Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Secondary nucleation as a strategy towards hierarchically organized mesoscale topologies in supramolecular polymerization

Abstract

Developing new generic methodologies for organizing molecules into nano- to mesoscale structures of precise shapes and sizes is a research topic at the forefront of modern chemistry. Creating hierarchical molecular assembly, especially at the mesoscale, is important to realize functions reminiscent of those manifested by biomolecular assemblies in the mesoscopic regime. However, this is challenging due to the difficulty in maintaining stringent controllability over the organization of molecules at higher hierarchical levels, wherein weak non-directional intermolecular interactions rather than strong directional interactions typically play a predominant role. Recent studies have revealed that secondary nucleation, often experienced by one-dimensional assemblies such as supramolecular polymers that grow with spontaneous nucleation, is effective in the hierarchical construction of higher-order structures. Here we illustrate how secondary nucleation can be combined with the well-established precision synthesis of supramolecular polymers to realize precise control over hierarchical structures in the mesoscopic regime. We present a roadmap for creating hierarchical supramolecular polymers by exploiting secondary nucleation–elongation processes and discuss future prospects for the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution of intermolecular interactions in hierarchical self-assembly.
Fig. 2: Utilizing secondary nucleation towards hierarchical supramolecular polymer topologies.
Fig. 3: Molecular design and role of solvent in inducing secondary nucleation.
Fig. 4: Stereoselective primary and secondary nucleation in supramolecular polymerization.
Fig. 5: Secondary nucleation on supramolecular polymer toroids leading to self-assembled polycatenanes.
Fig. 6: Synthesis of supramolecular polymer concentric toroids and corresponding block supramolecular polymers by secondary nucleation.
Fig. 7: Secondary nucleation in gels.

Similar content being viewed by others

References

  1. Saper, G. & Hess, H. Synthetic systems powered by biological molecular motors. Chem. Rev. 120, 228–309 (2020).

    Article  Google Scholar 

  2. Iino, R., Kinbara, K. & Bryant, Z. Introduction: molecular motors. Chem. Rev. 120, 1–4 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Mirkovic, T. et al. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. 117, 249–293 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Cogdell, R. J., Gall, A. & Köhler, J. The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q. Rev. Biophys. 39, 227–324 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Cogdell, R. J. et al. The structural basis of light-harvesting in purple bacteria. FEBS Lett. 555, 35–39 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Gong, Y. et al. Unprecedented small molecule-based uniform two-dimensional platelets with tailorable shapes and sizes. J. Am. Chem. Soc. 144, 15403–15410 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Percec, V. et al. Controlling polymer shape through the self-assembly of dendritic side-groups. Nature 391, 161–164 (1998).

    Article  CAS  Google Scholar 

  8. Chen, G. et al. Supramolecular hexagonal platelet assemblies with uniform and precisely-controlled dimensions. J. Am. Chem. Soc. 141, 15498–15503 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Ishiwari, F., Shoji, Y. & Fukushima, T. Supramolecular scaffolds enabling the controlled assembly of functional molecular units. Chem. Sci. 9, 2028–2041 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fujita, D. et al. Self-assembly of M30L60 icosidodecahedron. Chem 1, 91–101 (2016).

    Article  CAS  Google Scholar 

  11. Fukui, T. et al. Control over differentiation of a metastable supramolecular assembly in one and two dimensions. Nat. Chem. 9, 493–499 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Ogi, S., Sugiyasu, K., Manna, S., Samitsu, S. & Takeuchi, M. Living supramolecular polymerization realized through a biomimetic approach. Nat. Chem. 6, 188–195 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Gilroy, J. B. et al. Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nat. Chem. 2, 566–570 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, X. et al. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 317, 644–647 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Greef, T. F. A. et al. Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009).

    Article  PubMed  Google Scholar 

  17. Chen, Z., Lohr, A., Saha-Möller, C. R. & Würthner, F. Self-assembled π-stacks of functional dyes in solution: structural and thermodynamic features. Chem. Soc. Rev. 38, 564–584 (2009).

  18. Mukhopadhyay, R. D. & Ajayaghosh, A. Living supramolecular polymerization. Science 349, 241–242 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Ogi, S., Stepanenko, V., Sugiyasu, K., Takeuchi, M. & Würthner, F. Mechanism of self-assembly process and seeded supramolecular polymerization of perylene bisimide organogelator. J. Am. Chem. Soc. 137, 3300–3307 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Ogi, S., Stepanenko, V., Thein, J. & Würthner, F. Impact of alkyl spacer length on aggregation pathways in kinetically controlled supramolecular polymerization. J. Am. Chem. Soc. 138, 670–678 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Kang, J. et al. A rational strategy for the realization of chain-growth supramolecular polymerization. Science 347, 646–651 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Törnquist, M. et al. Secondary nucleation in amyloid formation. Chem. Commun. 54, 8667–8684 (2018).

    Article  Google Scholar 

  23. Szczepankiewicz, O. et al. N-terminal extensions retard Aβ42 fibril formation but allow cross-seeding and coaggregation with Aβ42. J. Am. Chem. Soc. 137, 14673–14685 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Buell, A. K. et al. Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proc. Natl Acad. Sci. USA 111, 7671–7676 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cohen, S. I. A. et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl Acad. Sci. USA 110, 9758–9763 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cartwright, J. H. E., García-Ruiz, J. M., Piro, O., Sainz-Díaz, C. I. & Tuval, I. Chiral symmetry breaking during crystallization: an advection-mediated nonlinear autocatalytic process. Phys. Rev. Lett. 93, 035502 (2004).

    Article  PubMed  Google Scholar 

  27. Cohen, S. I. A. et al. Distinct thermodynamic signatures of oligomer generation in the aggregation of the amyloid-β peptide. Nat. Chem. 10, 523–531 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, D. et al. Control of crystal properties in a mixed-suspension mixed-product removal crystallizer: general methods and the effects of secondary nucleation. Cryst. Growth Des. 19, 3070–3084 (2019).

    Article  CAS  Google Scholar 

  29. Besenhard, M. O., Neugebauer, P., Ho, C.-D. & Khinast, J. G. Crystal size control in a continuous tubular crystallizer. Cryst. Growth Des. 15, 1683–1691 (2015).

    Article  CAS  Google Scholar 

  30. Qian, R.-Y. & Botsaris, G. D. A new mechanism for nuclei formation in suspension crystallizers: the role of interparticle forces. Chem. Eng. Sci. 52, 3429–3440 (1997).

    Article  CAS  Google Scholar 

  31. Xu, S., Hou, Z., Chuai, X. & Wang, Y. Overview of secondary nucleation: from fundamentals to application. Ind. Eng. Chem. Res. 59, 18335–18356 (2020).

    Article  CAS  Google Scholar 

  32. Kondepudi, D. K. & Asakura, K. Chiral autocatalysis, spontaneous symmetry breaking, and stochastic behavior. Acc. Chem. Res. 34, 946–954 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Kondepudi, D. K., Laudadio, J. & Asakura, K. Chiral symmetry breaking in stirred crystallization of 1,1′-binaphthyl melt. J. Am. Chem. Soc. 121, 1448–1451 (1999).

    Article  CAS  Google Scholar 

  34. Qian, R.-Y. & Botsaris, G. D. Nuclei breeding from a chiral crystal seed of NaClO3. Chem. Eng. Sci. 53, 1745–1756 (1998).

    Article  CAS  Google Scholar 

  35. Kondepudi, D. K., Kaufman, R. J. & Singh, N. Chiral symmetry breaking in sodium chlorate crystallization. Science 250, 975–976 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Noorduin, W. L. et al. Enantioselective symmetry breaking directed by the order of process steps. Angew. Chem. Int. Ed. 49, 2539–2541 (2010).

    Article  CAS  Google Scholar 

  37. Noorduin, W. L. et al. Emergence of a single solid chiral state from a nearly racemic amino acid derivative. J. Am. Chem. Soc. 130, 1158–1159 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Azeroual, S. et al. Mirror symmetry breaking and chiral amplification in foldamer-based supramolecular helical aggregates. Chem. Commun. 48, 2292–2294 (2012).

    Article  CAS  Google Scholar 

  39. Wolffs, M. et al. The role of heterogeneous nucleation in the self-assembly of oligothiophenes. Chem. Commun. 2008, 4613–4615 (2008).

    Article  Google Scholar 

  40. Stals, P. J. M. et al. Symmetry breaking in the self-assembly of partially fluorinated benzene-1,3,5-tricarboxamides. Angew. Chem. Int. Ed. 51, 11297–11301 (2012).

    Article  CAS  Google Scholar 

  41. Datta, S. et al. Self-assembled poly-catenanes from supramolecular toroidal building blocks. Nature 583, 400–405 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Meisl, G. et al. Molecular mechanisms of protein aggregation from global fitting of kinetic models. Nat. Protoc. 11, 252–272 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Cohen, S. I. A., Vendruscolo, M., Dobson, C. M. & Knowles, T. P. J. From macroscopic measurements to microscopic mechanisms of protein aggregation. J. Mol. Biol. 421, 160–171 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Sarkar, S., Sarkar, A., Som, A., Agasti, S. S. & George, S. J. Stereoselective primary and secondary nucleation events in multicomponent seeded supramolecular polymerization. J. Am. Chem. Soc. 143, 11777–11787 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Powers, E. T. & Powers, D. L. The kinetics of nucleated polymerizations at high concentrations: amyloid fibril formation near and above the “supercritical concentration”. Biophys. J. 91, 122–132 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smulders, M. M. J., Schenning, A. P. H. J. & Meijer, E. W. Insight into the mechanisms of cooperative self-assembly: the “sergeants-and-soldiers” principle of chiral and achiral C3-symmetrical discotic triamides. J. Am. Chem. Soc. 130, 606–611 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Stals, P. J. M., Smulders, M. M. J., Martín-Rapún, R., Palmans, A. R. A. & Meijer, E. W. Asymmetrically substituted benzene-1,3,5-tricarboxamides: self-assembly and odd–even effects in the solid state and in dilute solution. Chem. Eur. J. 15, 2071–2080 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Levin, A. et al. Ostwald’s rule of stages governs structural transitions and morphology of dipeptide supramolecular polymers. Nat. Commun. 5, 5219 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Kulkarni, C., Meijer, E. W. & Palmans, A. R. A. Cooperativity scale: a structure–mechanism correlation in the self-assembly of benzene-1,3,5-tricarboxamides. Acc. Chem. Res. 50, 1928–1936 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Šlęczkowski, M. L., Mabesoone, M. F. J., Šlęczkowski, P., Palmans, A. R. A. & Meijer, E. W. Competition between chiral solvents and chiral monomers in the helical bias of supramolecular polymers. Nat. Chem. 13, 200–207 (2021).

    Article  PubMed  Google Scholar 

  51. Jonkheijm, P., van der Schoot, P., Schenning, A. P. H. J. & Meijer, E. W. Probing the solvent assisted nucleation pathway in chemical self-assembly. Science 313, 80–83 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Anwar, J., Khan, S. & Lindfors, L. Secondary crystal nucleation: nuclei breeding factory uncovered. Angew. Chem. Int. Ed. 54, 14681–14684 (2015).

    Article  CAS  Google Scholar 

  53. Pal, T. & Chaudhuri, D. Chiral and morphological anisotropy of supramolecular polymers shaped by a singularity in solvent composition. J. Am. Chem. Soc. 145, 2532–2543 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Meisl, G. et al. Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides. Proc. Natl Acad. Sci. USA 111, 9384–9389 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Khanra, P., Singh, A. K., Roy, L. & Das, A. Pathway complexity in supramolecular copolymerization and blocky star copolymers by a hetero-seeding effect. J. Am. Chem. Soc. 145, 5270–5284 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Gao, Y. et al. Bead-string-shaped DNA nanowires with intrinsic structural advantages and their potential for biomedical applications. ACS Appl. Mater. Interfaces 12, 3341–3353 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Bairagi, D. et al. Self-assembling peptide-based hydrogel: regulation of mechanical stiffness and thermal stability and 3D culture of fibroblasts. ACS Appl. Bio Mater. 2, 5235–5244 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Freire, F., Quiñoá, E. & Riguera, R. Supramolecular assemblies from poly(phenylacetylene)s. Chem. Rev. 116, 1242–1271 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Xing, P., Chen, H., Bai, L., Hao, A. & Zhao, Y. Superstructure formation and topological evolution achieved by self-organization of a highly adaptive dynamer. ACS Nano 10, 2716–2727 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Cai, X. et al. Mechano-responsive calix[4]arene-based molecular gels: agitation induced gelation and hardening. Soft Matter 9, 5807–5814 (2013).

    Article  CAS  Google Scholar 

  61. Horvath, I., Kumar, R. & Wittung-Stafshede, P. Macromolecular crowding modulates α-synuclein amyloid fiber growth. Biophys. J. 120, 3374–3381 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sakunthala, A. et al. Direct demonstration of seed size-dependent α-synuclein amyloid amplification. J. Phys. Chem. Lett. 13, 6427–6438 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Bäumer, N., Castellanos, E., Soberats, B. & Fernández, G. Bioinspired crowding directs supramolecular polymerisation. Nat. Commun. 14, 1084 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Osypenko, A. et al. Temperature control of sequential nucleation–growth mechanisms in hierarchical supramolecular polymers. Chem. Eur. J. 25, 13008–13016 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Fukui, T., Sasaki, N., Takeuchi, M. & Sugiyasu, K. Living supramolecular polymerization based on reversible deactivation of a monomer by using a ‘dummy’ monomer. Chem. Sci. 10, 6770–6776 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yamauchi, M. et al. Supramolecular polymerization of supermacrocycles: effect of molecular conformations on kinetics and morphology. Chem. Eur. J. 23, 5270–5280 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Yagai, S. et al. Supramolecularly engineered aggregation of a dipolar dye: vesicular and ribbonlike architectures. Angew. Chem. Int. Ed. 49, 9910–9994 (2010).

    Article  Google Scholar 

  68. Törnquist, M. & Linse, S. Chiral selectivity of secondary nucleation in amyloid fibril propagation. Angew. Chem. Int. Ed. 60, 24008–24011 (2021).

    Article  Google Scholar 

  69. Sarkar, S., Sarkar, A. & George, S. J. Stereoselective seed-induced living supramolecular polymerization. Angew. Chem. Int. Ed. 59, 19841–19845 (2020).

    Article  CAS  Google Scholar 

  70. Sarkar, S., Laishram, S., Deb, D. & George, S. J. Controlled noncovalent synthesis of secondary supramolecular polymers. J. Am. Chem. Soc. 145, 22009–22018 (2023).

    Article  CAS  PubMed  Google Scholar 

  71. Roche, C. et al. A supramolecular helix that disregards chirality. Nat. Chem. 8, 80–89 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Wehner, M. & Würthner, F. Supramolecular polymerization through kinetic pathway control and living chain growth. Nat. Rev. Chem. 4, 38–53 (2020).

    Article  CAS  Google Scholar 

  73. Wehner, M. et al. Supramolecular polymorphism in one-dimensional self-assembly by kinetic pathway control. J. Am. Chem. Soc. 141, 6092–6107 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Datta, S., Takahashi, S. & Yagai, S. Nanoengineering of curved supramolecular polymers: toward single-chain mesoscale materials. Acc. Mater. Res. 3, 259–271 (2022).

    Article  CAS  Google Scholar 

  75. Yagai, S., Kitamoto, Y., Datta, S. & Adhikari, B. Supramolecular polymers capable of controlling their topology. Acc. Chem. Res. 52, 1325–1335 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Yagai, S., Goto, Y., Karatsu, T., Kitamura, A. & Kikkawa, Y. Catenation of self-assembled nanorings. Chem. Eur. J. 17, 13657–13660 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Baluna, A. S. et al. In search of Wasserman’s catenane. J. Am. Chem. Soc. 145, 9825–9833 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wasserman, E. Chemical topology. Sci. Am. 207, 94–102 (1962).

    Article  Google Scholar 

  79. Wasserman, E. The preparation of interlocking rings: a catenane. J. Am. Chem. Soc. 82, 4433–4434 (1960).

    Article  CAS  Google Scholar 

  80. Dietrich-Buchecker, C. O., Sauvage, J. P. & Kintzinger, J. P. Une nouvelle famille de molecules: les metallo-catenanes. Tetrahedron Lett. 24, 5095–5098 (1983).

    Article  CAS  Google Scholar 

  81. Itabashi, H., Tashiro, K., Koshikawa, S., Datta, S. & Yagai, S. Distinct seed topologies enable comparison of elongation and secondary nucleation pathways in seeded supramolecular polymerization. Chem. Commun. 59, 7375–7378 (2023).

    Article  CAS  Google Scholar 

  82. Wu, Q. et al. Poly[n]catenanes: synthesis of molecular interlocked chains. Science 358, 1434–1439 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Itabashi, H., Datta, S., Tsukuda, R., Hollamby, M. J. & Yagai, S. Fine-tuning of the size of supramolecular nanotoroids suppresses the subsequent catenation of nano-[2]catenane. Chem. Sci. 14, 3270–3276 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sasaki, N. et al. Supramolecular double-stranded Archimedean spirals and concentric toroids. Nat. Commun. 11, 3578 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sasaki, N. et al. Multistep, site-selective noncovalent synthesis of two-dimensional block supramolecular polymers. Nat. Chem. 15, 922–929 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Draper, E. R. & Adams, D. J. Low-molecular-weight gels: the state of the art. Chem 3, 390–410 (2017).

    Article  CAS  Google Scholar 

  87. Kouwer, P. H. J. et al. Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature 493, 651–655 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Terech, P. & Weiss, R. G. Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev. 97, 3133–3160 (1997).

    Article  CAS  PubMed  Google Scholar 

  89. Laishram, R. et al. Secondary nucleation-triggered physical cross-links and tunable stiffness in seeded supramolecular hydrogels. J. Am. Chem. Soc. 144, 11306–11315 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Hay, J. N. Secondary crystallization kinetics. Polym. Cryst. 1, e10007 (2018).

    Google Scholar 

  91. Chiu, H.-J. Spherulitic morphology and crystallization kinetics of poly (vinylidene fluoride)/poly (vinyl acetate) blends. J. Polym. Res. 9, 169–174 (2002).

    Article  CAS  Google Scholar 

  92. Avrami, M. Kinetics of phase change. I General theory. J. Chem. Phys. 7, 1103–1112 (1939).

    Article  CAS  Google Scholar 

  93. Singh, N., Lopez-Acosta, A., Formon, G. J. M. & Hermans, T. M. Chemically fueled self-sorted hydrogels. J. Am. Chem. Soc. 144, 410–415 (2022).

    Article  CAS  PubMed  Google Scholar 

  94. Karunakaran, S. C. et al. Exquisite regulation of supramolecular equilibrium polymers in water: chain stoppers control length, polydispersity and viscoelasticity. Polym. Chem. 9, 5268–5277 (2018).

    Article  CAS  Google Scholar 

  95. Kubota, R., Tanaka, W. & Hamachi, I. Microscopic imaging techniques for molecular assemblies: electron, atomic force, and confocal microscopies. Chem. Rev. 121, 14281–14347 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Fukui, T. et al. Direct observation and manipulation of supramolecular polymerization by high-speed atomic force microscopy. Angew. Chem. Int. Ed. 57, 15465–15470 (2018).

    Article  CAS  Google Scholar 

  97. Van Ewijk, C. et al. Light-triggered disassembly of molecular motor-based supramolecular polymers revealed by high-speed AFM. Angew. Chem. Int. Ed. 63, e202319387 (2024).

    Article  Google Scholar 

  98. Watanabe-Nakayama, T. et al. High-speed atomic force microscopy reveals structural dynamics of amyloid β1–42 aggregates. Proc. Natl Acad. Sci. USA 113, 5835–5840 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Thacker, D., Barghouth, M., Bless, M., Zhang, E. & Linse, S. Direct observation of secondary nucleation along the fibril surface of the amyloid β42 peptide. Proc. Natl Acad. Sci. USA 120, e2220664120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science (KAKENHI grants JP22H00331 and JP23H04873 to S.Y. and JP22K20526 to S.D.) as part of the Grant-in-Aid for Transformative Research Areas project Materials Science of Meso-Hierarchy. H.I. and T.S. each acknowledge the Japan Society for the Promotion of Science for a Research Fellowship for Young Scientists (24KJ0529 and 21J20988, respectively).

Author information

Authors and Affiliations

Authors

Contributions

S.D. and S.Y. wrote the manuscript. All authors contributed to discussions and creation of the figures.

Corresponding authors

Correspondence to Sougata Datta or Shiki Yagai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, S., Itabashi, H., Saito, T. et al. Secondary nucleation as a strategy towards hierarchically organized mesoscale topologies in supramolecular polymerization. Nat. Chem. 17, 477–492 (2025). https://doi.org/10.1038/s41557-025-01764-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01764-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing