Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Hydrogen bonding

The Jekyll-and-Hyde electron transfer chemistry of hydrogen bonds

Hydrogen bonds get a bad rap in electronic materials because their weak, transient structure often results in poor performance. Now, this dogma has been turned on its head by intercalating molecules into two-dimensional superlattices to generate hydrogen-bonded organic–inorganic structures that feature significantly enhanced electrical conductivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cooling switches dynamic hydrogen bonds into static structures, thus suppressing electron transport.

References

  1. Malvankar, N. S. et al. Nat. Nanotechnol. 6, 573–579 (2011).

    Article  PubMed  Google Scholar 

  2. Yalcin, S. E. et al. Nat. Chem. Biol. 16, 1136–1142 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dahl, P. J. et al. Sci. Adv. 8, eabm7193 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Song, H. et al. Nature 462, 1039–1043 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Dahl, P. J. et al. Preprint at https://doi.org/10.21203/rs.3.rs-4724466/v1 (2024).

  6. Malvankar, N. S., Tuominen, M. T. & Lovley, D. R. Energy Environ. Sci. 5, 8651–8659 (2012).

    Article  CAS  Google Scholar 

  7. Wang, Z. et al. Nat. Rev. Mater. 5, 173–195 (2020).

    Article  CAS  Google Scholar 

  8. Xie, Z. et al. Nat. Chem. https://doi.org/10.1038/s41557-024-01566-1 (2024).

  9. Guberman-Pfeffer, M. J. & Malvankar, N. S. Biochem. J. 478, 4093–4097 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Shipps, C. et al. Proc. Natl Acad. Sci. USA 118, e2014139118 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Gu, Y. et al. Nat. Microbiol. 8, 284–298 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, F. et al. Cell 177, 361–369.e310 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kamysbayev, V. et al. Science 369, 979–983 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Neu, J. et al. Nat. Commun. 13, 5150 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, X., Liu, L., Yu, P. Y. & Mao, S. S. Science 331, 746–750 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the Malvankar lab is supported by the Department of Energy (DE-SC0025520), the US National Science Foundation (NSF-ANR 2210473), and Human Frontier Science Program award no. RGP017/2023.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter J. Dahl or Nikhil S. Malvankar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahl, P.J., Malvankar, N.S. The Jekyll-and-Hyde electron transfer chemistry of hydrogen bonds. Nat. Chem. 16, 1746–1747 (2024). https://doi.org/10.1038/s41557-024-01656-0

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-024-01656-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing