Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translational regulation in stress biology

Abstract

Organisms must constantly respond to stress to maintain homeostasis, and the successful implementation of cellular stress responses is directly linked to lifespan regulation. In this Review we examine how three age-associated stressors—loss of proteostasis, oxidative damage and dysregulated nutrient sensing—alter protein synthesis. We describe how these stressors inflict cellular damage via their effects on translation and how translational changes can serve as both sensors and responses to the stressor. Finally, we compare stress-induced translational programmes to protein synthesis alterations that occur with age and discuss whether these changes are adaptive or deleterious to longevity and healthy ageing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Translational response to proteotoxic stress.
Fig. 2: Translational response to oxidative stress.
Fig. 3: Translational regulation of autophagy.
Fig. 4: Stress responsiveness in ageing.

Similar content being viewed by others

References

  1. Gladyshev, V. N. et al. Molecular damage in aging. Nat. Aging 1, 1096–1106 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: An expanding universe. Cell 186, 243–278 (2023).

    Article  PubMed  Google Scholar 

  3. Morimoto, R. I. Cell-nonautonomous regulation of proteostasis in aging and disease. Cold Spring Harb. Perspect. Biol. 12, a034074 (2020).

  4. Hetz, C., Zhang, K. & Kaufman, R. J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 21, 421–438 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shen, K. et al. Mitochondria as cellular and organismal signaling hubs. Annu. Rev. Cell Dev. Biol. 38, 179–218 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Wolff, S., Weissman, J. S. & Dillin, A. Differential scales of protein quality control. Cell 157, 52–64 (2014).

  7. Steffen, K. K. & Dillin, A. A ribosomal perspective on proteostasis and aging. Cell Metab. 23, 1004–1012 (2016).

  8. Lane, N. & Martin, W. The energetics of genome complexity. Nature 467, 929–934 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Shore, D. & Albert, B. Ribosome biogenesis and the cellular energy economy. Curr. Biol. 32, R589–R683 (2022).

    Article  Google Scholar 

  10. Warner, J. R. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24, 437–440 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Storci, G. et al. Ribosomal DNA instability: an evolutionary conserved fuel for inflammaging. Ageing Res. Rev. 58, 101018 (2020).

  12. Lee, J. W. & Ong, E. B. B. Genomic instability and cellular senescence: lessons from the budding yeast. Front. Cell Dev. Biol. 8, 619126 (2021).

  13. Boulon, S., Westman, B. J., Hutten, S., Boisvert, F. M. & Lamond, A. I. The nucleolus under stress. Mol. Cell 40, 216–227 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sutandy, F. X. R., Gößner, I., Tascher, G. & Münch, C. A cytosolic surveillance mechanism activates the mitochondrial UPR. Nature 618, 849–854 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mühlhofer, M. et al. The heat shock response in yeast maintains protein homeostasis by chaperoning and replenishing proteins. Cell Rep. 29, 4593–4607 (2019).

    Article  PubMed  Google Scholar 

  16. Shalgi, R. et al. Widespread regulation of translation by elongation pausing in heat shock. Mol. Cell 49, 439–452 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Duncan, R. & Hershey, J. W. B. Heat shock-induced translational alterations in HeLa cells. Initiation factor modifications and the inhibition of translation. J. Biol. Chem. 259, 11882–11889 (1984).

    Article  CAS  PubMed  Google Scholar 

  18. Vries, R. G. J. et al. Heat shock increases the association of binding protein-1 with initiation factor 4E. J. Biol. Chem. 272, 32779–32784 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Buchan, J. R. & Parker, R. Eukaryotic stress granules: the ins and outs of translation. Mol. Cell 36, 932–941 (2009).

  20. Liu, Y., Liang, S. & Tartakoffl, A. M. Heat shock disassembles the nucleolus and inhibits nuclear protein import and poly(A)+ RNA export. EMBO J. 15, 6750–6757 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ivanova, E., Berger, A., Scherrer, A., Alkalaeva, E. & Strub, K. Alu RNA regulates the cellular pool of active ribosomes by targeted delivery of SRP9/14 to 40S subunits. Nucleic Acids Res. 43, 2874–2887 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Berger, A. et al. Direct binding of the Alu binding protein dimer SRP9/14 to 40S ribosomal subunits promotes stress granule formation and is regulated by Alu RNA. Nucleic Acids Res. 42, 11203–11217 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bujisic, B. et al. 7SL RNA and signal recognition particle orchestrate a global cellular response to acute thermal stress. Nat. Commun. 16, 1630 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, B., Han, Y. & Qian, S. B. Cotranslational response to proteotoxic stress by elongation pausing of ribosomes. Mol. Cell 49, 453–463 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yueh, A. & Schneider, R. J. Translation by ribosome shunting on adenovirus and Hsp70 MRNAs facilitated by complementarity to 18S rRNA. Genes Dev. 14, 414–421 (2000).

  26. Hernández, G., Vázquez-Pianzola, P., Sierra, J. M. & Rivera-Pomar, R. Internal ribosome entry site drives cap-independent translation of reaper and heat shock protein 70 mRNAs in Drosophila embryos. RNA 10, 1783–1797 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhou, J. et al. Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature 526, 591–594 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meyer, K. D. et al. 5′ UTR m6A promotes cap-independent translation. Cell 163, 999–1010 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pomatto, L. C. D. & Davies, K. J. A. The role of declining adaptive homeostasis in ageing. J. Physiol. 595, 7275–7309 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Labbadia, J. & Morimoto, R. I. Repression of the heat shock response is a programmed event at the onset of reproduction. Mol. Cell 59, 639–650 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Meier, S. et al. Pathological tau promotes neuronal damage by impairing ribosomal function and decreasing protein synthesis. J. Neurosci. 36, 957–962 (2016).

    Article  Google Scholar 

  32. Kanekura, K. et al. Poly-dipeptides encoded by the C9ORF72 repeats block global protein translation. Hum. Mol. Genet. 25, 1803–1813 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, S. & Sun, S. Translation dysregulation in neurodegenerative diseases: a focus on ALS. Mol. Neurodegener. 18, 58 (2023).

  34. Loveland, A. B. et al. Ribosome inhibition by C9ORF72–ALS/FTD-associated poly-PR and poly-GR proteins revealed by cryo-EM. Nat. Commun. 13, 2776 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moens, T. G. et al. C9orf72 arginine-rich dipeptide proteins interact with ribosomal proteins in vivo to induce a toxic translational arrest that is rescued by eIF1A. Acta Neuropathol. 137, 487–500 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Aviner, R. et al. Polyglutamine-mediated ribotoxicity disrupts proteostasis and stress responses in Huntington’s disease. Nat. Cell Biol. 26, 892–902 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Derisbourg, M. J., Hartman, M. D. & Denzel, M. S. Modulating the integrated stress response to slow aging and ameliorate age-related pathology. Nat. Aging 1, 760–768 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hussain, S. G. & Ramaiah, K. V. A. Reduced eIF2α phosphorylation and increased proapoptotic proteins in aging. Biochem. Biophys. Res. Commun. 355, 365–370 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Naidoo, N., Ferber, M., Master, M., Zhu, Y. & Pack, A. I. Aging impairs the unfolded protein response to sleep deprivation and leads to proapoptotic signaling. J. Neurosci. 28, 6539–6548 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ben-Zvi, A., Miller, E. A. & Morimoto, R. I. Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc. Natl. Acad. Sci. 106, 14914–14919 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Taylor, R. C. & Dillin, A. XBP-1 is a cell-nonautonomous regulator of stress resistance and longevity. Cell 153, 1435–1447 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Acosta-Alvear, D., Harnoss, J. M., Walter, P. & Ashkenazi, A. Homeostasis control in health and disease by the unfolded protein response. Nat. Rev. Mol. Cell Biol. 26, 193–212 (2025).

    Article  CAS  PubMed  Google Scholar 

  43. Derisbourg, M. J., Wester, L. E., Baddi, R. & Denzel, M. S. Mutagenesis screen uncovers lifespan extension through integrated stress response inhibition without reduced mRNA translation. Nat. Commun. 12, 1678 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oliveira, M. M. et al. Correction of eIF2-dependent defects in brain protein synthesis, synaptic plasticity, and memory in mouse models of Alzheimer’s disease. Sci. Signal. 14, eabc5429 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Colla, E. et al. Accumulation of toxic α-synuclein oligomer within endoplasmic reticulum occurs in α-synucleinopathy in vivo. J. Neurosci. 32, 3301–3305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, L., Popko, B. & Roos, R. P. An enhanced integrated stress response ameliorates mutant SOD1-induced ALS. Hum. Mol. Genet. 23, 2629–2638 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Saxena, S., Cabuy, E. & Caroni, P. A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice. Nat. Neurosci. 12, 627–636 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Krzyzosiak, A. et al. Target-based discovery of an inhibitor of the regulatory phosphatase PPP1R15B. Cell 174, 1216–1228 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Longo, F. et al. Cell-type-specific disruption of PERK–eIF2α signaling in dopaminergic neurons alters motor and cognitive function. Mol. Psychiatry 26, 6427–6450 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Krukowski, K. et al. Small molecule cognitive enhancer reverses age-related memory decline in mice. eLife 9, e62048 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Reid, D. W., Chen, Q., Tay, A. S. L., Shenolikar, S. & Nicchitta, C. V. The unfolded protein response triggers selective mRNA release from the endoplasmic reticulum. Cell 158, 1362–1374 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Higgins, R. et al. The unfolded protein response triggers site-specific regulatory ubiquitylation of 40S ribosomal proteins. Mol. Cell 59, 35–49 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Garshott, D. M. et al. iRQC, a surveillance pathway for 40S ribosomal quality control during mRNA translation initiation. Cell Rep. 36, 109642 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Walther, D. M. et al. Widespread proteome remodeling and aggregation in aging C. elegans. Cell 161, 919–932 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guan, B. J. et al. A unique ISR program determines cellular responses to chronic stress. Mol. Cell 68, 885–900 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee, A. S. Y., Kranzusch, P. J., Doudna, J. A. & Cate, J. H. D. eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation. Nature 536, 96–99 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Soto, I. et al. Balanced mitochondrial and cytosolic translatomes underlie the biogenesis of human respiratory complexes. Genome Biol. 23, 170 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Durieux, J., Wolff, S. & Dillin, A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144, 79–91 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, X. & Zhang, G. The mitochondrial integrated stress response: a novel approach to anti-aging and pro-longevity. Ageing Res. Rev. 103, 102603 (2025).

  60. Baker, B. M., Nargund, A. M., Sun, T. & Haynes, C. M. Protective coupling of mitochondrial function and protein synthesis via the eIF2α kinase GCN-2. PLoS Genet. 8, e1002760 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Anderson, N. S. & Haynes, C. M. Folding the mitochondrial UPR into the integrated stress response. Trends Cell Biol. 30, 428–439 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fessler, E. et al. A pathway coordinated by DELE1 relays mitochondrial stress to the cytosol. Nature 579, 433–437 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guo, X. et al. Mitochondrial stress is relayed to the cytosol by an OMA1–DELE1–HRI pathway. Nature 579, 427–432 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kusuma, F. et al. PKR mediates the mitochondrial unfolded protein response through double-stranded RNA accumulation under mitochondrial stress. Int. J. Mol. Sci. 25, 7738 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim, Y. et al. PKR senses nuclear and mitochondrial signals by interacting with endogenous double-stranded RNAs. Mol. Cell 71, 1051–1063 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Ladiges, W., Morton, J., Blakely, C. & Gale, M. Tissue specific expression of PKR protein kinase in aging B6D2F1 mice. Mech. Ageing Dev. 114, 123–132 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Münch, C. & Harper, J. W. Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation. Nature 534, 710–713 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Quirós, P. M. et al. Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J. Cell Biol. 216, 2027–2045 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Schäfer, J. A., Bozkurt, S., Michaelis, J. B., Klann, K. & Münch, C. Global mitochondrial protein import proteomics reveal distinct regulation by translation and translocation machinery. Mol. Cell 82, 435–446 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gehrke, S. et al. PINK1 and parkin control localized translation of respiratory chain component mRNAs on mitochondria outer membrane. Cell Metab. 21, 95–108 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu, Z. et al. Ubiquitination of ABCE1 by NOT4 in response to mitochondrial damage links co-translational quality control to PINK1-directed mitophagy. Cell Metab. 28, 130–144 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dai, D. P. et al. Transcriptional mutagenesis mediated by 8-oxoG induces translational errors in mammalian cells. Proc. Natl Acad. Sci. USA 115, 4218–4222 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shcherbik, N. & Pestov, D. G. The impact of oxidative stress on ribosomes: from injury to regulation. Cells 8, 1379 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ding, Q., Markesbery, W. R., Cecarini, V. & Keller, J. N. Decreased RNA, and increased RNA oxidation, in ribosomes from early Alzheimer’s disease. Neurochem. Res. 31, 705–710 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Willi, J. et al. Oxidative stress damages rRNA inside the ribosome and differentially affects the catalytic center. Nucleic Acids Res. 46, 1945–1957 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shedlovskiy, D., Zinskie, J. A., Gardner, E., Pestov, D. G. & Shcherbik, N. Endonucleolytic cleavage in the expansion segment 7 of 25S rRNA is an early marker of low-level oxidative stress in yeast. J. Biol. Chem. 292, 18469–18485 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Topf, U. et al. Quantitative proteomics identifies redox switches for global translation modulation by mitochondrially produced reactive oxygen species. Nat. Commun. 9, 324 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yang, Y. M. et al. Chaperone-directed ribosome repair after oxidative damage. Mol. Cell 83, 1527–1537 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fusco, C. M. et al. Neuronal ribosomes exhibit dynamic and context-dependent exchange of ribosomal proteins. Nat. Commun. 12, 6127 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shenton, D. et al. Global translational responses to oxidative stress impact upon multiple levels of protein synthesis. J. Biol. Chem. 281, 29011–29021 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Gerashchenko, M. V., Lobanov, A. V. & Gladyshev, V. N. Genome-wide ribosome profiling reveals complex translational regulation in response to oxidative stress. Proc. Natl Acad. Sci. USA 109, 17394–17399 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu, C. C. C., Zinshteyn, B., Wehner, K. A. & Green, R. High-resolution ribosome profiling defines discrete ribosome elongation states and translational regulation during cellular stress. Mol. Cell 73, 959–970 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sanchez, M. et al. Cross talk between eIF2α and eEF2 phosphorylation pathways optimizes translational arrest in response to oxidative stress. iScience 20, 466–480 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kang, K. R. & Lee, S.-Y. Effect of serum and hydrogen peroxide on the Ca2+/calmodulin-dependent phosphorylation of eukaryotic elongation factor 2(eEF-2) in Chinese hamster ovary cells. Exp. Mol. Med. 33, 198–204 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Simões, V. et al. Redox-sensitive E2 Rad6 controls cellular response to oxidative stress via K63-linked ubiquitination of ribosomes. Cell Rep. 39, 110860 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Meydan, S. et al. The ubiquitin conjugase Rad6 mediates ribosome pausing during oxidative stress. Cell Rep. 42, 113359 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhou, Y. et al. Structural impact of K63 ubiquitin on yeast translocating ribosomes under oxidative stress. Proc. Natl Acad. Sci. USA 117, 22157–22166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Santos, C. M. et al. Redox control of the deubiquitinating enzyme Ubp2 regulates translation during stress. J. Biol. Chem. 300, 107870 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kim, Y. S., Kimball, S. R., Piskounova, E., Begley, T. J. & Hempel, N. Stress response regulation of mRNA translation: Implications for antioxidant enzyme expression in cancer. Proc. Natl Acad. Sci. USA 121, e2317846121 (2024).

  90. Torrent, M., Chalancon, G., de Groot, N. S., Wuster, A. & Madan Babu, M. Cells alter their tRNA abundance to selectively regulate protein synthesis during stress conditions. Sci. Signal. 11, eaat6409 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Schwenzer, H. et al. Oxidative stress triggers selective tRNA retrograde transport in human cells during the integrated stress response. Cell Rep. 26, 3416–3428 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yamasaki, S., Ivanov, P., Hu, G. F. & Anderson, P. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J. Cell Biol. 185, 35–42 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Czech, A., Wende, S., Mörl, M., Pan, T. & Ignatova, Z. Reversible and rapid transfer-RNA deactivation as a mechanism of translational repression in stress. PLoS Genet. 9, e1003767 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ivanov, P., Emara, M. M., Villen, J., Gygi, S. P. & Anderson, P. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol. Cell 43, 613–623 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lyons, S. M. et al. eIF4G has intrinsic G-quadruplex binding activity that is required for tiRNA function. Nucleic Acids Res. 48, 6223–6233 (2021).

    Article  Google Scholar 

  96. Chan, C. T. Y. et al. Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins. Nat. Commun. 3, 937 (2012).

    Article  PubMed  Google Scholar 

  97. Fernández-Vázquez, J. et al. Modification of tRNALysUUU by elongator is essential for efficient translation of stress mRNAs. PLoS Genet. 9, e1003647 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Huber, S. M. et al. Arsenite toxicity is regulated by queuine availability and oxidation-induced reprogramming of the human tRNA epitranscriptome. Proc. Natl Acad. Sci. USA 119, e2123529119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Endres, L. et al. Alkbh8 regulates selenocysteine-protein expression to protect against reactive oxygen species damage. PLoS ONE 10, e0131335 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Leonardi, A., Evke, S., Lee, M., Melendez, J. A. & Begley, T. J. Epitranscriptomic systems regulate the translation of reactive oxygen species detoxifying and disease linked selenoproteins. Free Radic. Biol. Med. 143, 573–593 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Li, W. et al. An internal ribosomal entry site mediates redox-sensitive translation of Nrf2. Nucleic Acids Res. 38, 778–788 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Zhang, J., Dinh, T. N., Kappeler, K., Tsaprailis, G. & Chen, Q. M. La autoantigen mediates oxidant induced de novo Nrf2 protein translation. Mol. Cell. Proteom. 11, M111.015032 (2012).

    Article  Google Scholar 

  103. Lee, S. C. et al. G-quadruplex in the NRF2 mRNA 5′ untranslated region regulates de novo NRF2 protein translation under oxidative stress. Mol. Cell. Biol. 37, e00122-16 (2017).

    Article  PubMed  Google Scholar 

  104. Jennings, M. D. et al. Interaction of the La-related protein Slf1 with colliding ribosomes maintains translation of oxidative-stress responsive mRNAs. Nucleic Acids Res. 51, 5755–5773 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Timme-Laragy, A. R., Hahn, M. E., Hansen, J. M., Rastogi, A. & Roy, M. A. Redox stress and signaling during vertebrate embryonic development: regulation and responses. Semin. Cell Dev. Biol. 80, 17–28 (2018).

  106. Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).

  107. Oleson, B. J., Bazopoulou, D. & Jakob, U. Shaping longevity early in life: developmental ROS and H3K4me3 set the clock. Cell Cycle 20 2337–2347 (2021).

  108. Bazopoulou, D. et al. Developmental ROS individualizes organismal stress resistance and lifespan. Nature 576, 301–305 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lee, J. Y. et al. Promiscuous methionyl-tRNA synthetase mediates adaptive mistranslation to protect cells against oxidative stress. J. Cell Sci. 127, 4234–4245 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Luo, S. & Levine, R. L. Methionine in proteins defends against oxidative stress. FASEB J. 23, 464–472 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lee, H. & Lee, S. J. V. Recent progress in regulation of aging by insulin/IGF-1 signaling in Caenorhabditis elegans. Mol. Cells 45, 763–770 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Li, W. J. et al. Insulin signaling regulates longevity through protein phosphorylation in Caenorhabditis elegans. Nat. Commun. 12, 4568 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Stout, G. J. et al. Insulin/IGF-1-mediated longevity is marked by reduced protein metabolism. Mol. Syst. Biol. 9, 679 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Papadopoli, D. et al. mTOR as a central regulator of lifespan and aging. F1000Res. 8, 998 (2019).

    Article  CAS  Google Scholar 

  115. Wu, C. C. C., Peterson, A., Zinshteyn, B., Regot, S. & Green, R. Ribosome collisions trigger general stress responses to regulate cell fate. Cell 182, 404–416 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Coria, A. R. et al. The integrated stress response regulates 18S nonfunctional rRNA decay in mammals. Mol. Cell 85, 787–801 (2025).

    Article  CAS  PubMed  Google Scholar 

  117. Huang, Z. et al. RIOK3 mediates the degradation of 40S ribosomes. Mol. Cell 85, 802–814 (2025).

    Article  CAS  PubMed  Google Scholar 

  118. Ford, P. W. et al. RNF10 and RIOK3 facilitate 40S ribosomal subunit degradation upon 60S biogenesis disruption or amino acid starvation. Cell Rep. 44, 115371 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Parkhitko, A. A., Filine, E., Mohr, S. E., Moskalev, A. & Perrimon, N. Targeting metabolic pathways for extension of lifespan and healthspan across multiple species. Ageing Res. Rev. 64, 101188 (2020).

  120. Darnell, A. M., Subramaniam, A. R. & O’Shea, E. K. Translational control through differential ribosome pausing during amino acid limitation in mammalian cells. Mol. Cell 71, 229–243 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mazor, K. M. et al. Effects of single amino acid deficiency on mRNA translation are markedly different for methionine versus leucine. Sci. Rep. 8, 8076 (2018).

  122. Stein, K. C., Morales-Polanco, F., van der Lienden, J., Rainbolt, T. K. & Frydman, J. Ageing exacerbates ribosome pausing to disrupt cotranslational proteostasis. Nature 601, 637–642 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Singh, P. et al. Taurine deficiency as a driver of aging. Science 380, eabn9257 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Suzuki, T., Suzuki, T., Wada, T., Saigo, K. & Watanabe, K. Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO J. 21, 6581–6589 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Saini, P., Eyler, D. E., Green, R. & Dever, T. E. Hypusine-containing protein eIF5A promotes translation elongation. Nature 459, 118–121 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Melnikov, S. et al. Crystal structure of hypusine-containing translation factor eIF5A bound to a rotated eukaryotic ribosome. J. Mol. Biol. 428, 3570–3576 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Schmidt, C. et al. Structure of the hypusinylated eukaryotic translation factor eIF-5A bound to the ribosome. Nucleic Acids Res. 44, 1944–1951 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Liang, Y. T. et al. eIF5A hypusination, boosted by dietary spermidine, protects from premature brain aging and mitochondrial dysfunction. Cell Rep. 35, 108941 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Gupta, V. K. et al. Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nat. Neurosci. 16, 1453–1460 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Eisenberg, T. et al. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 11, 1305–1314 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Schuller, A. P., Wu, C. C. C., Dever, T. E., Buskirk, A. R. & Green, R. eIF5A functions globally in translation elongation and termination. Mol. Cell 66, 194–205 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhang, H. et al. Polyamines control eIF5A hypusination, TFEB translation, and autophagy to reverse B cell senescence. Mol. Cell 76, 110–125 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lubas, M. et al. eIF5A is required for autophagy by mediating ATG3 translation. EMBO Rep. 19, e46072 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Hofer, S. J. et al. Spermidine is essential for fasting-mediated autophagy and longevity. Nat. Cell Biol. 26, 1571–1584 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Metur, S. P. et al. Yeast TIA1 coordinates with Npl3 to promote ATG1 translation during starvation. Cell Rep. 44, 115316 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. De, S., Das, S. & Sengupta, S. Involvement of HuR in the serum starvation induced autophagy through regulation of Beclin1 in breast cancer cell-line, MCF-7. Cell Signal. 61, 78–85 (2019).

    Article  CAS  PubMed  Google Scholar 

  137. Ji, E. et al. RNA binding protein HuR promotes autophagosome formation by regulating expression of autophagy-related proteins 5, 12, and 16 in human hepatocellular carcinoma cells. Mol. Cell. Biol. 39, e00508–e00518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kim, C. et al. The RNA-binding protein HuD regulates autophagosome formation in pancreatic β cells by promoting autophagy-related gene 5 expression. J. Biol. Chem. 289, 112–121 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Liu, X. et al. Dhh1 promotes autophagy-related protein translation during nitrogen starvation. PLoS Biol. 17, e3000219 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hu, G. et al. A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulates autophagy. Nat. Cell Biol. 17, 930–942 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kim, H. S. & Pickering, A. M. Protein translation paradox: implications in translational regulation of aging. Front. Cell Dev. Biol. 11, 1129281 (2023).

  142. Baar, E. L., Carbajal, K. A., Ong, I. M. & Lamming, D. W. Sex- and tissue-specific changes in mTOR signaling with age in C57BL/6J mice. Aging Cell 15, 155–166 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Blagosklonny, M. V. Revisiting the antagonistic pleiotropy theory of aging: TOR-driven program and quasi-program. Cell Cycle 9, 3171–3176 (2010).

    Article  Google Scholar 

  144. Anisimova, A. S. et al. Multifaceted deregulation of gene expression and protein synthesis with age. Proc. Natl Acad. Sci. USA 117, 15581–15590 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Amirbeigiarab, S. et al. Invariable stoichiometry of ribosomal proteins in mouse brain tissues with aging. Proc. Natl Acad. Sci. USA 116, 22567–22572 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gerashchenko, M. V., Peterfi, Z., Yim, S. H. & Gladyshev, V. N. Translation elongation rate varies among organs and decreases with age. Nucleic Acids Res. 49, e9 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Conn, C. S. & Qian, S.-B. Nutrient signaling in protein homeostasis: an increase in quantity at the expense of quality. Sci. Signal. 6, ra24 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Buhr, F. et al. Synonymous codons direct cotranslational folding toward different protein conformations. Mol. Cell 61, 341–351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sudmant, P. H., Lee, H., Dominguez, D., Heiman, M. & Burge, C. B. Widespread accumulation of ribosome-associated isolated 3′ UTRs in neuronal cell populations of the aging brain. Cell Rep. 25, 2447–2456 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kirstein-Miles, J., Scior, A., Deuerling, E. & Morimoto, R. I. The nascent polypeptide-associated complex is a key regulator of proteostasis. EMBO J. 32, 1451–1468 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lu, J. & Deutsch, C. Electrostatics in the ribosomal tunnel modulate chain elongation rates. J. Mol. Biol. 384, 73–86 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Rieckher, M., Markaki, M., Princz, A., Schumacher, B. & Tavernarakis, N. Maintenance of proteostasis by P body-mediated regulation of eIF4E availability during aging in Caenorhabditis elegans. Cell Rep. 25, 199–211 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Ding, Q., Markesbery, W. R., Chen, Q., Li, F. & Keller, J. N. Ribosome dysfunction is an early event in Alzheimer’s disease. J. Neurosci. 25, 9171–9175 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Han, J. et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat. Cell Biol. 15, 481–490 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sacramento, E. K. et al. Reduced proteasome activity in the aging brain results in ribosome stoichiometry loss and aggregation. Mol. Syst. Biol. 16, e9596 (2020).

    Article  Google Scholar 

  156. VanInsberghe, M., van den Berg, J., Andersson-Rolf, A., Clevers, H. & van Oudenaarden, A. Single-cell Ribo-seq reveals cell cycle-dependent translational pausing. Nature 597, 561–565 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Ozadam, H. et al. Single-cell quantification of ribosome occupancy in early mouse development. Nature 618, 1057–1064 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Xiong, Z. et al. Ultrasensitive Ribo-seq reveals translational landscapes during mammalian oocyte-to-embryo transition and pre-implantation development. Nat. Cell Biol. 24, 968–980 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. Gemmer, M. et al. Visualization of translation and protein biogenesis at the ER membrane. Nature 614, 160–167 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Schaffer, M. et al. A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue. Nat. Methods 16, 757–762 (2019).

    Article  CAS  PubMed  Google Scholar 

  161. Xing, H. et al. Translation dynamics in human cells visualized at high resolution reveal cancer drug action. Science 381, 70–75 (2023).

    Article  CAS  PubMed  Google Scholar 

  162. Zeng, H. et al. Spatially resolved single-cell translatomics at molecular resolution. Science 380, eadd3067 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Mordret, E. et al. Systematic detection of amino acid substitutions in proteomes reveals mechanistic basis of ribosome errors and selection for translation fidelity. Mol. Cell 75, 427–441 (2019).

    Article  CAS  PubMed  Google Scholar 

  164. Hinnebusch, A. G. The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem. 83, 779–812 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Dever, T. E., Dinman, J. D. & Green, R. Translation elongation and recoding in eukaryotes. Cold Spring Harb. Perspect. Biol. 10, a032649 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Gutierrez, E. et al. eif5A promotes translation of polyproline motifs. Mol. Cell 51, 35–45 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Vattem, K. M. & Wek, R. C. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl Acad. Sci. USA 101, 11269–11274 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Filer, D. et al. RNA polymerase III limits longevity downstream of TORC1. Nature 552, 263–267 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Roux, P. P. & Topisirovic, I. Signaling pathways involved in the regulation of mRNA translation. Mol. Cell. Biol. 38, e00070-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Zid, B. M. et al. 4E-BP extends lifespan upon dietary restriction by enhancing mitochondrial activity in Drosophila. Cell 139, 149–160 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Jin, H. et al. TRIBE editing reveals specific mRNA targets of EIF4E–BP in Drosophila and in mammals. Sci. Adv. 6, eabb8771 (2020).

  172. Martinez-Miguel, V. E. et al. Increased fidelity of protein synthesis extends lifespan. Cell Metab. 33, 2288–2300 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Guan, B.-J. et al. Translational control during endoplasmic reticulum stress beyond phosphorylation of the translation initiation factor eif2α. J. Biol. Chem. 289, 12593–12611 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Park, Y., Reyna-Neyra, A., Philippe, L. & Thoreen, C. C. mTORC1 balances cellular amino acid supply with demand for protein synthesis through post-transcriptional control of ATF4. Cell Rep. 19, 1083–1090 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Torrence, M. E. et al. The mTORC1-mediated activation of ATF4 promotes protein and glutathione synthesis downstream of growth signals. eLife 10, e63326 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ben-Sahra, I., Hoxhaj, G., Ricoult, S. J. H., Asara, J. M. & Manning, B. D. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science 351, 728–733 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ye, J. et al. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Genes Dev. 29, 2331–2336 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Harris, D. T. & Jan, C. H. CRISPuRe-seq: pooled screening of barcoded ribonucleoprotein reporters reveals regulation of RNA polymerase III transcription by the integrated stress response via mTOR. Nucleic Acids Res. 53, gkaf062 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members of the Dillin laboratory for their constructive discussion. Figures were created in BioRender. A.D. is supported by the Howard Hughes Medical Institute and N.R.G. is a Howard Hughes Medical Institute Fellow of the Jane Coffin Childs Memorial Fund.

Author information

Authors and Affiliations

Authors

Contributions

N.R.G. prepared the manuscript and figures with guidance from A.D. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Andrew Dillin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cell Biology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genuth, N.R., Dillin, A. Translational regulation in stress biology. Nat Cell Biol (2025). https://doi.org/10.1038/s41556-025-01765-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41556-025-01765-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing