Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding single-molecule reactions using nanopore-based techniques

Abstract

The formation and cleavage of chemical bonds are two fundamental processes in chemistry, and the nature of these bonds determines the physical and chemical properties of a molecule. Real-time observation of chemical bonding at the single-molecule level offers insights into transient intermediates that are normally inaccessible via ensemble measurements. Protein nanopores, with their unique geometries, can be tailored into nanoreactors. Molecular bond-making and -cleavage at the reactive site of a protein nanopore’s interior wall can be visualized by monitoring ionic current changes. Therefore, nanopore-based techniques can enhance the understanding of complex binding kinetics and reaction mechanisms. In this Review we summarize recent advances in using biological nanopores as both single-molecule nanoreactors and single-molecule biosensors. The discussion covers the kinetics of single-molecule reactions under nanopore confinement, the strategies for designing biological nanopores and the latest progress in revealing reaction intermediates and pathways at the single-molecule level. Finally, we emphasize unresolved challenges and anticipate future developments in this rapidly evolving field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biological nanopores for studying single-molecule reactions.
Fig. 2: Designing nanopore confinement for single-molecule reactions.
Fig. 3: Recording single-molecule covalent reactions with designed nanopores.
Fig. 4: Tuning and controlling the reaction equilibrium inside a nanopore using an external electric field and a neighbouring amino acid.
Fig. 5: Concept of a designed nanopore for single-molecule synthesis.

Similar content being viewed by others

References

  1. Lu, H. P. Sizing up single-molecule enzymatic conformational dynamics. Chem. Soc. Rev. 43, 1118–1143 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Bayley, H., Luchian, T., Shin, S.-H. & Steffensen, M.-B. in Single Molecules and Nanotechnology (eds Rigler, R. & Vogel, H.) 251–277 (Springer, 2008).

  3. Stone, I. et al. A single-molecule blueprint for synthesis. Nat. Rev. Chem. 5, 695–710 (2021).

    Article  PubMed  Google Scholar 

  4. Janssen, K. P. F. et al. Single molecule methods for the study of catalysis: from enzymes to heterogeneous catalysts. Chem. Soc. Rev. 43, 990–1006 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Orrit, M., Ha, T. & Sandoghdar, V. Single-molecule optical spectroscopy. Chem. Soc. Rev. 43, 973–976 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Garcia-Manyes, S. & Beedle, A. E. M. Steering chemical reactions with force. Nat. Rev. Chem. 1, 0083 (2017).

    Article  CAS  Google Scholar 

  7. Bernardi, R. C. et al. Mechanisms of nanonewton mechanostability in a protein complex revealed by molecular dynamics simulations and single-molecule force spectroscopy. J. Am. Chem. Soc. 141, 14752–14763 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C. & Ha, T. Advances in single-molecule fluorescence methods for molecular biology. Annu. Rev. Biochem. 77, 51–76 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Kasianowicz, J., Walker, B., Krishnasastry, M. & Bayley, H. Genetically engineered pores as metal ion biosensors. Mat. Res. Soc. Symp. Proc. 330, 217–223 (1993).

    Article  Google Scholar 

  10. Mindell, J. A., Zhan, H., Huynh, P. D., Collier, R. J. & Finkelstein, A. Reaction of diphtheria toxin channels with sulfhydryl-specific reagents: observation of chemical reactions at the single molecule level. Proc. Natl Acad. Sci. USA 91, 5272–5276 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Walker, B., Kasianowicz, J., Krishnasastry, M. & Bayley, H. A pore-forming protein with a metal-actuated switch. Protein Eng. Des. Sel. 7, 655–662 (1994).

    Article  CAS  Google Scholar 

  12. Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Braha, O. et al. Designed protein pores as components for biosensors. Chem. Biol. 4, 497–505 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Kasianowicz, J. J., Burden, D. L., Han, L. C., Cheley, S. & Bayley, H. Genetically engineered metal ion binding sites on the outside of a channel’s transmembrane β-barrel. Biophys. J. 76, 837–845 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guan, X., Gu, L.-Q., Cheley, S., Braha, O. & Bayley, H. Stochastic sensing of TNT with a genetically engineered pore. ChemBioChem 6, 1875–1881 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meller, A., Nivon, L., Brandin, E., Golovchenko, J. & Branton, D. Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl Acad. Sci. USA 97, 1079–1084 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meller, A., Nivon, L. & Branton, D. Voltage-driven DNA translocations through a nanopore. Phys. Rev. Lett. 86, 3435–3438 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Schreiber, J. et al. Error rates for nanopore discrimination among cytosine, methylcytosine, and hydroxymethylcytosine along individual DNA strands. Proc. Natl Acad. Sci. USA 110, 18910–18915 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sutherland, T. C. et al. Structure of peptides investigated by nanopore analysis. Nano Lett. 4, 1273–1277 (2004).

    Article  CAS  Google Scholar 

  21. Movileanu, L., Schmittschmitt, J. P., Scholtz, J. M. & Bayley, H. Interactions of peptides with a protein pore. Biophys. J. 89, 1030–1045 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Piguet, F. et al. Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore. Nat. Commun. 9, 966 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shimizu, K. et al. De novo design of a nanopore for single-molecule detection that incorporates a β-hairpin peptide. Nat. Nanotechnol. 17, 67–75 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Pastoriza-Gallego, M. et al. Dynamics of unfolded protein transport through an aerolysin pore. J. Am. Chem. Soc. 133, 2923–2931 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Thakur, A. K. & Movileanu, L. Single-molecule protein detection in a biofluid using a quantitative nanopore sensor. ACS Sens. 4, 2320–2326 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sauciuc, A., Morozzo Della Rocca, B., Tadema, M. J., Chinappi, M. & Maglia, G. Translocation of linearized full-length proteins through an engineered nanopore under opposing electrophoretic force. Nat. Biotechnol. 42, 1275–1281 (2024).

    Article  CAS  PubMed  Google Scholar 

  27. Shin, S.-H., Steffensen, M. B., Claridge, T. D. W. & Bayley, H. Formation of a chiral center and pyrimidal inversion at the single‐molecule level. Angew. Chem. Int. Ed. 46, 7412–7416 (2007).

    Article  CAS  Google Scholar 

  28. Pulcu, G. S., Mikhailova, E., Choi, L.-S. & Bayley, H. Continuous observation of the stochastic motion of an individual small-molecule walker. Nat. Nanotechol. 10, 76–83 (2015).

    Article  CAS  Google Scholar 

  29. Hornblower, B. et al. Single-molecule analysis of DNA–protein complexes using nanopores. Nat. Methods 4, 315–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Li, T., Liu, L., Li, Y., Xie, J. & Wu, H.-C. A universal strategy for aptamer‐based nanopore sensing through host–guest interactions inside α-hemolysin. Angew. Chem. Int. Ed. 54, 7568–7571 (2015).

    Article  CAS  Google Scholar 

  31. Jeong, K.-B. et al. Single-molecule fingerprinting of protein–drug interaction using a funneled biological nanopore. Nat. Commun. 14, 1461 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Manrao, E. A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Deamer, D., Akeson, M. & Branton, D. Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518–524 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ying, Y.-L. et al. Nanopore-based technologies beyond DNA sequencing. Nat. Nanotechnol. 17, 1136–1146 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Jiang, J. et al. Protein nanopore reveals the renin–angiotensin system crosstalk with single-amino-acid resolution. Nat. Chem. 15, 578–586 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Koch, C. et al. Nanopore sequencing of DNA-barcoded probes for highly multiplexed detection of microRNA, proteins and small biomarkers. Nat. Nanotechnol. 18, 1483–1491 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ying, Y.-L. & Long, Y.-T. Nanopore-based single-biomolecule interfaces: from information to knowledge. J. Am. Chem. Soc. 141, 15720–15729 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Thakur, A. K. & Movileanu, L. Real-time measurement of protein–protein interactions at single-molecule resolution using a biological nanopore. Nat. Biotechnol. 37, 96–101 (2019).

    Article  CAS  Google Scholar 

  39. Kawano, R. et al. Rapid detection of a cocaine-binding aptamer using biological nanopores on a chip. J. Am. Chem. Soc. 133, 8474–8477 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Ma, W. et al. Nanopore electrochemical sensors for emerging hazardous pollutants detection. Electrochim. Acta 475, 143678 (2024).

    Article  CAS  Google Scholar 

  41. Luchian, T., Shin, S.-H. & Bayley, H. Kinetics of a three‐step reaction observed at the single‐molecule level. Angew. Chem. Int. Ed. 42, 1926–1929 (2003).

    Article  CAS  Google Scholar 

  42. Lu, S., Li, W.-W., Rotem, D., Mikhailova, E. & Bayley, H. A primary hydrogen–deuterium isotope effect observed at the single-molecule level. Nat. Chem. 2, 921–928 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Lee, J. et al. Semisynthetic nanoreactor for reversible single-molecule covalent chemistry. ACS Nano 10, 8843–8850 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou, B., Wang, Y.-Q., Cao, C., Li, D.-W. & Long, Y.-T. Monitoring disulfide bonds making and breaking in biological nanopore at single molecule level. Sci. China Chem. 61, 1385–1388 (2018).

    Article  CAS  Google Scholar 

  45. Qiu, K., Fato, T. P., Yuan, B. & Long, Y.-T. Toward precision measurement and manipulation of single‐molecule reactions by a confined space. Small 15, 1805426 (2019).

    Article  Google Scholar 

  46. Dong, B. et al. Deciphering nanoconfinement effects on molecular orientation and reaction intermediate by single molecule imaging. Nat. Commun. 10, 4815 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Galenkamp, N. S., Biesemans, A. & Maglia, G. Directional conformer exchange in dihydrofolate reductase revealed by single-molecule nanopore recordings. Nat. Chem. 12, 481–488 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Jia, W. et al. Programmable nano-reactors for stochastic sensing. Nat. Commun. 12, 5811 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Soskine, M. et al. An engineered ClyA nanopore detects folded target proteins by selective external association and pore entry. Nano Lett. 12, 4895–4900 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee, J. & Bayley, H. Semisynthetic protein nanoreactor for single-molecule chemistry. Proc. Natl Acad. Sci. USA 112, 13768–13773 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Qing, Y., Ionescu, S. A., Pulcu, G. S. & Bayley, H. Directional control of a processive molecular hopper. Science 361, 908–912 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Qing, Y., Pulcu, G. S., Bell, N. A. W. & Bayley, H. Bioorthogonal cycloadditions with sub-millisecond intermediates. Angew. Chem. Int. Ed. 57, 1218–1221 (2018).

    Article  CAS  Google Scholar 

  53. Haugland, M. M., Borsley, S., Cairns-Gibson, D. F., Elmi, A. & Cockroft, S. L. Synthetically diversified protein nanopores: resolving click reaction mechanisms. ACS Nano 13, 4101–4110 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Gu, L.-Q., Braha, O., Conlan, S., Cheley, S. & Bayley, H. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398, 686–690 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Ivica, J., Williamson, P. T. F. & De Planque, M. R. R. Salt gradient modulation of microRNA translocation through a biological nanopore. Anal. Chem. 89, 8822–8829 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Brun, L. et al. Dynamics of polyelectrolyte transport through a protein channel as a function of applied voltage. Phys. Rev. Lett. 100, 158302 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Piguet, F. et al. Electroosmosis through α-hemolysin that depends on alkali cation type. J. Phys. Chem. Lett. 5, 4362–4367 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Huang, G., Willems, K., Soskine, M., Wloka, C. & Maglia, G. Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores. Nat. Commun. 8, 935 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gu, L.-Q., Cheley, S. & Bayley, H. Electroosmotic enhancement of the binding of a neutral molecule to a transmembrane pore. Proc. Natl Acad. Sci. USA 100, 15498–15503 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Boukhet, M. et al. Probing driving forces in aerolysin and α-hemolysin biological nanopores: electrophoresis versus electroosmosis. Nanoscale 8, 18352–18359 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Asandei, A. et al. Electroosmotic trap against the electrophoretic force near a protein nanopore reveals peptide dynamics during capture and translocation. ACS Appl. Mater. Interfaces 8, 13166–13179 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Liu, W., Yang, Z.-L., Yang, C.-N., Ying, Y.-L. & Long, Y.-T. Profiling single-molecule reaction kinetics under nanopore confinement. Chem. Sci. 13, 4109–4114 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Luchian, T., Shin, S.-H. & Bayley, H. Single‐molecule covalent chemistry with spatially separated reactants. Angew. Chem. Int. Ed. 42, 3766–3771 (2003).

    Article  CAS  Google Scholar 

  64. Yang, C.-N. et al. Electrochemical visualization of single-molecule thiol substitution with nanopore measurement. ACS Meas. Sci. Au 4, 76–80 (2024).

    Article  PubMed  Google Scholar 

  65. Ramsay, W. J., Bell, N. A. W., Qing, Y. & Bayley, H. Single-molecule observation of the intermediates in a catalytic cycle. J. Am. Chem. Soc. 140, 17538–17546 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Cao, J. et al. Giant single molecule chemistry events observed from a tetrachloroaurate(III) embedded Mycobacterium smegmatis porin A nanopore. Nat. Commun. 10, 5668 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang, C.-N. et al. Electrochemical kinetic fingerprinting of single-molecule cooridations in the confined nanopores. Faraday Discuss. 257, 29–43 (2025).

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, S. et al. A nanopore‐based saccharide sensor. Angew. Chem. Int. Ed. 61, e202203769 (2022).

    Article  CAS  Google Scholar 

  69. Wu, X.-Y. et al. Controlled genetic encoding of unnatural amino acids in a protein nanopore. Angew. Chem. Int. Ed. 62, e202300582 (2023).

    Article  CAS  Google Scholar 

  70. Yang, J. et al. Site‐specific introduction of bioorthogonal handles to nanopores by genetic code expansion. Angew. Chem. Int. Ed. 62, e202216115 (2023).

    Article  CAS  Google Scholar 

  71. Jiang, X. et al. Single-molecule observation of selenoenzyme intermediates in a semisynthetic seleno-α-hemolysin nanoreactor. Anal. Chem. 94, 8433–8440 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Niu, H., Li, M.-Y., Ying, Y.-L. & Long, Y.-T. An engineered third electrostatic constriction of aerolysin to manipulate heterogeneously charged peptide transport. Chem. Sci. 13, 2456–2461 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Beckstein, O., Tai, K. & Sansom, M. S. P. Not ions alone: barriers to ion permeation in nanopores and channels. J. Am. Chem. Soc. 126, 14694–14695 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Willems, K. et al. Engineering and modeling the electrophoretic trapping of a single protein inside a nanopore. ACS Nano 13, 9980–9992 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, Y.-Q. et al. Rationally designed sensing selectivity and sensitivity of an aerolysin nanopore via site-directed mutagenesis. ACS Sens. 3, 779–783 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Soskine, M., Biesemans, A., De Maeyer, M. & Maglia, G. Tuning the size and properties of ClyA nanopores assisted by directed evolution. J. Am. Chem. Soc. 135, 13456–13463 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, Y.-Q. et al. Identification of essential sensitive regions of the aerolysin nanopore for single oligonucleotide analysis. Anal. Chem. 90, 7790–7794 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Liu, W. et al. Observing confined local oxygen‐induced reversible thiol/disulfide cycle with a protein nanopore. Angew. Chem. Int. Ed. 135, e202304023 (2023).

    Article  Google Scholar 

  79. Lucas, F. L. R. et al. The manipulation of the internal hydrophobicity of FraC nanopores augments peptide capture and recognition. ACS Nano 15, 9600–9613 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rosenstein, J. K., Wanunu, M., Merchant, C. A., Drndic, M. & Shepard, K. L. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat. Methods 9, 487–492 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Shin, S.-H., Luchian, T., Cheley, S., Braha, O. & Bayley, H. Kinetics of a reversible covalent-bond-forming reaction observed at the single-molecule level. Angew. Chem. Int. Ed. 41, 3707–3709 (2002).

    Article  CAS  Google Scholar 

  82. Steffensen, M. B., Rotem, D. & Bayley, H. Single-molecule analysis of chirality in a multicomponent reaction network. Nat. Chem. 6, 603–607 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Shin, S.-H. & Bayley, H. Stepwise growth of a single polymer chain. J. Am. Chem. Soc. 127, 10462–10463 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Qing, Y., Tamagaki-Asahina, H., Ionescu, S. A., Liu, M. D. & Bayley, H. Catalytic site-selective substrate processing within a tubular nanoreactor. Nat. Nanotechnol. 14, 1135–1142 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Qing, Y. & Bayley, H. Enzymeless DNA base identification by chemical stepping in a nanopore. J. Am. Chem. Soc. 143, 18181–18187 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Liu, W. et al. Single-molecule sensing inside stereo- and regio-defined hetero-nanopores. Nat. Nanotechnol. 19, 1693–1701 (2024).

    Article  CAS  PubMed  Google Scholar 

  87. Rieth, A. J., Wright, A. M. & Dincă, M. Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture. Nat. Rev. Mater. 4, 708–725 (2019).

    Article  CAS  Google Scholar 

  88. Qian, Q. et al. MOF-based membranes for gas separations. Chem. Rev. 120, 8161–8266 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Allendorf, M. D. et al. Challenges to developing materials for the transport and storage of hydrogen. Nat. Chem. 14, 1214–1223 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Bo, Z., Lim, Z. H., Duarte, F., Bayley, H. & Qing, Y. Mobile molecules: reactivity profiling guides faster movement on a cysteine track. Angew. Chem. Int. Ed. 135, e202300890 (2023).

    Article  Google Scholar 

  91. Berezin, M. Y. & Achilefu, S. Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110, 2641–2684 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Roithová, J. Characterization of reaction intermediates by ion spectroscopy. Chem. Soc. Rev. 41, 547–559 (2012).

    Article  PubMed  Google Scholar 

  93. Lin, J. J.-M. & Chao, W. Structure-dependent reactivity of Criegee intermediates studied with spectroscopic methods. Chem. Soc. Rev. 46, 7483–7497 (2017).

    Article  CAS  Google Scholar 

  94. Wu, Y.-J., Takahashi, K. & Lin, J. J.-M. Kinetics of the simplest Criegee intermediate reaction with water vapor: revisit and isotope effect. J. Phys. Chem. A 127, 8059–8072 (2023).

    Article  CAS  PubMed  Google Scholar 

  95. Li, X. et al. Emerging data processing methods for single‐entity electrochemistry. Angew. Chem. Int. Ed. 136, e202316551 (2024).

    Article  Google Scholar 

  96. Liu, L., Yang, C., Zhao, K., Li, J. & Wu, H.-C. Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor. Nat. Commun. 4, 2989 (2013).

    Article  PubMed  Google Scholar 

  97. Geng, J. et al. Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes. Nature 514, 612–615 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Feng, J. et al. Observation of ionic Coulomb blockade in nanopores. Nat. Mater. 15, 850–855 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Tunuguntla, R. H. et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357, 792–796 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Wang, M. et al. Dynamic curvature nanochannel‐based membrane with anomalous ionic transport behaviors and reversible rectification switch. Adv. Mater. 31, 1805130 (2019).

    Article  Google Scholar 

  101. Huang, S., Romero-Ruiz, M., Castell, O. K., Bayley, H. & Wallace, M. I. High-throughput optical sensing of nucleic acids in a nanopore array. Nat. Nanotechnol. 10, 986–991 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Weiss, M. et al. Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics. Nat. Mater. 17, 89–96 (2018).

    Article  CAS  PubMed  Google Scholar 

  103. Zhang, Y. et al. A microscale soft ionic power source modulates neuronal network activity. Nature 620, 1001–1006 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key R&D Program of China (2022YFA1304604), the National Natural Science Foundation of China (2247040607, 22027806 and 22334006) and programs for high-level entrepreneurial and innovative talent introduction of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Contributions

Y.-L.Y. and Y.-T.L. conceived the concept of this Review. Y.-L.Y., C.-N.Y., W.L. and X.-Y.W. wrote the manuscript. C.-N.Y., W.L. and Y.-L.Y. prepared the figures. All authors contributed to the reviewing and editing of the manuscript.

Corresponding author

Correspondence to Yi-Lun Ying.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Manoj Varma, Xu Hou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, YL., Yang, CN., Liu, W. et al. Understanding single-molecule reactions using nanopore-based techniques. Nat. Chem. 17, 1450–1461 (2025). https://doi.org/10.1038/s41557-025-01905-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41557-025-01905-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing