Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Light-promoted aromatic denitrative chlorination

Abstract

Nitroarenes are readily accessible bulk chemicals and can serve as versatile starting materials for a series of synthetic reactions. However, due to the inertness of the CAr–NO2 bond, the direct denitrative substitution reaction with unactivated nitroarenes remains challenging. Chemists rely on sequential reduction and diazotization followed by the Sandmeyer reaction or the nucleophilic aromatic substitution of activated nitroarenes to realize nitro group transformations. Here we develop a general denitrative chlorination reaction under visible-light irradiation, in which the chlorine radical replaces the nitro moiety through the cleavage of the CAr–NO2 bond. This practical method works with a wide range of unactivated nitro(hetero)arenes and nitroalkenes, is not sensitive to air or moisture and can proceed smoothly on a decagram scale. This transformation differs fundamentally from previous nucleophilic aromatic substitution reactions under thermal conditions in both synthesis and mechanism. Density functional theory calculations reveal the possible pathway for the substitution reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies for the transformation of nitroarenes.
Fig. 2: Examples of synthetic applications.
Fig. 3: Mechanistic investigations.
Fig. 4: Energy profile for the denitrative chlorination reaction.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information. Crystallographic data for compound 52 have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition number 2341039. These data can be obtained free of charge from the CCDC (http://www.ccdc.cam.ac.uk/data_request/cif).

References

  1. Ju, K. S. & Parales, R. E. Nitroaromatic compounds, from synthesis to biodegradation. Microbiol. Mol. Biol. Rev. 74, 250–272 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Booth, G. Nitro Compounds, Aromatic (Wiley-VCH Verlag, 2000).

  3. Sharma, K. Nitro Compounds: Classification, Preparation, Properties, Reactions, Uses (Wiley, 2023).

  4. Amini, B. & Lowenkron, S. Aniline and its derivatives. Kirk-Othmer Encyclopedia of Chemical Technology Vol. 2, 783−809 (Wiley, 2003).

  5. Olah, G. A., Malhotra, R. & Narang, S. C. Nitration: Methods and Mechanism 975–979 (World Scientific, 2003).

  6. Nykaza, T. V. et al. Intermolecular reductive C–N cross coupling of nitroarenes and boronic acids by PIII/PV=O catalysis. J. Am. Chem. Soc. 140, 15200–15205 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nykaza, T. V., Ramirez, A., Harrison, T. S., Luzung, M. R. & Radosevich, A.T. Biphilic organophosphorus-catalyzed intramolecular \({{\mathrm{C}}_{{\mathrm{sp}}^{2}}}{-}{\mathrm{H}}\) amination: evidence for a nitrenoid in catalytic cadogan cyclizations. J. Am.Chem. Soc. 140, 3103–3113 (2018).

  8. Nykaza, T. V., Li, G., Yang, J., Luzung, M. R. & Radosevich, A. T. PIII/PV=O catalyzed cascade synthesis of N-functionalized azaheterocycles. Angew. Chem. Int. Ed. 59, 4505–4510 (2020).

    CAS  Google Scholar 

  9. Li, G., Lavagnino, M. N., Ali, S. Z., Hu, S. & Radosevich, A. T. Tandem C/N-difunctionalization of nitroarenes: reductive amination and annulation by a ring expansion/contraction sequence. J. Am. Chem. Soc. 145, 41–46 (2023).

    CAS  PubMed  Google Scholar 

  10. Ryabchuk, P. et al. Cascade synthesis of pyrroles from nitroarenes with benign reductants using a heterogeneous cobalt catalyst. Angew. Chem. Int. Ed. 59, 18679–18685 (2020).

    CAS  Google Scholar 

  11. Gui, J. et al. Practical olefin hydroamination with nitroarenes. Science 348, 886–891 (2015).

    CAS  PubMed  Google Scholar 

  12. Schwob, T. & Kempe, R. A reusable Co catalyst for the selective hydrogenation of functionalized nitroarenes and the direct synthesis of imines and benzimidazoles from nitroarenes and aldehydes. Angew. Chem. Int. Ed. 55, 15175–15179 (2016).

    CAS  Google Scholar 

  13. Gkizis, P. L., Triandafillidi, I. & Kokotos, C. G. Nitroarenes: the rediscovery of their photochemistry opens new avenues in organic synthesis. Chem 9, 3401–3414 (2023).

    CAS  Google Scholar 

  14. Paolillo, J. M., Duke, A. D., Gogarnoiu, E. S., Wise, D. E. & Parasram, M. Anaerobic hydroxylation of C(sp3)–H bonds enabled by the synergistic nature of photoexcited nitroarenes. J. Am. Chem. Soc. 145, 2794–2799 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ruffoni, A., Hampton, C., Simonetti, M. & Leonori, D. Photoexcited nitroarenes for the oxidative cleavage of alkenes. Nature 610, 81–86 (2022).

    CAS  PubMed  Google Scholar 

  16. Hampton, C., Simonetti, M. & Leonori, D. Olefin dihydroxylation using nitroarenes as photoresponsive oxidants. Angew. Chem. Int. Ed. 62, e202214508 (2023).

    CAS  Google Scholar 

  17. Wise, D. E. et al. Photoinduced oxygen transfer using nitroarenes for the anaerobic cleavage of alkenes. J. Am. Chem. Soc. 144, 15437–15442 (2022).

    CAS  PubMed  Google Scholar 

  18. Sanchez-Bento, R., Roure, B., Llaveria, J., Ruffoni, A. & Leonori, D. A strategy for ortho-phenylenediamine synthesis via dearomative-rearomative coupling of nitrobenzenes and amines. Chem 9, 3685–3695 (2023).

    CAS  Google Scholar 

  19. Li, B., Ruffoni, A. & Leonori, D. A photochemical strategy for ortho-aminophenol synthesis via dearomative–rearomative coupling between aryl azides and alcohols. Angew. Chem. Int. Ed. 62, e202310540 (2023).

    CAS  Google Scholar 

  20. Matador, E. et al. A photochemical strategy for the conversion of nitroarenes into rigidified pyrrolidine analogues. J. Am. Chem. Soc. 145, 27810–27820 (2023).

    CAS  PubMed  Google Scholar 

  21. Mykura, R. et al. Synthesis of polysubstituted azepanes by dearomative ring expansion of nitroarenes. Nat. Chem. 16, 771–779 (2024).

    CAS  PubMed  Google Scholar 

  22. Muto, K., Okita, T. & Yamaguchi, J. Transition-metal-catalyzed denitrative coupling of nitroarenes. ACS Catal. 10, 9856–9871 (2020).

    CAS  Google Scholar 

  23. Mo, F., Qiu, D., Zhang, Y. & Wang, J. Renaissance of Sandmeyer-type reactions: conversion of aromatic C–N bonds into C–X bonds (X = B, Sn, P, or CF3). Acc. Chem. Res. 51, 496–506 (2018).

    CAS  PubMed  Google Scholar 

  24. Mateos, J. et al. Nitrate reduction enables safer aryldiazonium chemistry. Science 384, 446–452 (2024).

    CAS  PubMed  Google Scholar 

  25. Bunnett, J. F. & Zahler, R. E. Aromatic nucleophilic substitution reactions. Chem. Rev. 49, 273–412 (1951).

    CAS  Google Scholar 

  26. Yadav, M. R. et al. The Suzuki–Miyaura coupling of nitroarenes. J. Am. Chem. Soc. 139, 9423–9426 (2017).

    CAS  PubMed  Google Scholar 

  27. Inoue, F., Kashihara, M., Yadav, M. R. & Nakao, Y. Buchwald–Hartwig amination of nitroarenes. Angew. Chem. Int. Ed. 56, 13307–13309 (2017).

    CAS  Google Scholar 

  28. Kashihara, M. & Nakao, Y. Cross-coupling reactions of nitroarenes. Acc. Chem. Res. 54, 2928–2935 (2021).

    CAS  PubMed  Google Scholar 

  29. Fráter, G. & Havinga, E. Photosubstitution reactions of nitronaphtalenes leading to chloronaphtalene. Tetrahedron Lett. 10, 4603–4604 (1969).

  30. Vink, I. A. J., Verheijdt, P. L., Cornelisse, J. & Havinga, E. Photoreactions of aromatic compounds—XXVI: photoinduced reactions of biphenyl and biphenyl derivatives with cyanide ion. Tetrahedron 28, 5081–5087 (1972).

  31. Pistritto, V. A., Liu, S. & Nicewicz, D. A. Mechanistic investigation into amination of unactivated arene via cation radical accelerated nucleophilic aromatic substitution. J. Am. Chem. Soc. 144, 15118–15131 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pistritto, V. A., Schutzbach-Horton, M. E. & Nicewicz, D. A. Nucleophilic aromatic substitution of unactivated fluoroarenes enabled by organic photoredox catalysis. J. Am. Chem. Soc. 142, 17187–17194 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Tay, N. E. S. et al. 19F- and 18F-arene deoxyfluorination via organic photoredox-catalysed polarity-reversed nucleophilic aromatic substitution. Nat. Catal. 3, 734–742 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Romero, N. A., Margrey, K. A., Tay, N. E. & Nicewicz, D. A. Site-selective arene C–H amination via photoredox catalysis. Science 349, 1326–1330 (2015).

    CAS  PubMed  Google Scholar 

  35. Juliá, F. Ligand-to-metal charge transfer (LMCT) photochemistry at 3d-metal complexes: an emerging tool for sustainable organic synthesis. ChemCatChem 14, e202200916 (2022).

  36. Song, S. et al. DMSO-catalysed late-stage chlorination of (hetero)arenes. Nat. Catal. 3, 107–115 (2020).

    CAS  Google Scholar 

  37. Camelio, A. M. et al. Computational and experimental studies of phthaloyl peroxide-mediated hydroxylation of arenes yield a more reactive derivative, 4,5-dichlorophthaloyl peroxide. J. Org. Chem. 80, 8084–8095 (2015).

    CAS  PubMed  Google Scholar 

  38. Mo, F. et al. Gold catalyzed halogenation of aromatics by N-halosuccinimides. Angew. Chem. Int. Ed. 49, 2028–2032 (2010).

    CAS  Google Scholar 

  39. Fosu, S. C., Hambira, C. M., Chen, A. D., Fuchs, J. R. & Nagib, D. A. Site-selective C–H functionalization of (hetero)arenes via transient, non-symmetric iodanes. Chem 5, 417–428 (2019).

    CAS  PubMed  Google Scholar 

  40. Wang, W. et al. Catalytic electrophilic halogenation of arenes with electron-withdrawing substitutents. J. Am. Chem. Soc. 144, 13415–13425 (2022).

    CAS  PubMed  Google Scholar 

  41. da Petruci, J. F. S., Tütüncü, E., Cardos, A. A. & Mizaikoff, B. Real-time and simultaneous monitoring of NO, NO2, and N2O using substrate–integrated hollow waveguides coupled to a compact fourier transform infrared (FT-IR) spectrometer. Appl. Spectrosc. 73, 98–103 (2019).

    CAS  PubMed  Google Scholar 

  42. Tu, J., Hu, A., Guo, L. & Xia, W. Iron-catalyzed C(sp3)–H borylation, thiolation, and sulfinylation enabled by photoinduced ligand-to-metal charge transfer. J. Am. Chem. Soc. 145, 7600–7611 (2023).

    CAS  PubMed  Google Scholar 

  43. Steube, J. et al. Janus-type emission from a cyclometalated iron(III) complex. Nat. Chem. 15, 468–474 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Abderrazak, Y., Bhattacharyya, A. & Reiser, O. Visible-light-induced homolysis of earth-abundant metal-substrate complexes: a complementary activation strategy in photoredox catalysis. Angew. Chem. Int. Ed. 60, 21100–21115 (2021).

    CAS  Google Scholar 

  45. Chinchole, A., Henriquez, M. A., Cortes-Arriagada, D., Cabrera, A. R. & Reiser, O. Iron(III)-light-induced homolysis: a dual photocatalytic approach for the hydroacylation of alkenes using acyl radicals via direct HAT from aldehydes. ACS Catal. 12, 13549–13554 (2022).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Wang (PKU) for the high-resolution MS testing and Z. Luo (Central China Normal University (CCNU)) for the IR testing. We thank X. Meng (CCNU) for X-ray structure refinement. We thank L. Chen (CCNU) for electron paramagnetic resonance measurement. We also thank Y. Xu (Peking University) and G. Wu (Huazhong University of Science and Technology) for helpful discussion about the project. We are grateful to the Knowledge Innovation Program of the Wuhan-Shuguang Project (2023020201020308; F.Y.); the Cultivation Program of Wuhan Institute of Photochemistry and Technology (GHY2023KF003; F.Y.); the National Natural Science Foundation of China (22173077 and 22422110; G.-J.C.) and the Guangdong Basic and Applied Basic Research Foundation (2023B1515020052; G.-J.C.) for financial support; and CCNU for startup funding (F.Y.).

Author information

Authors and Affiliations

Authors

Contributions

T.L. developed the reaction methods and investigated the mechanism. T.L., Y.W. and W.Z. explored the substrate scope. Z.L. performed the DFT calculation. R.S, G.-J.C. and F.Y. prepared the paper. F.Y. directed the project.

Corresponding authors

Correspondence to Gui-Juan Cheng or Fei Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Wei Guan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–28, Tables 1–4, Discussion, experimental data, procedural details, synthesis and characterization data and NMR spectra.

Supplementary Data 1

Crystallographic data for compound 52; CCDC reference number 2341039.

Supplementary Data 2

Calculated coordinates of intermediates and transition states.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, T., Lyu, Z., Wang, Y. et al. Light-promoted aromatic denitrative chlorination. Nat. Chem. 17, 598–605 (2025). https://doi.org/10.1038/s41557-024-01728-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-024-01728-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing