Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective arylation of atypical C–F bonds in polyfluoroarenes with aryl chlorides

Abstract

Selective activation of specific C–F bonds in polyfluoroarenes represents a challenge in transition metal catalysis. Here we report a photoexcited nickel-catalysed cross-electrophile coupling between polyfluoroarenes and aryl chlorides, achieving highly selective arylation at atypical C–F sites of fluoroarenes, facilitated by a synergistic lithium salt effect. A wide range of structurally diverse fluorine-containing biaryls are obtained in 33−94% yields with satisfying C–F regioselectivity. Notably, the observed regioselectivity is atypical and complements existing methodologies, such as palladium-catalysed and visible-light photoredox-catalysed defluorinative functionalization reactions. Our mechanistic studies and theoretical calculations suggest that the lithium salt could interact with both pentafluorobenzene and the Ni catalyst, effectively lowering the energy barrier and modulating the regioselectivity. The synthetic versatility of our approach is underscored by late-stage synthetic application and sequential functionalization of multiple C–F bonds, which further demonstrates its robust utility in concisely constructing partially fluorinated and biologically interesting compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functionalization of multifluoroarenes.
Fig. 2: Reaction development and mechanistic investigation.
Fig. 3: Computed free energy profiles for the insertion of Ni(dtbbpy) into C(1) and C(3) sites during the C–F bond cleavage of C6F5H in the absence and presence of LiI.
Fig. 4: Synthetic applications.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2231838 (13), 2231820 (14), 2231850 (16), 2231848 (17), 2231841 (20), 2231844 (25) and 2231843 (79). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures. All other data supporting the findings of this study are available within the Article and its Supplementary Information.

References

  1. Muller, K., Faeh, C. & Diederich, F. Fluorine in pharmaceuticals: looking beyond intuition. Science 317, 1881–1886 (2007).

    Article  PubMed  Google Scholar 

  2. Berger, R., Resnati, G., Metrangolo, P., Weber, E. & Hulliger, J. Organic fluorine compounds: a great opportunity for enhanced materials properties. Chem. Soc. Rev. 40, 3496–3508 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Li, M., Xue, X. S. & Cheng, J. P. Establishing cation and radical donor ability scales of electrophilic F, CF3, and SCF3 transfer reagents. Acc. Chem. Res. 53, 182–197 (2020).

    Article  PubMed  Google Scholar 

  4. Xiao, P., Pannecoucke, X., Bouillon, J. P. & Couve-Bonnaire, S. Wonderful fusion of organofluorine chemistry and decarboxylation strategy. Chem. Soc. Rev. 50, 6094–6151 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. He, M., Soulé, J.-F. & Doucet, H. Synthesis of (poly)fluorobiphenyls through metal-catalyzed C−H bond activation/arylation of (poly)fluorobenzene derivatives. ChemCatChem 6, 1824–1859 (2014).

    Article  CAS  Google Scholar 

  6. He, C.-Y., Fan, S. & Zhang, X. Pd-catalyzed oxidative cross-coupling of perfluoroarenes with aromatic heterocycles. J. Am. Chem. Soc. 132, 12850–12852 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Amii, H. & Uneyama, K. C–F bond activation in organic synthesis. Chem. Rev. 109, 2119–2183 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Eisenstein, O., Milani, J. & Perutz, R. N. Selectivity of C–H activation and competition between C–H and C–F bond activation at fluorocarbons. Chem. Rev. 117, 8710–8753 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Senaweera, S. M., Singh, A. & Weaver, J. D. Photocatalytic hydrodefluorination: facile access to partially fluorinated aromatics. J. Am. Chem. Soc. 136, 3002–3005 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, Y. J. et al. Transition-metal-free, site-selective C–F arylation of polyfluoroarenes via electrophotocatalysis. J. Am. Chem. Soc. 144, 17261–17268 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Arora, A. & Weaver, J. D. Visible light photocatalysis for the generation and use of reactive azolyl and polyfluoroaryl intermediates. Acc. Chem. Res. 49, 2273–2283 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Qin, J., Zhu, S. Q. & Chu, L. L. Dual photoredox-/palladium-catalyzed cross-electrophile couplings of polyfluoroarenes with aryl halides and triflates. Organometallics 40, 2246–2252 (2021).

    Article  CAS  Google Scholar 

  13. Dewanji, A., Bulow, R. F. & Rueping, M. Photoredox/nickel dual-catalyzed reductive cross coupling of aryl halides using an organic reducing agent. Org. Lett. 22, 1611–1617 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Senaweera, S. & Weaver, J. D. Dual C–F, C–H functionalization via photocatalysis: access to multifluorinated biaryls. J. Am. Chem. Soc. 138, 2520–2523 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ahrens, T., Kohlmann, J., Ahrens, M. & Braun, T. Functionalization of fluorinated molecules by transition-metal-mediated C–F bond activation to access fluorinated building blocks. Chem. Rev. 115, 931–972 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Diccianni, J. B. & Diao, T. N. Mechanisms of nickel-catalyzed cross-coupling reactions. Trends Chem. 1, 830–844 (2019).

    Article  CAS  Google Scholar 

  17. Liu, X. W., Echavarren, J., Zarate, C. & Martin, R. Ni-catalyzed borylation of aryl fluorides via C–F cleavage. J. Am. Chem. Soc. 137, 12470–12473 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Zhou, J. et al. Preparing (multi)fluoroarenes as building blocks for synthesis: nickel-catalyzed borylation of polyfluoroarenes via C–F bond cleavage. J. Am. Chem. Soc. 138, 5250–5253 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Schaub, T. et al. C−F activation of fluorinated arenes using NHC-stabilized nickel(0) complexes: selectivity and mechanistic investigations. J. Am. Chem. Soc. 130, 9304–9317 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Nakamura, Y., Yoshikai, N., Ilies, L. & Nakamura, E. Nickel-catalyzed monosubstitution of polyfluoroarenes with organozinc reagents using alkoxydiphosphine ligand. Org. Lett. 14, 3316–3319 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Clot, E. et al. C−F and C−H bond activation of fluorobenzenes and fluoropyridines at transition metal centers: how fluorine tips the scales. Acc. Chem. Res. 44, 333–348 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Schaub, T., Backes, M. & Radius, U. Square-planar (pentafluorophenyl)nickel(II) complexes by derivatization of a C–F activation product. Eur. J. Inorg. Chem. 17, 2680–2690 (2008).

    Article  Google Scholar 

  23. Braun, T. & Perutz, R. N. Routes to fluorinated organic derivatives by nickel mediated C–F activation of heteroaromatics. Chem. Commun. 2749−2757 (2002).

  24. Wang, K. & Kong, W. Synthesis of fluorinated compounds by nickel-catalyzed defluorinative cross-coupling reactions. ACS Catal. 13, 12238–12268 (2023).

    Article  CAS  Google Scholar 

  25. Ren, J.-A. et al. Nickel-catalyzed direct cross-coupling of unactivated aryl fluorides with aryl bromides. Org. Lett. 25, 5525–5529 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Das, A. & Chatani, N. The directing group: a tool for efficient and selective C–F bond activation. ACS Catal. 11, 12915–12930 (2021).

    Article  CAS  Google Scholar 

  27. Sun, A. D. & Love, J. A. Nickel-catalyzed selective defluorination to generate partially fluorinated biaryls. Org. Lett. 13, 2750–2753 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Capdevila, L. et al. Chemodivergent nickel(0)-catalyzed arene C–F activation with alkynes: unprecedented C–F/C–H double insertion. ACS Catal. 9, 11074–11081 (2019).

    Article  CAS  Google Scholar 

  29. Kuntze-Fechner, M. W. et al. Coligand role in the NHC nickel catalyzed C–F bond activation: investigations on the insertion of bis(NHC) nickel into the C–F bond of hexafluorobenzene. Chem. Sci. 11, 11009–11023 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Doster, M. E. & Johnson, S. A. Selective C–F bond activation of tetrafluorobenzenes by nickel(0) with a nitrogen donor analogous to N-heterocyclic carbenes. Angew. Chem. Int. Ed. 48, 2185–2187 (2009).

    Article  CAS  Google Scholar 

  31. Doster, M. E., Hatnean, J. A., Jeftic, T., Modi, S. & Johnson, S. A. Catalytic C-H bond stannylation: a new regioselective pathway to C−Sn bonds via C-H bond functionalization. J. Am. Chem. Soc. 132, 11923–11925 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Butcher, T. W. et al. Desymmetrization of difluoromethylene groups by C–F bond activation. Nature 583, 548–553 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ohashi, M. et al. Palladium-catalyzed coupling reactions of tetrafluoroethylene with arylzinc compounds. J. Am. Chem. Soc. 133, 3256–3259 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Luo, Y. C., Wang, M. K., Yu, L. C. & Zhang, X. Nickel-catalyzed selective C(sp2)−F bond alkylation of industrially relevant hydrofluoroolefin HFO-1234yf. Angew. Chem. Int. Ed. 62, e202308690 (2023).

    Article  CAS  Google Scholar 

  35. Huang, L., Ackerman, L. K. G., Kang, K., Parsons, A. M. & Weix, D. J. LiCl-accelerated multimetallic cross-coupling of aryl chlorides with aryl triflates. J. Am. Chem. Soc. 141, 10978–10983 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. O’Hagan, D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 37, 308–319 (2008).

    Article  PubMed  Google Scholar 

  37. Ackerman, L. K., Lovell, M. M. & Weix, D. J. Multimetallic catalysed cross-coupling of aryl bromides with aryl triflates. Nature 524, 454–457 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hamby, T. B., LaLama, M. J. & Sevov, C. S. Controlling Ni redox states by dynamic ligand exchange for electroreductive Csp3−Csp2 coupling. Science 376, 410–416 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, B. et al. Ni-electrocatalytic Csp3−Csp3 doubly decarboxylative coupling. Nature 606, 313–318 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, X., Wang, S., Xue, W. & Gong, H.-G. Nickel-catalyzed reductive coupling of aryl bromides with tertiary alkyl halides. J. Am. Chem. Soc. 137, 11562–11565 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Pang, X., Su, P. & Shu, X.-Z. Reductive Cross-Coupling of Unreactive Electrophiles. Acc. Chem. Res. 55, 2491–2509 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Cooper, A. K., Leonard, D. K., Bajo, S., Burton, P. M. & Nelson, D. J. Aldehydes and ketones influence reactivity and selectivity in nickel-catalysed Suzuki–Miyaura reactions. Chem. Sci. 11, 1905–1911 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, G. et al. Light-promoted C−N coupling of aryl halides with nitroarenes. Angew. Chem. Int. Ed. 60, 5230–5234 (2021).

    Article  CAS  Google Scholar 

  44. Johnson, S. A., Taylor, E. T. & Cruise, S. J. A combined experimental and computational study of unexpected C−F bond activation intermediates and selectivity in the reaction of pentafluorobenzene with a (PEt3)2Ni synthon. Organometallics 28, 3842–3855 (2009).

    Article  CAS  Google Scholar 

  45. Sutcliffe, E., Cagan, D. A. & Hadt, R. G. Ultrafast photophysics of Ni(I)–bipyridine halide complexes: spanning the Marcus normal and inverted regimes. J. Am. Chem. Soc. 146, 15506–15514 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shields, B. J., Kudisch, B., Scholes, G. D. & Doyle, A. G. Long-lived charge-transfer states of nickel(II) aryl halide complexes facilitate bimolecular photoinduced electron Transfer. J. Am. Chem. Soc. 140, 3035–3039 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ting, S. I., Williams, W. L. & Doyle, A. G. Oxidative addition of aryl halides to a Ni(I)-bipyridine complex. J. Am. Chem. Soc. 144, 5575–5582 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Lin, Q. & Diao, T. Mechanism of Ni-catalyzed reductive 1,2-dicarbofunctionalization of alkenes. J. Am. Chem. Soc. 141, 17937–17948 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ting, S. I. et al. 3d-d Excited states of Ni(II) complexes relevant to photoredox catalysis: spectroscopic identification and mechanistic implications. J. Am. Chem. Soc. 142, 5800–5810 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Yamamoto, T., Abla, M. & Murakami, Y. Promotion of reductive elimination reaction of diorgano(2,2′-bipyridyl)nickel(II) complexes by electron-accepting aromatic compounds, Lewis acids, and Bronsted acids. Bull. Chem. Soc. Jpn 75, 1997–2009 (2002).

    Article  CAS  Google Scholar 

  51. Klein, A., Kaiser, A., Sarkar, B., Wanner, M. & Fiedler, J. The electrochemical behaviour of organonickel complexes: mono-, di- and trivalent nickel. Eur. J. Inorg. Chem. 2007, 965–976 (2007).

    Article  Google Scholar 

  52. Zhang, Z., Niwa, T., Watanabe, K. & Hosoya, T. 11C-Cyanation of aryl fluorides via nickel and lithium chloride-mediated C–F bond activation. Angew. Chem. Int. Ed. 62, e202302956 (2023).

    Article  CAS  Google Scholar 

  53. Yuan, M., Song, Z., Badir, S. O., Molander, G. A. & Gutierrez, O. On the nature of C(sp3)–C(sp2) bond formation in nickel-catalyzed tertiary radical cross-couplings: a case study of Ni/photoredox catalytic cross-coupling of alkyl radicals and aryl halides. J. Am. Chem. Soc. 142, 7225–7234 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shaik, S., Chen, H. & Janardanan, D. Exchange-enhanced reactivity in bond activation by metal–oxo enzymes and synthetic reagents. Nat. Chem. 3, 19–27 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, Y. et al. Catalytic cross-electrophile coupling of aryl chlorides with unactivated alkyl chlorides: the synergy of iron and Li. Chem 9, 3623–3636 (2023).

    Article  CAS  Google Scholar 

  56. Liu, C.-X. et al. Explicit mechanism of Rh(I)-catalyzed asymmetric C–H arylation and facile synthesis of planar chiral ferrocenophanes. J. Am. Chem. Soc. 145, 4765–4773 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Liang, H., Borys, A. M., Hevia, E., Perrin, M.-E. L. & Payard, P.-A. Shedding light on the hidden roles of lithium in the nickel-catalyzed cross-coupling of aryl ethers. J. Am. Chem. Soc. 145, 19989–19999 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Novak, D. P. & Brown, T. L. Mixed complex formation between methyllithium and lithium bromide or iodide in diethyl ether. J. Am. Chem. Soc. 94, 3793–3798 (1972).

    Article  CAS  Google Scholar 

  59. Wang, J.-S., You, X.-X., Zhong, R.-L. & Su, Z.-M. Heterolytic versus homolytic: theoretical insight into the Ni0-catalyzed Ph–F bond activation. Organometallics 42, 2771–2783 (2023).

    Article  CAS  Google Scholar 

  60. Luo, Z. J., Zhao, H. Y. & Zhang, X. Highly selective Pd-catalyzed direct C–F bond arylation of polyfluoroarenes. Org. Lett. 20, 2543–2546 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, X. et al. Ni-catalyzed reductive coupling of electron-rich aryl iodides with tertiary alkyl halides. J. Am. Chem. Soc. 140, 14490–14497 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Nakao, Y., Kashihara, N., Kanyiva, K. S. & Hiyama, T. Nickel-catalyzed alkenylation and alkylation of fluoroarenes via activation of C−H bond over C–F bond. J. Am. Chem. Soc. 130, 16170–16171 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Xu, W., Jiang, H., Leng, J., Ong, H. W. & Wu, J. Visible-light-induced selective defluoroborylation of polyfluoroarenes, gem-difluoroalkenes, and trifluoromethylalkenes. Angew. Chem. Int. Ed. 59, 4009–4016 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Key Research and Development Program of China (grant no. 2022YFA1503200), National Natural Science Foundation of China (grant nos. 22471121, 22471122 and 22271144) and Fundamental Research Funds for the Central Universities (grant no. 020514380327) for financial support. J. Huang, Y. Cheng and B. Ling are gratefully acknowledged for their reproduction of the experimental procedures for products 16, 32 and 45. All theoretical calculations were performed at the High Performance Computing Center of Nanjing University.

Author information

Authors and Affiliations

Contributions

J.X. and Z.L. conceived the work and designed the experiments. Z.L., K.L., S.X. and W.L. performed the experiments and analysed the experimental data. X.Y. performed the NMR measurements. C.D. and J.H. performed the DFT calculations and discussed the results with C.Z. and J.X. co-wrote the manuscript with input from all the other authors.

Corresponding authors

Correspondence to Jie Han, Chengjian Zhu, Weipeng Li or Jin Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Qian Peng, Xingang Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1−88, discussion and Tables 1−14.

Supplementary Data 1

Cartesian coordinates of all the optimized geometries.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Du, C., Han, J. et al. Selective arylation of atypical C–F bonds in polyfluoroarenes with aryl chlorides. Nat. Chem. (2025). https://doi.org/10.1038/s41557-025-01962-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-025-01962-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing