Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Assessing risk of ecosystem collapse in a changing climate

Abstract

Climate change affects ecosystems globally, but their diversity and complexity make it difficult to estimate how severe these impacts are. Here we discuss how to conceptualize the effects of climate change on ecosystems so that they can be reliably captured in ecosystem risk assessments, focusing on the International Union for Conservation of Nature Red List of Ecosystems, a headline indicator for the Kunming–Montreal Global Biodiversity Framework. We highlight key challenges and propose solutions, which include using diverse teams, conceptual models and data sources (including projections), learning from analogous ecosystems, and evaluating uncertainties. This approach will improve the capacity to produce reliable assessments of risk under climate change to inform timely and effective conservation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Changes in the physical climate due to human-induced climate change can have cascading effects on ecosystem dynamics.
Fig. 2: Capturing climate-driven threats in a Red List assessment of alpine peatlands.
Fig. 3: Examples of different symptoms of climate change among various types of marine, freshwater and terrestrial ecosystem.

Similar content being viewed by others

References

  1. IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021). This report outlines the latest understanding of the science of climate systems and climate change, including the current state of the climate and possible future climates.

  2. IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).

  3. Hoffmann, A. A. et al. Impacts of recent climate change on terrestrial flora and fauna: some emerging Australian examples. Austral Ecol. 44, 3–27 (2019).

    Article  Google Scholar 

  4. Moomaw, W. R. et al. Wetlands in a changing climate: science, policy and management. Wetlands 38, 183–205 (2018).

    Article  Google Scholar 

  5. Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321, 560–564 (2008).

    Article  CAS  Google Scholar 

  6. Hennessy, K. et al. The Impact of Climate Change on Snow Conditions in Mainland Australia (CSIRO, 2003); https://www.cmar.csiro.au/e-print/open/hennessy_2003a.pdf

  7. IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services. Zenodo https://doi.org/10.5281/zenodo.3553579 (2019).

  8. Keith, D. A., Ferrer-Paris, J. R., Nicholson, E. & Kingsford, R. T. IUCN Global Ecosystem Typology 2.0: Descriptive Profiles for Biomes and Ecosystem Functional Groups (IUCN, 2020); https://doi.org/10.2305/IUCN.CH.2020.13.en

  9. Keith, D. A. et al. A function-based typology for Earth’s ecosystems. Nature 610, 513–518 (2022). This paper proposes a framework for classifying the world’s ecosystems based on composition and functional features.

    Article  CAS  Google Scholar 

  10. Keith, D. A. et al. Scientific foundations for an IUCN Red List of Ecosystems. PLoS ONE 8, e62111 (2013). This paper outlines the Red List of Ecosystems framework, the global standard for assessing risk to all ecosystem types.

    Article  CAS  Google Scholar 

  11. Guidelines for the Application of IUCN Red List of Ecosystems Categories and Criteria: Version 2.0 (IUCN, 2024); https://doi.org/10.2305/cjdf9122

  12. Nicholson, E. et al. Roles of the Red List of Ecosystems in the Kunming–Montreal Global Biodiversity Framework. Nat. Ecol. Evol. 8, 614–621 (2024). This paper suggests ways that the Red List of Ecosystems can be used as a knowledge source to inform measures of countriesprogress towards meeting the targets under the GBF, including Target 8 on minimizing the impacts of climate change.

    Article  Google Scholar 

  13. Bland, L. M. et al. Developing a standardized definition of ecosystem collapse for risk assessment. Front. Ecol. Environ. 16, 29–36 (2018). This paper suggests an approach for developing definitions of ecosystem collapse, collapsed states, collapse thresholds and indicators of collapse.

    Article  Google Scholar 

  14. Possingham, H. P. et al. Limits to the use of threatened species lists. Trends Ecol. Evol. 17, 503–507 (2002).

    Article  Google Scholar 

  15. Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8, e65427 (2013).

    Article  CAS  Google Scholar 

  16. Akçakaya, R. H., Butchart, S. H. M., Mace, G. M., Stuart, S. N. & Hilton-Taylor, C. Use and misuse of the IUCN Red List criteria in projecting climate change impacts on biodiversity. Glob. Change Biol. 12, 2037–2043 (2006).

    Article  Google Scholar 

  17. Pearson, R. G. et al. Life history and spatial traits predict extinction risk due to climate change. Nat. Clim. Change 4, 217–221 (2014).

    Article  Google Scholar 

  18. Wethey, D. S. et al. Response of intertidal populations to climate: effects of extreme events versus long term change. J. Exp. Mar. Biol. Ecol. 400, 132–144 (2011).

    Article  Google Scholar 

  19. Thompson, P. L. & Fronhofer, E. A. The conflict between adaptation and dispersal for maintaining biodiversity in changing environments. Proc. Natl Acad. Sci. USA 116, 21061–21067 (2019).

    Article  CAS  Google Scholar 

  20. Ponce-Reyes, R. et al. Forecasting ecosystem responses to climate change across Africa’s Albertine Rift. Biol. Conserv. 209, 464–472 (2017).

    Article  Google Scholar 

  21. Lawrence, J., Blackett, P. & Cradock-henry, N. A. Cascading climate change impacts and implications. Clim. Risk Manag. 29, 100234 (2020).

    Article  Google Scholar 

  22. Walther, G.-R. Community and ecosystem responses to recent climate change. Phil. Trans. R. Soc. B https://doi.org/10.1098/rstb.2010.0021 (2010).

  23. Brierley, A. S. & Kingsford, M. J. Impacts of climate change on marine organisms and ecosystems. Curr. Biol. 19, R602–R614 (2009).

    Article  CAS  Google Scholar 

  24. Monitoring Framework for the Kunming–Montreal Global Biodiversity Framework: Draft Decision Submitted by the President (CBD & UNEP, 2022).

  25. Edens, B. et al. Establishing the SEEA Ecosystem Accounting as a global standard. Ecosyst. Serv. 54, 101413 (2022).

    Article  Google Scholar 

  26. Guidelines for Ecological Risk Assessment (US Environmental Protection Agency, 1998).

  27. A Global Standard for the Identification of Key Biodiversity Areas Version 1.0 (IUCN, 2016).

  28. National Academy of Sciences Climate Change and Ecosystems (National Academies Press, 2019); https://doi.org/10.17226/25504

  29. Willcock, S., Cooper, G. S., Addy, J. & Dearing, J. A. Earlier collapse of Anthropocene ecosystems driven by multiple faster and noisier drivers. Nat. Sustain. 6, 1331–1342 (2023).

    Article  Google Scholar 

  30. Rodríguez, J. P. et al. A practical guide to the application of the IUCN Red List of Ecosystems criteria. Philos. Trans. R. Soc. B 370, 20140003 (2015).

    Article  Google Scholar 

  31. Sievers, M. et al. Integrating outcomes of IUCN Red List of Ecosystems assessments for connected coastal wetlands. Ecol. Indic. 116, 106489 (2020).

    Article  Google Scholar 

  32. Bergstrom, D. M. et al. Combating ecosystem collapse from the tropics to the Antarctic. Glob. Change Biol. 27, 1692–1703 (2021).

    Article  CAS  Google Scholar 

  33. Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007). This study shows the future likelihood of novel climates and the impacts of these on ecological forecasting of changes in species compositions under climate change.

    Article  Google Scholar 

  34. Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

    Article  CAS  Google Scholar 

  35. Camill, P., Clark, J. S., Camill, P. & Clark, J. S. Long-term perspectives on lagged ecosystem responses to climate change: permafrost in boreal peatlands and the grassland/woodland boundary. Ecosystems 3, 534–544 (2000).

    Article  Google Scholar 

  36. Defries, R. & Nagendra, H. Ecosystem management as a wicked problem. Science 356, 265–270 (2017).

    Article  CAS  Google Scholar 

  37. Clark, G. F., Raymond, B., Riddle, M. J., Stark, J. S. & Johnston, E. L. Vulnerability of Antarctic shallow invertebrate-dominated ecosystems. Austral Ecol. 40, 482–491 (2015).

    Article  Google Scholar 

  38. Di Fonzo, M. M. I., Collen, B., Chauvenet, A. L. M. & Mace, G. M. Patterns of mammalian population decline inform conservation action. J. Appl. Ecol. 53, 1046–1054 (2016).

    Article  Google Scholar 

  39. Fontúrbel, F. E., Nespolo, R. F., Amico, G. C. & Watson, D. M. Climate change can disrupt ecological interactions in mysterious ways: using ecological generalists to forecast community-wide effects. Clim. Change Ecol. 2, 100044 (2021).

    Article  Google Scholar 

  40. Paquette, A. & Hargreaves, A. L. Biotic interactions are more often important at species’ warm versus cool range edges. Ecol. Lett. 24, 2427–2438 (2021).

    Article  Google Scholar 

  41. Angeler, D. G. et al. Adaptive capacity in ecosystems. Adv. Ecol. Res. 60, 1–24 (2019).

    Article  Google Scholar 

  42. Lenton, T. M. et al. A resilience sensing system for the biosphere. Phil. Trans. R. Soc. B 377, 20210383 (2022).

    Article  Google Scholar 

  43. Howells, E. et al. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat. Clim. Change 2, 116–120 (2012).

    Article  Google Scholar 

  44. Gillies, C. L. et al. Conservation status of the Oyster Reef Ecosystem of Southern and Eastern Australia. Glob. Ecol. Conserv. 22, e00988 (2020).

    Google Scholar 

  45. Scheffer, M. et al. Creating a safe operating space for iconic ecosystems: manage local stressors to promote resilience to global change. Science 347, 1317–1319 (2015).

    Article  CAS  Google Scholar 

  46. Titeux, N., Henle, K., Mihoub, J. B. & Brotons, L. Climate change distracts us from other threats to biodiversity. Front. Ecol. Environ. 14, 291 (2016).

    Article  Google Scholar 

  47. Rosa, R. & Seibel, B. A. Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator. Proc. Natl Acad. Sci. USA 105, 20776–20780 (2008).

    Article  CAS  Google Scholar 

  48. Malhi, Y. et al. Climate change and ecosystems: threats, opportunities and solutions. Phil. Trans. R. Soc. B 375, 20190104 (2020). This paper describes the likely impacts of climate change on ecosystems, opportunities to enhance ecosystem resilience and the role of ecosystems in nature-based solutions for mitigating climate change impacts.

    Article  CAS  Google Scholar 

  49. Corell, R. W. Challenges of climate change: an Arctic perspective. Ambio 35, 148–152 (2006).

    Article  Google Scholar 

  50. Williams, J. J., Freeman, R., Spooner, F. & Newbold, T. Vertebrate population trends are influenced by interactions between land use, climatic position, habitat loss and climate change. Glob. Change Biol. 28, 797–815 (2022).

    Article  CAS  Google Scholar 

  51. Bland, L. M. et al. Using multiple lines of evidence to assess the risk of ecosystem collapse. Proc. R. Soc. B 284, 20170660 (2017).

    Article  Google Scholar 

  52. IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Part A (Cambridge Univ. Press, 2014).

  53. Aguirre-Gutiérrez, J. et al. Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nat. Commun. 11, 3346 (2020).

    Article  Google Scholar 

  54. Burns, E. L. et al. Ecosystem assessment of mountain ash forest in the Central Highlands of Victoria, south-eastern Australia. Austral Ecol. 40, 386–399 (2015).

    Article  Google Scholar 

  55. Urban, M. C. Projecting biological impacts from climate change like a climate scientist. Wiley Interdiscip. Rev. Clim. Change 10, e585 (2019).

    Article  Google Scholar 

  56. Sato, C. F. & Lindenmayer, D. B. Meeting the global ecosystem collapse challenge. Conserv. Lett. 11, e12348 (2018).

    Article  Google Scholar 

  57. Anthelme, F., Carrasquer, I., Ceballos, J. L. & Peyre, G. Novel plant communities after glacial retreat in Colombia: (many) losses and (few) gains. Alp. Bot. 132, 211–222 (2022).

    Article  Google Scholar 

  58. Dearing, J. A. et al. Safe and just operating spaces for regional social-ecological systems. Glob. Environ. Change 28, 227–238 (2014).

    Article  Google Scholar 

  59. Canadell, J. G. et al. Multi-decadal increase of forest burned area in Australia is linked to climate change. Nat. Commun. 12, 6921 (2021).

    Article  CAS  Google Scholar 

  60. Boakes, E. H. et al. Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biol. 8, e1000385 (2010).

    Article  Google Scholar 

  61. Chapman, M. et al. Biodiversity monitoring for a just planetary future. Science 383, 34–36 (2024).

    Article  CAS  Google Scholar 

  62. Rowland, J. A. et al. Selecting and applying indicators of ecosystem collapse for risk assessments. Conserv. Biol. 32, 1233–1245 (2018).

    Article  Google Scholar 

  63. Masés-García, C. A., Herrera-Fernández, B. & Briones-Salas, M. Tendencias en las evaluaciones de riesgo al colapso de ecosistemas terrestres y humedales. Madera Bosques https://doi.org/10.21829/myb.2021.2732133 (2021).

  64. Williams, R. J. et al. An International Union for the Conservation of Nature Red List ecosystems risk assessment for alpine snow patch herbfields, south-eastern Australia. Austral Ecol. 40, 433–443 (2015).

    Article  Google Scholar 

  65. Donner, S. D. et al. Global assessment of coral bleaching and required rates of adaptation under climate change. Glob. Change Biol. 11, 2251–2265 (2005).

    Article  Google Scholar 

  66. Trew, B. T. et al. Novel temperatures are already widespread beneath the world’s tropical forest canopies. Nat. Clim. Change 14, 753–759 (2024).

    Article  Google Scholar 

  67. Harris, R. M. B. et al. Climate projections for ecologists. Wiley Interdiscip. Rev. Clim. Change 5, 621–637 (2014).

    Article  Google Scholar 

  68. Rising, J., Tedesco, M., Piontek, F. & Stainforth, D. A. The missing risks of climate change. Nature 610, 643–651 (2022).

    Article  CAS  Google Scholar 

  69. Ruiz-Labourdette, D. et al. Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. J. Biogeogr. 39, 162–176 (2012).

    Article  Google Scholar 

  70. Jones, R. N. An environmental risk assessment/management framework for climate change impact assessments. Nat. Hazards 23, 197–230 (2001).

    Article  Google Scholar 

  71. Kapitza, S. et al. Assessing biophysical and socio-economic impacts of climate change on regional avian biodiversity. Sci. Rep. 11, 3304 (2021).

    Article  CAS  Google Scholar 

  72. Briscoe, N. J. et al. Forecasting species range dynamics with process-explicit models: matching methods to applications. Ecol. Lett. 22, 1940–1956 (2019).

    Article  Google Scholar 

  73. IPCC: Summary for Policymakers. In Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2022).

  74. Regan, H. M., Colyvan, M. & Burgman, M. A. A taxonomy and treatment of uncertainty for ecology and conservation biology. Ecol. Appl. 12, 618–628 (2002). This paper outlines a classification framework for the various types of epistemic uncertainty (relating to knowledge) and linguistic uncertainty (relating to language) that arise in ecology and conservation, and proposes solutions to help manage or reduce these uncertainties.

    Article  Google Scholar 

  75. Regan, H. M. et al. Treatments of uncertainty and variability in ecological risk assessment of single-species populations. Hum. Ecol. Risk Assess. 9, 889–906 (2003).

    Article  Google Scholar 

  76. Obura, D. et al. Vulnerability to collapse of coral reef ecosystems in the western Indian Ocean. Nat. Sustain. 5, 104–113 (2021).

    Article  Google Scholar 

  77. Peeters, L. J. M., Holland, K. L., Huddlestone-Holmes, C. & Boulton, A. J. A spatial causal network approach for multi-stressor risk analysis and mapping for environmental impact assessments. Sci. Total Environ. 802, 149845 (2022).

    Article  CAS  Google Scholar 

  78. Hemming, V. et al. A practical guide to structured expert elicitation using the IDEA protocol. Methods Ecol. Evol. 9, 169–180 (2018).

    Article  Google Scholar 

  79. Schmolke, A., Thorbek, P., DeAngelis, D. L. & Grimm, V. Ecological models supporting environmental decision making: a strategy for the future. Trends Ecol. Evol. 25, 479–486 (2010).

    Article  Google Scholar 

  80. Franklin, J., Serra-Diaz, J. M., Syphard, A. D. & Regan, H. M. Global change and terrestrial plant community dynamics. Proc. Natl Acad. Sci. USA 113, 3725–3734 (2016).

    Article  CAS  Google Scholar 

  81. Ford, J. D. et al. Case study and analogue methodologies in climate change vulnerability research. Wiley Interdiscip. Rev. Clim. Change 1, 374–392 (2010).

    Article  Google Scholar 

  82. Dobrowski, S. Z. et al. Protected-area targets could be undermined by climate change-driven shifts in ecoregions and biomes. Commun. Earth Environ. 2, 198 (2021).

    Article  Google Scholar 

  83. Lester, R. E., Close, P. G., Barton, J. L., Pope, A. J. & Brown, S. C. Predicting the likely response of data-poor ecosystems to climate change using space-for-time substitution across domains. Glob. Change Biol. 20, 3471–3481 (2014).

    Article  Google Scholar 

  84. Ferrer-Paris, J. R. et al. An ecosystem risk assessment of temperate and tropical forests of the Americas with an outlook on future conservation strategies. Conserv. Lett. 12, e12623 (2019).

    Article  Google Scholar 

  85. Baho, D. L. et al. A quantitative framework for assessing ecological resilience. Ecol. Soc. 22, 17 (2017).

    Article  Google Scholar 

  86. Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Acidification projecting coral reef futures under global warming and ocean acidification. Science 333, 418–423 (2011).

    Article  CAS  Google Scholar 

  87. Murray, N. J. et al. Myanmar’s terrestrial ecosystems: status, threats and conservation opportunities. Biol. Conserv. 252, 108834 (2020).

    Article  Google Scholar 

  88. Bland, L. M. et al. Assessing risks to marine ecosystems with indicators, ecosystem models and experts. Biol. Conserv. 227, 19–28 (2018).

    Article  Google Scholar 

  89. Tonmoy, F. N., El-Zein, A. & Hinkel, J. Assessment of vulnerability to climate change using indicators: a meta-analysis of the literature. Wiley Interdiscip. Rev. Clim. Change 5, 775–792 (2014).

    Article  Google Scholar 

  90. Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–225 (2015).

    Article  Google Scholar 

  91. Matías, L., Jump, A. S., Matias, L. & Jump, A. S. Impacts of predicted climate change on recruitment at the geographical limits of Scots pine. J. Exp. Bot. 65, 299–310 (2014).

    Article  Google Scholar 

  92. Shu, A. et al. An experimental study on mechanisms for sediment transformation due to riverbank collapse. Water 11, 529 (2019).

    Article  CAS  Google Scholar 

  93. Lankau, R. A., Zhu, K. & Ordonez, A. Mycorrhizal strategies of tree species correlate with trailing range edge responses to current and past climate change. Ecology 96, 1451–1458 (2015).

    Article  Google Scholar 

  94. Liu, H. et al. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proc. Natl Acad. Sci. USA 115, 4051–4056 (2018).

    Article  CAS  Google Scholar 

  95. The IUCN Red List of Threatened Species: Version 2025-1 (IUCN, 2025); https://www.iucnredlist.org

  96. Brummitt, N. A. et al. Green plants in the red: a baseline global assessment for the IUCN Sampled Red List Index for Plants. PLoS ONE 10, e0135152 (2015).

    Article  Google Scholar 

  97. Foden, W. B. et al. Climate change vulnerability assessment of species. Wiley Interdiscip. Rev. Clim. Change 10, e551 (2019). This paper outlines various approaches for undertaking assessments of species vulnerability to climate change, including how they can inform species Red List assessments.

    Article  Google Scholar 

  98. Polidoro, B. A. et al. The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS ONE 5, e10095 (2010).

    Article  Google Scholar 

  99. Short, F. T. et al. Extinction risk assessment of the world’s seagrass species. Biol. Conserv. 144, 1961–1971 (2011).

    Article  Google Scholar 

  100. Fernández, M., Hamilton, H. H. & Kueppers, L. M. Back to the future: using historical climate variation to project near-term shifts in habitat suitable for coast redwood. Glob. Change Biol. 21, 4141–4152 (2015).

    Article  Google Scholar 

  101. Freer, J. J., Partridge, J. C., Tarling, G. A., Collins, M. A. & Genner, M. J. Predicting ecological responses in a changing ocean: the effects of future climate uncertainty. Mar. Biol. 165, 7 (2018).

    Article  Google Scholar 

  102. Holt, G., Macqueen, A. & Lester, R. E. A flexible consistent framework for modelling multiple interacting environmental responses to management in space and time. J. Environ. Manag. 367, 122054 (2024).

    Article  Google Scholar 

  103. Morgan, M. G., Pitelka, L. F. & Shevliakova, E. Elicitation of expert judgments of climate change impacts on forest ecosystems. Climatic Change 49, 279–307 (2001).

    Article  CAS  Google Scholar 

  104. McBride, M. F. et al. Structured elicitation of expert judgments for threatened species assessment: a case study on a continental scale using email. Methods Ecol. Evol. 3, 906–920 (2012).

    Article  Google Scholar 

  105. Armstrong, C. W. et al. Expert assessment of risks posed by climate change and anthropogenic activities to ecosystem services in the deep North Atlantic. Front. Mar. Sci. 6, 158 (2019).

    Article  Google Scholar 

  106. Fazey, I., Fazey, J. A., Salisbury, J. G., Lindenmayer, D. B. & Dovers, S. The nature and role of experiential knowledge for environmental conservation. Environ. Conserv. 33, 1–10 (2006).

    Article  Google Scholar 

  107. Martin, T. G. et al. Eliciting expert knowledge in conservation science. Conserv. Biol. 26, 29–38 (2012).

    Article  Google Scholar 

  108. Korell, L., Auge, H., Chase, J. M., Harpole, W. S. & Knight, T. M. We need more realistic climate change experiments for understanding ecosystems of the future. Glob. Change Biol. https://doi.org/10.1111/gcb.14797 (2019).

  109. Conway, D. et al. The need for bottom-up assessments of climate risks and adaptation in climate-sensitive regions. Nat. Clim. Change 9, 503–511 (2019).

    Article  Google Scholar 

  110. Cook, C. N., Inayatullah, S., Burgman, M. A., Sutherland, W. J. & Wintle, B. A. Strategic foresight: how planning for the unpredictable can improve environmental decision-making. Trends Ecol. Evol. 29, 531–541 (2014).

    Article  Google Scholar 

  111. Miller, B. W. & Morisette, J. T. Integrating research tools to support the management of social-ecological systems under climate change. Ecol. Soc. 19, 41 (2014).

    Article  Google Scholar 

  112. Wardle, G. M. et al. Ecosystem risk assessment of Georgina gidgee woodlands in central Australia. Austral Ecol. 40, 444–459 (2015).

    Article  Google Scholar 

  113. Auld, T. D. & Leishman, M. R. Ecosystem risk assessment for Gnarled Mossy Cloud Forest, Lord Howe Island, Australia. Austral Ecol. 40, 364–372 (2015).

    Article  Google Scholar 

  114. English, V. & Keith, D. A. Assessing risks to ecosystems within biodiversity hotspots: a case study from southwestern Australia. Austral Ecol. 40, 411–422 (2015).

    Article  Google Scholar 

  115. Pliscoff, P. Aplicación de los Criterios de la Unión Internacional para la Conservación de la Naturaleza (IUCN) para la Evaluación de Riesgo de los Ecosistemas Terrestres de Chile (Ministerio de Medio Ambiente, 2015).

  116. Meng, X. et al. Threatened status assessment of multiple grassland ecosystems and conservation strategies in the Xilin River Basin, NE China. Sustainability 12, 1084 (2020).

    Article  Google Scholar 

  117. Etter, A., Andrade, A., Amaya, P. & Arevalo, P. State of the Colombian Ecosystems 2014: An Application of the Red List of Ecosystems Methodology (IUCN, 2015).

  118. Etter, A. et al. Risk Assessment of Colombian Continental Ecosystems: An Application of the Red List of Ecosystems Methodology (v2.0) Final Report (ontificia Universidad Javeriana and Conservación Internacional-Colombia, 2017).

  119. Pisanu, P., Kingsford, R. T., Wilson, B. & Bonifacio, R. Status of connected wetlands of the Lake Eyre Basin, Australia. Austral Ecol. 40, 460–471 (2015).

    Article  Google Scholar 

  120. Marshall, A., Schulte to Bühne, H., Bland, L. & Pettorelli, N. Assessing ecosystem collapse risk in ecosystems dominated by foundation species: the case of fringe mangroves. Ecol. Indic. 91, 128–137 (2018).

    Article  Google Scholar 

  121. Ghoraba, S. M. M., Halmy, M. W. A., Salem, B. B. & Badr, N. B. E. Assessing risk of collapse of Lake Burullus Ramsar site in Egypt using IUCN Red List of Ecosystems. Ecol. Indic. 104, 172–183 (2019).

    Article  Google Scholar 

  122. Murray, N. J., Ma, Z. & Fuller, R. A. Tidal flats of the Yellow Sea: a review of ecosystem status and anthropogenic threats. Austral Ecol. 40, 472–481 (2015).

    Article  Google Scholar 

  123. Van Deventer, H. et al. Conservation conundrum – Red Listing of subtropical-temperate coastal forested wetlands of South Africa. Ecol. Indic. 130, 108077 (2021).

    Article  Google Scholar 

  124. Mönkkönen, M. et al. More wood but less biodiversity in forests in Finland: a historical evaluation. Memo. Soc. Fauna Fl. Fenn. 98, 1–11 (2022).

    Google Scholar 

  125. Kontula, T. & Raunio, A. Threatened Habitat Types in Finland 2018: Red List of Habitats Results and Basis for Assessment (Finnish Environment Institute and Ministry of the Environment, 2019).

  126. Keith, D. A. et al. Contributions of Red Lists of Ecosystems to risk-based design and management of protected and conserved areas in Africa. Conserv. Biol. 38, e14169 (2024).

    Article  Google Scholar 

  127. Botts, E. A. et al. More than just a (Red) list: Over a decade of using South Africa’s threatened ecosystems in policy and practice. Biol. Conserv. 246, (2020).

  128. Salomaa, A. & Arponen, A. The role of the Red Lists of Ecosystems in leveraging sustainability changes in Finland—perceptions of the assessors. Ecosyst. People 19, 2222185 (2023).

    Article  Google Scholar 

  129. Valderrábano, M. et al. Using Ecosystem Risk Assessment Science in Ecosystem Restoration: A Guide to Applying the Red List of Ecosystems to Ecosystem Restoration (IUCN, 2021); https://doi.org/10.2305/iucn.ch.2021.19.en

Download references

Acknowledgements

This research received support from the following grants: J.A.R., A.B.T. and C.F.S. as post-docs and E.N., D.A.K., N.J.M., R.E.L., S.V., T.J.R. and J.R.F.-P. as investigators were supported by Australian Research Council Linkage Grant LP170101143; J.R.F.-P. was supported by the Ian Potter Foundation Grant ID: 21592; M.V.A was supported by the Chilean National Commission for Scientific and Technological Research (Project Grant ANID BASAL FB210015 ‘CENAMAD’); and P.P. was supported by Fondecyt 1210834.

Author information

Authors and Affiliations

Authors

Contributions

J.A.R. led the writing of the paper. J.A.R., T.J.R., E.N. and C.F.S. contributed to conceptualization of the paper. All authors contributed to writing the paper.

Corresponding author

Correspondence to Jessica A. Rowland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Patrick McIntyre, Simon Willcock and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Appendix 1 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rowland, J.A., Nicholson, E., Ferrer-Paris, J.R. et al. Assessing risk of ecosystem collapse in a changing climate. Nat. Clim. Chang. 15, 597–609 (2025). https://doi.org/10.1038/s41558-025-02324-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41558-025-02324-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing