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Organocatalysed three-component  
modular synthesis of BN isosteres and  
BN-2,1-azaboranaphthalenes via Wolff-type 
rearrangement
 

Akansha Singh    1,2, Ruchir Kant3, Mary Grellier    4 & Ravindra Kumar    1,2 

[2,1]-Azaboranaphthalenes represent unique boron–nitrogen (BN) 
isosteres of naphthalenes, attracting interest for the development of 
molecules with enhanced therapeutic potency. The existing synthetic 
strategies are generally two-component reactions with harsh conditions. 
Here we report an organocatalysed three-component modular synthesis 
of ring-fused BN isosteres and BN-2,1-azaboranaphthalenes following 
ring expansion of unstrained cyclic ketones (n = 4–8) via Wolff-type 
rearrangement. The strategy used 2-formylarylboronic acid as a C–B 
surrogate and TMSN3 as an exogenous single nitrogen source, allowing the 
de novo rapid synthesis of BN isosteres by forging C–C, C–N and B–N bonds 
under a single operation. The developed method proved to be compatible 
with a broad substrate scope (58 examples), including cyclic ketones and 
diverse heterocycles, which afforded 1C ring-expanded [2,1]-azaborines.
The reaction was also effective with acyclic ketones, yielding BN 
naphthalene isosteres. Control experiments and density functional theory 
study dictate the plausible reaction pathways following [1,2]-C–C/C–H 
shift, analogous to Wolff rearrangement.

The diversification of privileged molecular scaffolds for improving 
properties is key in drug design and the development of novel phar-
maceutical candidates1–3. To achieve desired transformations of the 
underlying key structural core, de novo multistep synthesis is usually 
required, which inevitably compromises the overall synthetic efficiency 
and time. Recently, bioisosteric replacement chemistry has emerged 
as an important tool for modifying existing biologically active com-
pounds, potentially influencing the overall pharmacological activity of 
related compounds4–11. Moreover, the formation of covalent B–N bonds 
(isoelectronic with C=C) for the generation of novel boron-containing 
heterocycles has attracted much attention from a broad research com-
munity, including synthetic, medicinal and materials chemists12–19. In 

particular, benzazaborines, a class of boron–nitrogen (BN) heterocy-
cles, are viewed as unique BN isosteres of naphthalenes (Fig. 1a)20–26. 
They often exhibit better therapeutic features, such as improved meta-
bolic stability and aqueous solubility, than the parent naphthalene 
molecules, probably because the NH groups of the azaborines can act 
as hydrogen-bond donors for better binding to proteins27–29 (Fig. 1b). 
In addition to improving the biological activity of lead carbonaceous 
molecules, it also expands intellectual property space. Despite the 
great promises of BN isosteres, only a limited number of strategies have 
been reported so far with certain limitations30,31. Furthermore, most of 
the developments are on the synthesis of BN-1,2-azaboranaphthalene 
isomers, also named 2,1-borazaronaphthalenes23–25. By contrast, the 
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synthesis of monocyclic 1,2-azaborines via ring opening of cyclopropyl 
ketone or imines using amine and dibromoborane in the presence of 
catalytic ZnBr2 (Fig. 1d)39.

Given the importance of azaborines in streamlining the rapid 
synthesis of this class of compounds and their strong potential as naph-
thalene bioisosteres in drug discovery, we herein disclose an organo-
catalysed three-component coupling of ketones, 2-formylarylboronic 
acid and TMSN3 to form BN-2,1-azaboranaphthalenes via a [1,2]-shift 
and ring expansion of cycloalkanones or ketones (Fig. 1e). This strategy 
represents a true three-component modular synthesis of structur-
ally diverse ring-fused BN-2,1-azaboranaphthalenes (3–6) from easily 

preparation of regio-inverted structure BN-2,1-azaboranaphthalene 
(or 1,2-borazaronaphthalenes) analogues is still underdeveloped, 
originally reported by Cui et al.32, which can be accessed by reacting 
phenethyl imines, butyllithium and haloboranes followed by elec-
trophilic cyclization (Fig. 1c). In addition, two-component strategies 
have been reported for BN-2,1-azaboranaphthalenes, although they 
typically suffer from limited substrate scope and require harsh reac-
tion conditions33–38. In these methods, 2-formylphenylboronic acid was 
used for non-peripheral azaborine synthesis via aldol or Wittig-type 
reactions with α-amino esters or carbonyl compounds34–38. The semi-
nal recent work by Dong et al. reported a three-component two-step 
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accessible ketones (1), 2-formylarylboronic acid (2) and TMSN3. The 
present innovation could be appealing in aspects of novelty in chem-
istry pertaining to organocatalysed ring (unstrained; n = 4–8) expan-
sion, exploitation of TMSN3 as an exogenous single nitrogen source40 
and regioselective fixation of N and C atoms at the α and β position  
of C=O (Fig. 1e).

Results and discussion
Reaction discovery and substrate scope
Our proposed hypothesis (Fig. 2a) was based on the formation of 
an aldol condensation product (I) through imine/enamine catalysis 
between ketones (1) and an active formyl group of phenylboronic acid 
2 (due to intramolecular activation of the aromatic C=O group by the 
precisely positioned B centre). Azide was thought to introduce into the 
activated alkene (I) via [3 + 2] cycloaddition to form spiro dihydrotria-
zole (II)41–45. It was questioned whether the nitrogen-philic nature of 
boron could form a stable B–N bond with the extrusion of molecular 
nitrogen. Due to ring strain, rearrangement was subsequently antici-
pated to form [2,1]-benzazaborines (3 and 3′) via [1,2] C–C shift. This 
process could also be possible via spiro-aziridine formations41,42.

To explore our hypothesis, an initial experiment was con-
ducted using relatively strained ring, cyclobutanone (1a) and 

2-formylphenylboronic acid (2a) as model substrates in the presence 
of different azide sources and activators/catalysts (Fig. 2b). Gratify-
ingly, TMSN3 (1.5 equiv.) in the presence of 20 mol% pyrrolidine led to 
the exclusive formation of cyclopentanone ring-fused [2,1]-azaborine 
3a in 81% yield (Fig. 2b) as confirmed by nuclear magnetic resonance 
(NMR) of the reaction mixture (see ‘NMR spectra A’ in the Supple-
mentary Information). Optimization study further revealed that pyr-
rolidine is essential for the desired transformation. Other catalytic 
secondary amines were ineffective or delivered inferior chemical 
yields (Fig. 2b). Meanwhile, the reaction with NaN3 in the presence 
of catalytic pyrrolidine resulted in a mere 12% yield of 3a. The struc-
ture of 3a was further unambiguously confirmed by NMR and a sin-
gle crystal X-ray (CCDC no. 2264750; Table 1) analysis, ascertaining 
the regioselective formation of 3a (not 3a′). Medium-to-large cyclic 
(n = 5–8) ketones, which are potentially tricky for ring expansion46–49, 
also worked to give corresponding 1C expanded (n = 6–9) ring-fused 
benzazaborines (3b–3e; 25–77% yields, Table 1; CCDC no. 2352207 for 
3c). Given the importance of azaborines and diversification of privi-
leged molecular structures in the discovery of novel pharmaceuticals4, 
azaborine formation was also explored with bioactive scaffolds, such 
as 2-oxindoles and 2-coumaranones. Under optimal conditions using 
20 mol% pyrrolidine, 2-oxindoles underwent 1C ring expansion to 

Table 1 | Scope for ring-fused [2,1]-azaborines from cyclic ketones, amides and estersa
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Table 2 | Scope for benzazaborines from acyclic ketones and drug moleculesa
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yield quinolinone-fused azaborines 4a–4h in very good to excellent 
yields (84–90%). This process is highly efficient, requires no column  
chromatography and is compatible with electronically diverse free 
(NH) and N-alkyl oxindoles (Table 1). Similarly, 2-coumaranone afforded 
the corresponding coumarine ring-fused azaborines in moderate to 
good yields (5a–5c; 52–65%). Such examples of rapid access to novel 
azaborine analogues of privileged scaffolds hold great potential in 
drug development.

After the successful illustration of a three-component strat-
egy with a range of cyclic ketones, unstrained rings, 2-oxindoles 
and 2-coumaranone for the synthesis of 1C-expanded ring-fused 
[2,1]-azaborines, acyclic ketones were also investigated (Table 2). 
Notably, acyclic ketones were initially anticipated to be challenging 
under the proposed hypothesis (1,2-H or aryl or alkyl shift) due to the 
absence of ring strain, unlike their cyclic counterparts. Despite the fact 
that the reaction was found efficient with acetone under the standard 
conditions in the presence of 20 mol% pyrrolidine, it resulted in the 
selective formation of [2,1]-azaborine 6a in 58% yield. Other aliphatic 
ketones, such as butanone and 2-hexanone, gave the corresponding 
azaborines (6b and 6c) in moderate to good yields (58–70%; Table 2). 
Cyclopropyl methyl ketone was also found to be compatible to give the 
desired product 6d in 74% yield. Notably, there was no ring opening or 
closure of cyclopropyl ketone, as reported previously under Lewis acid 
catalysis39. Reaction with methyl pyruvate afforded the correspond-
ing ethyl ester of azaborine 6e in 62% yield due to trans-esterification 
with solvent ethanol. Meanwhile, pyruvic acid gave the corresponding 
decarboxylated azaborine 6g (30% yield). However, 5-oxohexanoic acid 
was compatible with retaining its distant CO2H group in the desired 
transformation (6f, 58% yield); however, it required excess pyrrolidine 
(300 mol%). While studying aromatic ketones, acetophenone produced 
only a trace amount of the desired product 6h with 20 mol% of pyrroli-
dine, which can be attributed to the low reactivity of aromatic ketones 

compared with aliphatic ketones. Thus, further efforts (Supplementary 
Table 1) were made to increase the efficiency of the desired transforma-
tion, which led to optimum results with pyrrolidine (300 mol%) and 
TMSN3 (5 equiv.), resulting in 78% yield (75% isolated) for 6h (CCDC no 
2236657). High amounts of catalyst and TMSN3 facilitate the desired 
transformation to azaborine 6 and suppress the competitive polym-
erization of 2-formylphenylboronic acid (Supplementary Table 1). 
This modified optimum condition was scalable as demonstrated at 
4.4 mmol scale (isolated 6h, 0.8 g, 72% yield) (see reaction procedure 
of 6h in the Supplementary Information). Under the above-modified 
conditions, different aromatic ketones, bearing electron-withdrawing 
and electron-donating groups at different positions, were examined 
(6h–6ze). 4-Substituted (Br, I, Me, OMe, OH, n-Bu, CF3 and NO2) phenyl 
and dimethoxyphenyl methyl ketones gave the corresponding aza-
borines (6i–6q) in 65–90% yields. The electron-withdrawing groups 
(NO2 and CF3) bearing aryl ketones underwent reactions faster (14 h, 
80 °C) than electron-donating counterparts (22–36 h, 90 °C). This 
result advocates that the reaction might proceed via enolate forma-
tion, following iminium/enamine chemistry. Polyarenes (2-naphthyl 
and phenanthrenyl) and heteroaromatic (4-pyridinyl, 2-furanyl and 
2-thiophenyl) methyl ketones also worked well to give corresponding 
azaborines 6r–6v in moderate to very good yields (45–85%). Reactions 
were proficiently compatible with substituted 2-formylarylboronic 
acid having electron-withdrawing and electron-donating groups, 
such as CH3, OMe, F, Cl, CF3, methylenedioxy and dimethoxy groups 
at different positions (6w–6zc; 64–75% yields). Bis-azaborines, 6zd 
and 6ze, can be easily synthesized in good yields (76% and 65%) from 
1,4- and 1,3-diacetylbenzenes, respectively. After the [1,2-H] shift, we 
examined aryl and alkyl shifts. Notably, the desired reactions worked 
proficiently with 2-arylacetophenones and gave 6zf–6zi in good to 
moderate yields with the migration of the phenyl group. Methyl and 
ethyl group migrations were also successful when the reaction was 
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conducted with propiophenone and butyrophenone, respectively 
(6zj–6zm; 30–62% yields). Reactions were notably slow as compared 
with acetophenone and required longer reaction times and slightly 
elevated temperatures (see the reaction procedure for 6zf–6zm in 
the Supplementary Information). Finally, the strategy was used for 
late-stage modification of drugs and complex molecules towards the 
development of novel potential boron-containing drug candidates 
(Table 2). Ziprasidone is a US Food and Drug Administration-approved 
atypical antipsychotic drug that contains a 2-oxindole structural 
core. It was converted into the corresponding quinolinone-fused aza-
borine congener (7a) in 70% yield. Similarly, estrone was transformed 

into 7b by converting its cyclopentanone nucleus to a cyclohex-
anone ring-fused [2,1]-benzazaborine. Norcamphor, a bicyclo[2.2.1]
heptan-2-one core, also underwent molecular transformation to bicy-
clo[2.3.1]octatan-2-one 7c. The reaction overall encompasses a wide 
range of cyclic and acyclic ketones, including bioactive molecules, to 
furnish BN isosteres of privileged scaffolds under very mild conditions.

Mechanistic studies
To understand the mechanistic pathways for the developed three- 
component azaborine synthesis and ring expansion, a series of 
control experiments were conducted. Initially, we attempted 
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to isolate a proposed aldol/enone intermediate (I; Fig. 2) from 
2-formylphenylboronic acid and cyclohexanone/cyclopentanone 
under base-mediated aldol condensation conditions. However, our 
endeavour failed to isolate it. Pleasingly, we were able to isolate a 
model aldol intermediate 8 from 2-formylphenylboronic acid and 
Wittig ylide of acetophenone50 (see the reaction procedure of 8 in the 
Supplementary Information). Subsequently, product 8 was exposed 
to TMSN3 under standard conditions in the presence of pyrrolidine, 
which afforded the desired product 6h in 68% yield (Fig. 3a). To our 
surprise, another anticipated Michael addition product, azide (9) was 
not observed at all51. As chalcone/aldol product 8 is easily convertible 
to benzoxaborole 10, which can be anticipated to be another inter-
mediate47. Thus, intermediate 10 was synthesized by simply stirring 
8 in the presence of acidic alumina and exposing it to identical con-
ditions using 300 mol% of pyrrolidine, resulting in the formation of 
the desired product 6h in 36% yield (Fig. 3b). These two experiments 
revealed that 8 could be the primary—or even the sole—contributory 
intermediate towards azaborine (6h) formation. These intermedi-
ates (8 or 10) did not give any products in the absence of pyrrolidine 
(Fig. 3c), thus suggesting that pyrrolidine plays an important role 
in the subsequent step (8 or 10 to 6h). The imine activation of the 
carbonyl of 8 or 10 is probably essential for the [3 + 2] cycloaddition 
reaction with TMSN3. The reaction with acetone-d6 in dry dioxane 
(Fig. 3d) gave the corresponding desired product 11 (D:H, 1:1), sug-
gesting that there is [1,2]-deutrium transfer from the CD3 group of 
acetone-D6. To determine the slowest and rate-determining step in 
the present transformations, a model reaction was conducted at lower 
temperature (45 °C), independently with chalcone (8; Fig. 3e), ben-
zoxaborole (10; Fig. 3f) and standard three-component reactions 
using acetophenone and 2-formylphenylboronic acid (Fig. 3g). It was 
observed that intermediates 8 and 10 underwent complete reaction in 
16 h and 20 h, respectively (Fig. 3e,f), whereas the third set of reaction 
was sluggish and underwent merely 20% conversion in 36 h (Fig. 3g). 
The above three sets of reactions revealed that the first step, that is, 
the formation of intermediate (8 or 10), might be the slowest step in 
the present process. Furthermore, the trimethylsilyl group was shown 
to be crucial, as confirmed by control experiments showing poor yield 
with NaN3 (Supplementary Table 1). The possible rationale is that the 
silyl group (TMS) may act as a Lewis acid, activating the carbonyl 
group to facilitate the reaction and imine formation. High-resolution 
mass spectrometry (HRMS) analysis was conducted at specific time 
intervals to identify potential intermediates. Characterization of 
molecular ion peaks (Int. A/A′) (Fig. 3h) suggested the formation 
of alkene or benzoxaborol adducts 8 and 10 (as also confirmed by 
experiments; Fig. 3a,b).

An initial density functional theory (DFT) computational study 
was then conducted to get further insight into our hypothesis (Fig. 4a). 
The mechanism has been studied with cyclobutanone as a benchmark. 
As enone (analogous to 8; Fig. 3) was shown to be the key intermedi-
ate for the above transformation, we began our DFT study from an 
iminium compound (A), formed in situ in the presence of pyrrolidine, 
and computed different possible intermediates (Fig. 4a). 1,3-Dipolar 
cycloaddition of the olefinic moiety of iminium intermediate (A) and 
TMSN3 gave spiro dihydrotrizazole (B)41,42. The regioselectivity of 
the addition of the TMSN3 is mainly under kinetic control, with an 
energy difference of 49.3 kJ mol−1 (TS-a; G = +102.7 kJ mol−1 versus TS-a′; 
152.0 kJ mol−1 for the other isomer) (see DFT calculation data in the 
Supplementary Information). Intermediate B undergoes B–N bond 
formation due to the electrophilic nature of boron, leading to a bridged 
type intermediate C with the elimination of Me3Si–OH. Subsequent 
opening of strained and unstable dihydrotriazole ring C and nitrogen 
extrusion leads to carbene or diazo-type intermediate D, which in turns 
leads to [1,2]-C–C or C–H shift, analogous to Wolff-type rearrange-
ment to an intermediate E52. [1,2]-Migration is energetically driven by 
the formation of thermodynamically stable benzazaborine E20–26. We 

have not been able to determine any other potential transition states 
between B and E. One possible explanation is the difficulty in accurately 
accounting for the influence of proton and hydroxyl fragments during 
the concerted rearrangement steps (Fig. 4b). The hydrolysis of the 
iminium E led to the final isolated products. Accordingly, the general 
mechanism is proposed in Fig. 4b.

Conclusions
In summary, a rare organocatalysed approach has been devised for 
ring expansion of unstrained cyclic ketones (n = 4–8) and modular 
synthesis of [2,1]-benzazaborines via Wolff-type rearrangement. The 
present strategy represents an efficient three-component synthesis of 
ring-fused [2,1]-benzazaborines using cyclic ketones, 2-formylboronic 
acids and TMSN3 as an exogenous single nitrogen source. The strat-
egy was also compatible with acyclic ketones to give BN naphthalene 
isosteres via [1,2]- shift of H, aryl and alkyl groups. The reaction was 
highly efficient and scalable, with diverse substrate scopes and func-
tional group tolerance. The strategy was well suited to tune privileged 
scaffolds and drug molecules to potential high-valued azaborine con-
geners. Control experiments and DFT studies were conducted to pro-
pose the putative reaction mechanism for the selective formation of 
[2,1]-azaborines.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
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Methods
The general procedure of 2,1-azaboranaphthalene synthesis was as 
follows. In a reaction vial, 2-formylphenylboronic acid (2, 0.59 mmol,  
1.8 equiv.) was dissolved in ethanol (0.1 M) to which cyclic/acyclic ali-
phatic ketone (1, 0.33 mmol, 1.0 equiv.), pyrrolidine (0.066, 0.20 equiv.) 
and TMSN3 (0.495 mmol, 1.5 equiv.) were added at room temperature 
and transferred for heating at 80 °C for 12–52 h. After the completion 
of the reaction monitored by thin layer chromatography, the reaction 
was cooled down to an ambient temperature, quenched with water and 
extracted with dichloromethane (3 × 15 ml). The combined organic 
layers were dried over Na2SO4, filtered and concentrated. The crude 
product was purified by column chromatography and eluted with 
hexane:EtOAc to furnish the desired products.
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