Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Reconsidering space-for-time substitution in climate change ecology

Ecologists often leverage patterns observed across spatial climate gradients to predict the impacts of climate change (space-for-time substitution). We highlight evidence that this can be misleading not just in the magnitude but in the direction of effects, explain why, and make suggestions for improving the reliability of ecological forecasts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Opposite responses to spatial versus temporal variation in temperature have been documented in several spatial networks of tree-ring time series.
Fig. 2: Reasons why SFTS may generate misleading predictions of ecological response to climate change.
Fig. 3: A roadmap towards diversified and more reliable ecological forecasting.

References

  1. Perret, D. L., Evans, M. E. K. & Sax, D. F. Proc. Natl Acad. Sci. USA 121, e2304404120 (2024).

    Article  CAS  Google Scholar 

  2. Klesse, S. et al. Glob. Change Biol. 26, 5146–5163 (2020).

    Article  Google Scholar 

  3. Evans, M. E. K. et al. Proc. Natl Acad. Sci. USA 121, e2315700121 (2024).

    Article  CAS  Google Scholar 

  4. Felton, A. J. et al. Ecol. Lett. 25, 2688–2698 (2022).

    Article  Google Scholar 

  5. Stemkovski, M. et al. Funct. Ecol. https://doi.org/10.1111/1365-2435.70079 (2025).

    Article  Google Scholar 

  6. Mirabel, A. et al. Nat. Commun. 14, 6901 (2023).

    Article  CAS  Google Scholar 

  7. Lovell, R. S. L. et al. Biol. Rev. 98, 2243–2270 (2023).

    Article  Google Scholar 

  8. Adler, P. B., White, E. P. & Cortez, M. H. Ecography 43, 1729–1739 (2020).

    Article  Google Scholar 

  9. Kharouba, H. M. & Williams, J. L. Trends Ecol. Evol. 39, 716–725 (2024).

    Article  Google Scholar 

  10. Angert, A. L., Sheth, S. N. & Paul, J. R. Int. Comp. Biol. 51, 733–750 (2011).

    Article  Google Scholar 

  11. Anderson, J. T. et al. Science 388, 525–531 (2025).

    Article  CAS  Google Scholar 

  12. Piirainen, S. et al. Diversity Distrib. 29, 654–665 (2022).

    Article  Google Scholar 

  13. Dietze, M. C. et al. Proc. Natl Acad. Sci. USA 115, 1424–1432 (2018).

    Article  CAS  Google Scholar 

  14. Lee-Yaw, J. A., McCune, J. L., Pironon, S. & Sheth, S. N. Ecography 2022, e05877 (2022).

    Article  Google Scholar 

  15. DeMarche, M. L., Doak, D. F. & Morris, W. F. Glob. Change Biol. 25, 775–793 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret E. K. Evans.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evans, M.E.K., Adler, P.B., Angert, A.L. et al. Reconsidering space-for-time substitution in climate change ecology. Nat. Clim. Chang. 15, 809–812 (2025). https://doi.org/10.1038/s41558-025-02392-0

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41558-025-02392-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing