinases in the mucosa overlying Crohn’s disease strictures. Gut 58, 777–789 (2009).

    Article  PubMed  Google Scholar 

  127. Ou, W. et al. Increased expression of yes-associated protein/YAP and transcriptional coactivator with PDZ-binding motif/TAZ activates intestinal fibroblasts to promote intestinal obstruction in Crohn’s disease. EBioMedicine 69, 103452 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Crespi, M., Dulbecco, P., Ceglie de, A. & Conio, M. Strictures in Crohn’s disease: from pathophysiology to treatment. Dig. Dis. Sci. 65, 1904–1916 (2020).

    Article  PubMed  Google Scholar 

  129. Mizoguchi, F. et al. Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat. Commun. 9, 789 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Friščić, J. et al. The complement system drives local inflammatory tissue priming by metabolic reprogramming of synovial fibroblasts. Immunity 54, 1002–1021.e10 (2021).

    Article  PubMed  Google Scholar 

  132. Stephenson, W. et al. Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation. Nat. Commun. 9, 791 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Shang, L., Hosseini, M., Liu, X., Kisseleva, T. & Brenner, D. A. Human hepatic stellate cell isolation and characterization. J. Gastroenterol. 53, 6–17 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Jiang, D. & Rinkevich, Y. Scars or regeneration? Dermal fibroblasts as drivers of diverse skin wound responses. Int. J. Mol. Sci. 21, 617 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gomes, R. N., Manuel, F. & Nascimento, D. S. The bright side of fibroblasts: molecular signature and regenerative cues in major organs. NPJ Regen. Med. 6, 43 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Brewer, C. M. et al. Adaptations in Hippo–Yap signaling and myofibroblast fate underlie scar-free ear appendage wound healing in spiny mice. Dev. Cell 56, 2722–2740.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Van Beijnum, H. et al. Spatial transcriptomics reveals asymmetric cellular responses to injury in the regenerating spiny mouse (Acomys) ear. Genome Res. 33, 1424–1437 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Phan, Q. M., Sinha, S., Biernaskie, J. & Driskell, R. R. Single-cell transcriptomic analysis of small and large wounds reveals the distinct spatial organization of regenerative fibroblasts. Exp. Dermatol. 30, 92–101 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Sinha, S. et al. Fibroblast inflammatory priming determines regenerative versus fibrotic skin repair in reindeer. Cell 185, 4717–4736.e25 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Foote, A. G., Wang, Z., Kendziorski, C. & Thibeault, S. L. Tissue specific human fibroblast differential expression based on RNAsequencing analysis. BMC Genom. 20, 308 (2019).

    Article  Google Scholar 

  141. Gauthier, V. et al. Fibroblast heterogeneity: keystone of tissue homeostasis and pathology in inflammation and ageing. Front. Immunol. 14, 1137659 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Klaas, M. et al. The alterations in the extracellular matrix composition guide the repair of damaged liver tissue. Sci. Rep. 6, 27398 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Eming, S. A., Martin, P. & Tomic-Canic, M. Wound repair and regeneration: mechanisms, signaling, and translation. Sci. Transl. Med. 6, 265sr6 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Smolen, J. S. et al. Rheumatoid arthritis. Nat. Rev. Dis. Primers 4, 18001 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This project was funded by the German Federal Ministry of Education and Research under code 03ZU1111GA as part of the Clusters4Future cluster SaxoCell. Y.R. is supported by a European Research Council Consolidator Grant (ERC-CoG 819933), the LEO Foundation (LF-OC-21-000835) and the EFSD Anniversary Fund Programme (CRC/TRR 359; Perinatal Development of Immune Cell Topology (PILOT)). J.C.S. and S.F. are supported by the 3D4D2 project carried out under the M-ERA.NET 2 scheme (the European Union’s Horizon 2020 research and innovation programme; grant number 685451) and co-funded by the Saxon State Ministry for Science, Culture and Tourism (grant number 100579959), as well as tax funds from the Saxon State Parliament. S.F. is supported by the German Research Foundation (FR2671/5-1). Some of the ideas presented in this Review were initiated at a fibroblast symposium at the University of Toronto. We thank B. Hinz, N. Henderson, G. Gabbiani, C. Philippeos, J. Duffield, R. Schwabe and F. Rossi for critical discussions throughout this meeting, as well as S. Miyara for interesting talks on cardiac fibroblasts.

Author information

Authors and Affiliations

Authors

Contributions

M.T. wrote the article with guidance from Y.R. and S.F. All authors discussed the manuscript content. M.T., S.F. and Y.R. reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Sandra Franz or Yuval Rinkevich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cell Biology thanks Valerie Horsley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torregrossa, M., Davies, L., Hans-Günther, M. et al. Effects of embryonic origin, tissue cues and pathological signals on fibroblast diversity in humans. Nat Cell Biol 27, 720–735 (2025). https://doi.org/10.1038/s41556-025-01638-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41556-025-01638-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing