Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Definitions and implications of climate-neutral aviation

Abstract

To meet ambitious climate targets, the aviation sector needs to neutralize CO2 emissions and reduce non-CO2 climatic effects. Despite being responsible for approximately two-thirds of aviation’s impacts on the climate, most of aviation non-CO2 species are currently excluded from climate mitigation efforts. Here we identify three plausible definitions of climate-neutral aviation that include non-CO2 forcing and assess their implications considering future demand uncertainty, technological innovation and CO2 removal. We demonstrate that simply neutralizing aviation’s CO2 emissions, if nothing is done to reduce non-CO2 forcing, causes up to 0.4 °C additional warming, thus compromising the 1.5 °C target. We further show that substantial rates of CO2 removal are needed to achieve climate-neutral aviation in scenarios with little mitigation, yet cleaner-flying technologies can drastically reduce them. Our work provides policymakers with consistent definitions of climate-neutral aviation and highlights the beneficial side effects of moving to aircraft types and fuels with lower indirect climate effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modelling approach used in this study.
Fig. 2: ERF components of aviation.
Fig. 3: Schematics of the three plausible definitions of climate-neutral emissions identified in this study.
Fig. 4: Changes in temperature by the year 2100 due to aviation emissions only under two different socioeconomic pathways.
Fig. 5: Changes in temperature throughout the twenty-first century under different socioeconomic pathways and technologies.
Fig. 6: CO2 removal rates and volumes contained in the different definitions of climate neutrality for SSP1–2.6 and SSP5–8.5 and different technology scenarios.

Similar content being viewed by others

Data availability

The input data to this analysis is publicly available at https://esgf-node.llnl.gov/search/input4mips/. The data output in this study, that is, the raw data of figures, can be accessed under the folder ‘Outputs’: https://github.com/nikibraz/definitions_climateneutral_aviation.git.

Code availability

The code used to generate figures and tables is available at https://github.com/nikibraz/definitions_climateneutral_aviation.git and will be made publicly available upon acceptance.

References

  1. Gössling, S. & Humpe, A. The global scale, distribution and growth of aviation: implications for climate change. Glob. Environ. Change 65, 102194 (2020).

    Article  Google Scholar 

  2. Global Market Forecast 2018–2037, Global Networks, Global Citizens (Airbus, 2018).

  3. Commercial Market Outlook 2021–2040 (Boeing, 2021).

  4. Forster, P. M., de, F., Shine, K. P. & Stuber, N. It is premature to include non-CO2 effects of aviation in emission trading schemes. Atmos. Environ. 40, 1117–1121 (2006).

    Article  CAS  Google Scholar 

  5. Dahlmann, K., Grewe, V., Frömming, C. & Burkhardt, U. Can we reliably assess climate mitigation options for air traffic scenarios despite large uncertainties in atmospheric processes? Transp. Res. D 46, 40–55 (2016).

    Article  Google Scholar 

  6. Lee, D. S. The Current State of Scientific Understanding of the Non-CO2 Effects of Aviation on Climate (Department for Transport, 2018).

  7. Larsson, J., Elofsson, A., Sterner, T. & Åkerman, J. International and national climate policies for aviation: a review. Clim. Policy 19, 787–799 (2019).

    Article  Google Scholar 

  8. Soria Baledón, M. & Kosoy, N. ‘Problematizing’ carbon emissions from international aviation and the role of alternative jet fuels in meeting ICAO’s mid-century aspirational goals. J. Air Transp. Manag. 71, 130–137 (2018).

    Article  Google Scholar 

  9. Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) (ICAO, 2021).

  10. Dubois, G. et al. It starts at home? Climate policies targeting household consumption and behavioral decisions are key to low-carbon futures. Energy Res. Soc. Sci. 52, 144–158 (2019).

    Article  Google Scholar 

  11. Grewe, V. et al. Evaluating the climate impact of aviation emission scenarios towards the Paris Agreement including COVID-19 effects. Nat. Commun. 12, 3841 (2021).

    Article  CAS  Google Scholar 

  12. Terrenoire, E., Hauglustaine, D., Gasser, T. & Penanhoat, O. The contribution of carbon dioxide emissions from the aviation sector to future climate change. Environ. Res. Lett. 14, 084019 (2019).

    Article  CAS  Google Scholar 

  13. Sharmina, M. et al. Decarbonising the critical sectors of aviation, shipping, road freight and industry to limit warming to 1.5–2 °C. Clim. Policy 21, 455–474 (2021).

    Article  Google Scholar 

  14. Lee, D. S. et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ. 244, 117834 (2021).

    Article  CAS  Google Scholar 

  15. Lee, D. S. et al. Aviation and global climate change in the 21st century. Atmos. Environ. 43, 3520–3537 (2009).

    Article  CAS  Google Scholar 

  16. Klöwer, M. et al. Quantifying aviation’s contribution to global warming. Environ. Res. Lett. 16, 104027 (2021).

    Article  CAS  Google Scholar 

  17. Burkhardt, U., Bock, L. & Bier, A. Mitigating the contrail cirrus climate impact by reducing aircraft soot number emissions. npj Clim. Atmos. Sci. 1, 37 (2018).

    Article  CAS  Google Scholar 

  18. Kärcher, B. Formation and radiative forcing of contrail cirrus. Nat. Commun. 9, 1824 (2018).

    Article  CAS  Google Scholar 

  19. Rogelj, J., Geden, O., Cowie, A. & Reisinger, A. Net-zero emissions targets are vague: three ways to fix. Nature 591, 365–368 (2021).

    Article  CAS  Google Scholar 

  20. Archer, D. & Brovkin, V. The millennial atmospheric lifetime of anthropogenic CO2. Climatic Change 90, 283–297 (2008).

    Article  CAS  Google Scholar 

  21. Eby, M. et al. Lifetime of anthropogenic climate change: millennial time scales of potential CO2 and surface temperature perturbations. J. Clim. 22, 2501–2511 (2009).

    Article  Google Scholar 

  22. Knutti, R. & Rogelj, J. The legacy of our CO2 emissions: a clash of scientific facts, politics and ethics. Climatic Change 133, 361–373 (2015).

    Article  CAS  Google Scholar 

  23. Smith, S. M. et al. Equivalence of greenhouse-gas emissions for peak temperature limits. Nat. Clim. Change 2, 535–538 (2012).

    Article  CAS  Google Scholar 

  24. Fankhauser, S. et al. The meaning of net zero and how to get it right. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01245-w (2021).

  25. Brazzola, N., Wohland, J. & Patt, A. Offsetting unabated agricultural emissions with CO2 removal to achieve ambitious climate targets. PLoS ONE 16, e0247887 (2021).

    Article  CAS  Google Scholar 

  26. Huntingford, C. et al. The implications of carbon dioxide and methane exchange for the heavy mitigation RCP2.6 scenario under two metrics. Environ. Sci. Policy 51, 77–87 (2015).

    Article  CAS  Google Scholar 

  27. Allen, M. R. et al. New use of global warming potentials to compare cumulative and short-lived climate pollutants. Nat. Clim. Change 6, 773–776 (2016).

    Article  CAS  Google Scholar 

  28. Allen, M. R. et al. A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. npjj Clim. Atmos. Sci. 1, 28 (2018).

    Google Scholar 

  29. Cain, M. et al. Improved calculation of warming-equivalent emissions for short-lived climate pollutants. npj Clim. Atmos. Sci. 2, 29 (2019).

    Article  CAS  Google Scholar 

  30. Smith, C. J. et al. FAIR v1.3: a simple emissions-based impulse response and carbon cycle model. Geosci. Model Dev. 11, 2273–2297 (2018).

    Article  CAS  Google Scholar 

  31. Millar, R. J., Nicholls, Z. R., Friedlingstein, P. & Allen, M. R. A modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions. Atmos. Chem. Phys. 17, 7213–7228 (2017).

    Article  CAS  Google Scholar 

  32. Meeting the UK Aviation Target—Options for Reducing Emissions to 2050 (Climate Change Commitee, 2009).

  33. Allen, M. R. et al. Indicate separate contributions of long-lived and short-lived greenhouse gases in emission targets. npj Clim. Atmos. Sci. 5, 5 (2022).

    Article  Google Scholar 

  34. Peeters, P., Higham, J., Kutzner, D., Cohen, S. & Gössling, S. Are technology myths stalling aviation climate policy? Transp. Res. D 44, 30–42 (2016).

    Article  Google Scholar 

  35. Schäfer, A. W. et al. Technological, economic and environmental prospects of all-electric aircraft. Nat. Energy 4, 160–166 (2019).

    Article  CAS  Google Scholar 

  36. Gnadt, A. R., Speth, R. L., Sabnis, J. S. & Barrett, S. R. H. Technical and environmental assessment of all-electric 180-passenger commercial aircraft. Prog. Aerosp. Sci. 105, 1–30 (2019).

    Article  Google Scholar 

  37. Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).

    Article  CAS  Google Scholar 

  38. Ivanovich, C. C., Ocko, I. B., Piris-Cabezas, P. & Petsonk, A. Climate benefits of proposed carbon dioxide mitigation strategies for international shipping and aviation. Atmos. Chem. Phys. 19, 14949–14965 (2019).

    Article  CAS  Google Scholar 

  39. Fuss, S. et al. Negative emissions—part 2: costs, potentials and side effects. Environ. Res. Lett. 13, 063002 (2018).

    Article  CAS  Google Scholar 

  40. Niklaß, M. et al. Integration of Non-CO2 Effects of Aviation in the EU ETS and Under CORSIA (Umweltbundesamt, 2020).

  41. Ishimoto, Y. et al. Putting Costs of Direct Air Capture in Context (Forum for Climate Engineering Assessment Working Paper Series, 2017); https://doi.org/10.2139/ssrn.2982422

  42. IPCC. Climate Change 2021: The Physical Science Basis Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2021).

  43. Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).

    Article  CAS  Google Scholar 

  44. Sustainable Aviation Fuels Roadmap—Fueling the Future of UK Aviation (Sustainable Aviation, 2020).

  45. Clean Skies for Tomorrow: Sustainable Aviation Fuels as a Pathway to Net-Zero Aviation (World Economic Forum, 2021).

  46. Bullerdiek, N., Neuling, U. & Kaltschmitt, M. A GHG reduction obligation for sustainable aviation fuels (SAF) in the EU and in Germany. J. Air Transp. Manag. 92, 102020 (2021).

    Article  Google Scholar 

  47. Santos, K. & Delina, L. Soaring sustainably: promoting the uptake of sustainable aviation fuels during and post-pandemic. Energy Res. Soc. Sci. 77, 102074 (2021).

    Article  Google Scholar 

  48. Becattini, V., Gabrielli, P. & Mazzotti, M. Role of carbon capture, storage, and utilization to enable a net-zero-CO2-emissions aviation sector. Ind. Eng. Chem. Res. 60, 6848–6862 (2021).

    Article  CAS  Google Scholar 

  49. Braun-Unkhoff, M., Riedel, U. & Wahl, C. About the emissions of alternative jet fuels. CEAS Aeronaut. J. 8, 167–180 (2017).

    Article  Google Scholar 

  50. Voigt, C. et al. Cleaner burning aviation fuels can reduce contrail cloudiness. Commun. Earth Environ. 2, 114 (2021).

    Article  Google Scholar 

  51. Jagtap, S. S. Evaluation of blended Fischer–Tropsch jet fuel feedstocks for minimizing human and environmental health impacts of aviation. In AIAA Propulsion and Energy 2019 Forum, 4412 (AIAA, Indianapolis, 2019).

  52. Blakey, S., Rye, L. & Wilson, C. W. Aviation gas turbine alternative fuels: a review. Proc. Combust. Inst. 33, 2863–2885 (2011).

    Article  CAS  Google Scholar 

  53. Kadyk, T., Schenkendorf, R., Hawner, S., Yildiz, B. & Römer, U. Design of fuel cell systems for aviation: representative mission profiles and sensitivity analyses. Front. Energy Res. 7, 35 (2019).

    Article  Google Scholar 

  54. Noland, J. K. Hydrogen electric airplanes: a disruptive technological path to clean up the aviation sector. IEEE Electrif. Mag. 9, 92–102 (2021).

    Article  Google Scholar 

  55. Morrell, P. & Dray, L. Environmental Aspects of Fleet Turnover, Retirement and Life Cycle (Cranfield University and University of Cambridge, 2009).

  56. Jenkins, S., Millar, R. J., Leach, N. & Allen, M. R. Framing climate goals in terms of cumulative CO2-forcing-equivalent emissions. Geophys. Res. Lett. 45, 2795–2804 (2018).

    Article  CAS  Google Scholar 

  57. Rogelj, J. & Schleussner, C.-F. Unintentional unfairness when applying new greenhouse gas emissions metrics at country level. Environ. Res. Lett. 14, 114039 (2019).

    Article  CAS  Google Scholar 

  58. Schleussner, C.-F., Nauels, A., Schaeffer, M., Hare, W. & Rogelj, J. Inconsistencies when applying novel metrics for emissions accounting to the Paris Agreement. Environ. Res. Lett. 14, 124055 (2019).

    Article  CAS  Google Scholar 

  59. Lynch, J., Cain, M., Pierrehumbert, R. & Allen, M. Demonstrating GWP*: a means of reporting warming-equivalent emissions that captures the contrasting impacts of short- and long-lived climate pollutants. Environ. Res. Lett. 15, 044023 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N.B. is funded through a Doc.CH grant and acknowledges support from the Swiss National Academy of Science. J.W. was funded throughout the duration of this research through an ETH postdoctoral fellowship and thanks the ETH foundation and the Uniscientia Foundation for his funding.

Author information

Authors and Affiliations

Authors

Contributions

N.B., A.P. and J.W. designed the study. N.B. performed the analysis with support from J.W. N.B. and J.W. wrote the manuscript. All authors edited the manuscript and engaged in ongoing discussions.

Corresponding author

Correspondence to Nicoletta Brazzola.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Lynnette Dray and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods (containing Supplementary Figs. 1–5 and Tables 1–4), References and Fig. 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brazzola, N., Patt, A. & Wohland, J. Definitions and implications of climate-neutral aviation. Nat. Clim. Chang. 12, 761–767 (2022). https://doi.org/10.1038/s41558-022-01404-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41558-022-01404-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing