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Causal inference concepts can guide research 
into the effects of climate on infectious 
diseases

Laura Andrea Barrero Guevara1,2, Sarah C. Kramer    1, Tobias Kurth    2 & 
Matthieu Domenech de Cellès    1 

A pressing question resulting from global warming is how climate change 
will affect infectious diseases. Answering this question requires research 
into the effects of weather on the population dynamics of transmission and 
infection; elucidating these effects, however, has proved difficult due to the 
challenges of assessing causality from the predominantly observational 
data available in epidemiological research. Here we show how concepts 
from causal inference—the sub-field of statistics aiming at inferring causality 
from data—can guide that research. Through a series of case studies, we 
illustrate how such concepts can help assess study design and strategically 
choose a study’s location, evaluate and reduce the risk of bias, and interpret 
the multifaceted effects of meteorological variables on transmission. More 
broadly, we argue that interdisciplinary approaches based on explicit causal 
frameworks are crucial for reliably estimating the effect of weather and 
accurately predicting the consequences of climate change.

A key question ensuing from global warming is how climate change 
may impact the population dynamics of infectious diseases1–3. Indeed, 
observations of large climatic variability in the distribution and sea-
sonality of multiple infectious diseases worldwide—including major 
causes of death like malaria4, cholera5 and influenza6—suggest that 
many pathogens are sensitive to environmental conditions such that 
climate change could modify their ecology and epidemiology. Accord-
ingly, predictive studies, based on numerical simulations combining 
models of global climate and infectious diseases under different sce-
narios of greenhouse gas emissions, suggest that climate change will 
affect many infections. These include infections with indirect trans-
mission through intermediate, climate-sensitive stages involving a 
vector, such as mosquito-borne diseases like malaria and dengue, or 
the environment, including water-borne diseases like cholera. All of 
these infections are predicted to shift their geographical range under 
continued global warming7–9. Fewer studies have focused on directly 
transmitted pathogens, but it has been suggested that climate change 
could also alter the transmission dynamics of respiratory syncytial 

viruses in the United States and Mexico10 and varicella zoster viruses 
in Mexico11. Although such predictions cannot yet be evaluated, earlier 
research has already documented the impact of past climate warming3, 
for example, the increased altitudinal range of malaria in the high-
lands of Ethiopia and Colombia12 and the increased risk of Vibrio dis-
ease in Northern Europe, coinciding with the warming of the Baltic  
Sea’s surface13.

A prerequisite to predicting the long-term consequences of cli-
mate change is to elucidate the effect of weather on infectious diseases. 
Even though effects of weather on infection dynamics (and the resulting 
‘calendar of epidemics’14) have long been observed, there are persist-
ing uncertainties about the direct causes and mechanisms for even 
well-researched pathogens like influenza viruses15,16. Perhaps the most 
robust evidence for this effect is afforded by experimental studies, 
which demonstrate that environmental variables like temperature and 
humidity tightly modulate transmission parameters (such as pathogen 
survival time or infectivity) of viral17,18, bacterial19,20 and parasitic21,22 
infections. Although such evidence is useful for population-based 
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example, a weather variable) on an outcome variable of interest (for 
example, infectious disease risk)70,71. In this framework, a central first 
step is to explicitly represent cause-and-effect relationships using 
a causal diagram called a directed acyclic graph (DAG; see glossary 
Fig. 1)72. The benefits of this representation are double: conceptual, as 
they help investigators clarify their hypotheses and assumptions and 
highlight potential sources of bias; and methodological, as given a DAG, 
causal inference theory prescribes a set of rules to determine the form 
of a model (if any) that can answer the causal question of interest. In a 
DAG, one should also carefully consider the measurement process to 
distinguish between observed and unobserved variables. This distinc-
tion is central for infectious diseases, as variables that are typically 
unobserved—such as population immunity, often portrayed as the ‘dark 
matter’ of epidemics73—sensitively control transmission dynamics. We 
illustrate the application of a causal inference framework with a simple 
mathematical model representing the population-level dynamics of 
an acute infection spread by direct contact between susceptible and 
infected hosts. Although we do not focus on a specific pathogen in 
the rest of this analysis, this model—known as Susceptible–Infected–
Recovered–Susceptible (SIRS) in the field of infectious disease model-
ling74—may be considered realistic for respiratory viruses with short 
generation times, like influenza viruses75, respiratory syncytial viruses76 
and SARS-CoV-276.

To describe the effect of weather on infection dynamics, we incor-
porated an environmental model representing the joint causal effect—
dictated by physical laws77,78—of ambient air temperature (Te) and 
dew point temperature (a measure of absolute humidity) on relative 
humidity (RH). We then assumed a direct, negative effect of tempera-
ture and relative humidity on transmission (β)—that is, transmission 
decreased as either climatic variable increased. Finally, we incorpo-
rated an observation model representing the causal link between the 
true and observed incidence rates, assuming a surveillance system with 
perfectly specific but incompletely sensitive case detection, resulting 
in case under-reporting. Of note, we assumed this observation model 
was completely random, and we thus did not consider the potential 
bias resulting from systematic differences between the true and the 
observed incidence rates79–81. Strategic simplifying assumptions 
(in particular, of a discrete-time model with fixed generation time 
and time step of 1 week) then allowed us to represent the full model 
with a simple DAG (Fig. 2). We focus on this representation instead of 
the conventional compartmental model diagram used in infectious 
disease modelling because DAGs more concisely convey causal con-
cepts. Still, we note that both representations are causal diagrams (see  
ref. 82 for a more extensive discussion of the correspondence between 
both diagrams). Full model details—including equations, numerical 
implementation and further discussion of our assumptions about the 
effects of weather—can be found in Methods.

In the rest of this analysis, we use this DAG and its underlying 
model to illustrate four causal inference concepts: descendants and 
measurement bias (vignette 1); natural experiments (vignette 2); con-
founders and confounding bias (vignette 3); and mediators (vignette 4).  
In so doing, we emphasize two key points: first, causal inference 
frameworks are useful—and, indeed, required—to assess the effects 
of weather on infectious diseases; second, transmission models are 
valuable to encapsulate this framework, as they specify explicit causal 
mechanisms for the observed and unobserved variables that underlie 
infectious disease data.

Causal inference concepts–illustrations with four vignettes
Vignette 1 on descendants, measurement bias and the intricate 
association between environmental variables and incidence rate. 
Time series regression analysis of observed incidence rates is a fre-
quent study design in environmental epidemiology68,83. The implicit 
assumption of such studies is that statistical quantities derived from 
regression models—typically, regression coefficients—will accurately 

research (in particular for postulating causal environmental factors), 
it remains too limited to estimate the causal impact of weather at the 
scale of human populations for at least three reasons. First, the end-
points measured in experimental studies—such as pathogen survival 
time—can be challenging to translate into meaningful epidemiological 
quantities, such as transmissibility. Second, because of differences in 
infection biology between species, the results from animal studies may 
not generalize to humans23. Third, experimental studies cannot recapit-
ulate all the mechanisms whereby weather affects infection, especially 
those operating at the population level—for example, weather causes 
behavioural changes in people, resulting in seasonal changes in social 
contacts24. Hence, observational studies remain necessary to estimate 
the multifaceted effects of weather on human infectious diseases.

However, a well-known shortcoming of observational studies is 
their tendency to misidentify causes because found associations do 
not always imply causation for observational data. This problem is also 
expected when inferring the effect of weather, which is characterized by 
meteorological variables generally highly correlated with one another 
and potentially many other seasonal causes of infectious diseases. Here 
we discuss and demonstrate how causal inference—a methodological 
framework aiming at inferring causes from observed data—offers a 
principled approach to tackle these issues and strengthen evidence 
in observational research25,26.

Causal inference in climate–infectious disease 
research
Causal inference frameworks and their tools are increasingly used to 
analyse data and guide study design in epidemiology27 and beyond28,29, 
and may also be useful for experimental research29. The impact of such 
tools is illustrated by the fact that causal frameworks like target emu-
lation trials may provide evidence as robust as that from randomized 
trials30, thereby expanding the scope of observational research for 
answering causal questions.

Despite these advances, the use of causal methods—in the form of 
mechanistic models or statistical models based on causal reasoning—
remains limited in the field of weather– or climate–infectious disease 
research31. To assess how regularly causal methods are used in these 
fields, we re-analysed 33 studies previously assessed in a review32–64. 
All of these studies used time series regression models to evaluate the 
association between weather and cases of dengue, influenza, cholera 
or malaria cases (Supplementary Table 1). Although more causally 
principled methods for time series analysis exist65,66, the standard 
time series design remains widely used, as evidenced by numerous 
recent applications for SARS-CoV-267. Four of the 33 studies had an 
explicitly predictive objective and did not address causality38,41,43,58. 
Of the remaining 29 studies that addressed causality, only one derived 
the statistical model from explicit causal assumptions40. By contrast, 
the other 28 studies neither explicitly mentioned causal reasoning to 
formulate their research question nor used causal graphs for study 
design or statistical analysis. Based on this assessment, we conclude 
that applying causal inference methods may help strengthen the evi-
dence in this field.

Here we aim to demonstrate how using a causal inference frame-
work can improve research on the effects of weather and climate on 
infectious diseases. Our focus is on the conceptual aspects, while we 
recommend other studies for methodological details65,68,69. Through-
out our analysis, we illustrate the different causal inference concepts 
through a series of short case studies (‘vignettes’), all based on a causal 
inference framework described below.

Results
A causal inference framework for a model of infectious disease 
transmission
A causal inference framework can be broadly defined as a systematic 
approach to identifying the causal effects of an input variable (for 
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Fig. 1 | Glossary of causal inference concepts. Definitions of causal inference concepts with causal graphs illustrating the topic discussed in each vignette.

http://www.nature.com/natecolevol


Nature Ecology & Evolution | Volume 9 | February 2025 | 349–363 352

Analysis https://doi.org/10.1038/s41559-024-02594-3

capture the causal effect of meteorological variables. However, as 
shown in our causal graph (Fig. 2) and as expected in practice, the 
causal chain relating weather to observed incidence rates is indirect 
and complex. A key issue arises from the fact that, although weather 
directly affects the transmission rate, the observed incidence rate is 
located two causal links downstream from the transmission rate; in 
causal inference language, the latter rate is described as a descendant 
(that is, a consequence; Fig. 1) of the former. Of these two causal links, 
the one relating the transmission and incidence rates may be challeng-
ing to recapitulate with regression models because unobserved vari-
ables like the size of the population susceptible to infection (inversely 
related to the population, or herd, immunity, which controls epidemic 
thresholds) induce nonlinearities that may result in marked dissimilari-
ties between these two rates69,74. Hence, measurement bias—that is, the 
bias arising from non-random differences between the targeted (here, 
transmission) and the observed endpoints (here, observed incidence; 
Fig. 1)84—may distort causal inference from time series regression 
models. This potential bias has been recognized in environmental 
epidemiology, as reflected in recommendations to include additional 
covariates for capturing temporal variations in population immunity 
or other long-term trends68. However, because of the above complexi-
ties, such additions, depending on the underlying causal structure and 
available information, are not guaranteed to reduce measurement bias.

To illustrate, we generated model simulations for a pathogen with 
low, medium or high transmissibility (basic reproduction number of 
1.25, 2.5 or 5, respectively), with meteorological data from a temper-
ate climate (Lübeck, Germany; Supplementary Table 2) resulting in 
a seasonally forced transmission rate with a single peak every winter 
(Fig. 3a). Under the medium-transmissibility scenario (Fig. 3b, middle 
panel), the epidemiological dynamic displayed annual periodicity, with 
winter seasonality in the incidence rate that broadly matched that of 
the transmission rate (Spearman’s correlation coefficient: rs = 0.63). 
In marked contrast, lower transmissibility resulted in biennial epi-
demics showing little correlation with the seasonal transmission rate  
(rs = 0.07; Fig. 3b, top panel). This phenomenon—called sub-harmonic 
resonance74—resulted from the higher susceptibility threshold needed 

to trigger epidemics and the longer time required to replenish the pool 
of susceptible individuals (via births and waning immunity) to exceed 
that threshold. Finally, the opposite phenomenon of super-harmonic 
resonance was observed in the high-transmissibility scenario, which 
resulted in biannual epidemics (Fig. 3b, bottom panel). These simple 
numerical experiments illustrate the complex dynamic of infectious 
diseases and the potent but sometimes counter-intuitive footprint that 
weather—or, for that matter, any other source of seasonal forcing—can 
have on this dynamic69.

Next, we generated 100 replicate time series of observed incidence 
rates for each scenario to assess the reliability of time series regression 
models. For every replicate, as a control, we first fitted a negative bino-
mial generalized additive model (GAM) with 1-week-lagged weather 
variables and the susceptible and infected population sizes as covari-
ates and the observed incidence rate as endpoint—the true candidate 
model for our application, as we show in the Methods. As expected, the 
causal effects of temperature and relative humidity on the transmission 
rate were estimated, on average, without bias for this model (Supple-
mentary Fig. 1). In practical applications, however, the susceptible and 
infected population sizes would be unobserved. Therefore, we next fit-
ted a comparable model with a flexible smooth of time to try to capture 
variations in these unobserved variables. As shown in Fig. 3c, because 
of measurement bias, estimation performance was, overall, poor. For 
low transmissibility, the causal effect of temperature on the transmis-
sion rate was estimated with a substantial bias (mean absolute bias 
(AB): 0.08, 40% relative error in comparison to the actual value of −0.2) 
and imprecision (mean standard error of estimates across simulations 
(SE): 0.07). The bias was even more substantial in the medium- (mean 
AB: 0.16) and high-transmissibility scenarios (mean AB: 0.22). Because 
relative humidity had a high correlation with temperature but lower 
variability, its estimated effect was marred with large uncertainty, 
which exceeded, on average, the absolute effect size in every scenario 
(mean SE: 0.21–0.35, to be compared with the true effect size of −0.2; 
Supplementary Fig. 1).

In an additional analysis, we tested time series regression models 
of the effective reproduction number, another outcome that can be 
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Fig. 2 | Causal graph for the illustrative transmission model. At a given time t, 
physical laws77,78 dictate that the ambient temperature and the dew point 
temperature jointly determine the relative humidity of the air. We assume that 
both temperature and relative humidity directly affect the transmission rate of 
the pathogen: logβt = logβ+ δTe(Te

′
t − 1) + δRH(RH

′
t − 1), where β represents 

the average transmission rate, Te′t  and RH′
t  the rescaled environmental variables 

(with unit mean), and δTe = δRH = −0.2 their causal effects on transmission. The 
causal link between the transmission rate and the incidence rate—defined as the 
number of new cases per unit of time—is governed by a deterministic nonlinear 
model (here assumed to be a simple SIRS model74) representing the pathogen’s 

epidemiological dynamics, in which new infections arise from contact between 
susceptible and infected individuals. Because of observation error (for example, 
imperfect test sensitivity resulting in case under-reporting), the observed 
incidence rate differs from the actual incidence rate; a stochastic observation 
model (here assumed to be a negative binomial model) represents the causal link 
between the two rates. Mathematically, this causal diagram translates into a 
discrete-time model that iterates the epidemic dynamic from one generation of 
infection to the next (see Methods for full information about the model’s 
formulation and implementation). Variables surrounded by dashed lines are 
assumed to be unobserved.
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considered to assess the effects of weather. The corresponding DAG 
(Supplementary Fig. 2) shows that this outcome depends on only one 
unobserved variable, while the incidence rate depends on two (Fig. 2). As 
a result, we found that time series regression generally performed better 
for this outcome, even though the bias remained very large in all scenarios 
(Supplementary Fig. 1). We note that this better performance may not 
generalize to all settings. In practice, the effective reproduction number 
is not directly observable and must first be reconstructed from incidence 
time series85. In our deliberately simple application, we assumed a small 
amount of noise but no systematic bias in this reconstruction, an assump-
tion that may be too optimistic for more realistic models.

Although not intended to be exhaustive, this simple simulation 
study echoes earlier discussions of measurement bias as a major con-
cern for study designs based on time series regression, particularly 
when population immunity varies over fast time scales68,83. Relating 
to the central thread of this analysis, we note that causal reasoning—
particularly the causal diagram representing the effect of weather—
allowed us to identify, a priori, the relevant theoretical issues and 
propose simple numerical experiments to assess their practical rel-
evance. This vignette thus illustrates the value of causal reasoning not 
only as a methodological tool but also as a theoretical tool to guide 
study design and analysis.

Vignette 2 on climate variability as natural experiments to estimate 
the individual effect of meteorological variables. Owing predomi-
nantly to latitudinal gradients in solar radiation and other factors like 
altitude and proximity to the sea, the Earth displays a large variability 
of climates86. This variability is reflected in the Köppen–Geiger system, 
which classifies worldwide climates into 5 main types and 30 sub-types 
based on seasonal averages of precipitation and temperature87. Because 
these different climates exhibit diverse seasonal patterns of variation 
in weather variables and correlations between them, they may be 
regarded as a range of ‘natural experiments,’ conceptually equivalent to 
manipulating specific weather variables to identify their causal effects. 
More broadly, the strategy of leveraging randomness that occurs natu-
rally in observed data (that is, quasi-experiments; Fig. 1) is increasingly 
advocated for when inferring causality in predominantly observational 
research fields like economics28, ecology88 and epidemiology89. As 
an example of such quasi-experiments, previous studies analysed 
large-scale, irregular oceanic phenomena such as the El Niño–Southern 
Oscillation to evaluate the effects of ‘climate change-like shocks’90,91.

Of particular interest for environmental epidemiological research 
is the contrast between tropical climates (where temperature generally 
varies little and thus only slightly affects relative humidity) and temper-
ate climates (where the opposite is typically observed), which may be 

Transmission rate

Relative humidity

Temperature

0

1

2

0.6

0.8

1.0

0.8

0.9

1.0

1.1

Time (weeks)

Re
no

rm
al

iz
ed

 v
al

ue

a

R0 = 5

R0 = 2.5

R0 = 1.25

R0 = 5

R0 = 2.5

R0 = 1.25

0

25

50

75

100

0

20

40

60

10

20

Time (weeks)

Va
lu

e

Incidence rate Susceptible prevalenceb

0 100 200 300 400 500

Time (weeks)
0 100 200 300 400 500

Time (weeks)
0 100 200 300 400 500

0 100 200 300 400 500 −0.3 −0.2 −0.1 0 0.1

0

5

10

15

0

5

10

15

0

5

10

15

Point estimate of temperature e�ect

Time (weeks)
0 100 200 300 400 500 −0.3 −0.2 −0.1 0 0.1

Point estimate of temperature e�ect

Time (weeks)
0 100 200 300 400 500 −0.3 −0.2 −0.1 0 0.1

Point estimate of temperature e�ect

D
en

si
ty

s.e.m.
0.04 0.06 0.08 0.10 0.12

c

Fig. 3 | Measurement bias and the intricate association between environmental 
variables and incidence rate (vignette 1). a, Time series of temperature (top 
panel) and relative humidity (middle panel, both climatic variables renormalized 
to have unit mean) during 2013–2022 in Lübeck, Germany. The bottom panel 
displays the resulting seasonal component of the transmission rate, assuming 
a negative effect of both climatic variables on transmission. In the three panels, 
the vertical grey lines mark the beginning of every calendar year (week no. 1). 
b, Dynamics of susceptible prevalence (100 × St/N; dashed lines) and incidence 

rate (100 × Ct/N; solid lines) for three different values of the basic reproduction 
number (R0) and an average duration of immunity of 1 year (other model 
parameters fixed to the values in Supplementary Table 3). c, Distribution of 
point estimates for the effect of temperature estimated from a negative binomial 
GAM regression model fitted to each of 100 replicate time series of the observed 
incidence rate. The marks on the x axis indicate the point estimates, with the 
colours representing their standard errors. The vertical dashed line indicates the 
true effect fixed in the transmission model for generating the observations.
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leveraged to isolate the effects of temperature and relative humidity. 
To test this hypothesis, we used our illustrative model to run a range 
of numerical experiments in a pair of locations where this contrast was 
marked: Lübeck, Germany (53.9° N latitude, coefficient of variation 
(CV; standard deviation/mean) of temperature CV(Te) = 0.59, CV(RH) = 
0.07, rs(Te, RH) = −0.48) and Bogotá, Colombia (4.7° N latitude, CV(Te) = 
0.04, CV(RH) = 0.07, rs(Te, RH) = −0.10). By back-fitting our transmission 
model to 100 replicate time series of observed incidence rates it gener-
ated, we gauged how well we could estimate the effects of temperature 
and relative humidity (as well as other model parameters that would be 
unknown in real-world applications; Methods) in the two climates. In 
Lübeck, as expected for a climate characterized by low RH variability 
and large RH–Te correlation, the effect of temperature was estimated 
with more accuracy than that of relative humidity (mean AB of 0.02 
and 0.09, respectively; Fig. 4). Of note, these results are reminiscent 
of those of vignette 1, except that the parameters estimated in this 
vignette originated from the true causal transmission model (Fig. 2) 
and, therefore, did not suffer from measurement bias. In Bogotá and its 
climate with low Te variability and almost null RH–Te correlation, the 
opposite result held, with higher accuracy for relative humidity than 
for temperature (mean AB of 0.04 and 0.05, respectively).

This simulation study thus suggests the scope for strategic choices 
regarding a study’s location, where the local climate’s properties can 
help estimate the effect of the weather variable of causal interest. 
Whenever more data are available, an alternative strategy is to use 
multilevel models, which provide a principled way to pool information 
while modelling variation across multiple locations84. Multilevel exten-
sions are now routine for standard regression models but more chal-
lenging for the complex—typically nonlinear, stochastic and partially 
observed92—models needed to capture infectious disease dynamics. 
Nevertheless, recent statistical advances permit the estimation of such 
multilevel models93,94, opening an avenue for large-scale dynamical 
modelling studies that harness information from multiple natural 
experiments in different climates. More broadly, this vignette under-
scores the critical importance of considering the causal mechanisms 
underlying weather dynamics.

Vignette 3 on confounding bias and how climate variability can 
masquerade as spatial spread. Spatial heterogeneities are commonly 
observed for infectious diseases95–99. Such heterogeneities can result 
from two broad classes of mechanisms, depending on whether they 
involve spatial interactions through the movement of individuals 
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Fig. 4 | Climate variability as natural experiments to estimate the individual 
effect of meteorological variables (vignette 2). a, Simulated incidence rate 
(Ct) in Bogotá, Colombia (left panel) and Lübeck, Germany (right panel). Model 
parameters: basic reproduction number of 1.25, average duration of immunity of 
1 year and other parameters as in Supplementary Table 3. In each panel, the black 
line shows the dynamic from the deterministic transmission model. The grey 
lines represent simulations (10 displayed out of 100 overall) from a stochastic 
transmission model, in which noise was added to the transmission rate at every 
time point (see Methods for full details). We implemented this stochastic variant 
only for this vignette to add realism in the form of model misspecification during 

estimation. b, Distribution of the 100 maximum likelihood estimates of the 
effect of temperature (left panel) and relative humidity in Bogotá and Lübeck. 
These estimates were obtained by direct maximization of the log-likelihood 
(that is, trajectory matching) by fitting the misspecified model—in which the 
transmission model was deterministic and the observation model stochastic—to 
data generated from the fully stochastic model—in which both the transmission 
and the observation models were stochastic. The dashed vertical lines indicate 
the true parameter value (−0.2) fixed in all model simulations. See Methods for 
further details about the estimation procedure.
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(that is, spatial spread) or spatial variation in some other variable (for 
example, climate)100. For example, spatial variations in climate across 
multiple locations may result in spatial covariance between these loca-
tions, even in the absence of spatial spread. This common cause of spa-
tial variability may thus result in spurious associations that confound 
the estimated effect of spatial spread on observed incidence—that 
is, confounding bias (Fig. 1; see also Supplementary Fig. 3 for a DAG 
illustrating the problem in two locations).

To illustrate, we considered a scenario with seasonal transmis-
sion forced by weather but no spatial spread in two distinct countries 
(Supplementary Table 2): one with a definite latitudinal gradient in 
climate (Colombia101) and another with little spatial variability in cli-
mate (Spain). We simulated the resulting dynamics of our transmission 
model and assessed epidemic synchrony102 across various locations in 
these two countries. In Colombia, the simulated incidence displayed 
diverse seasonal patterns that followed a latitudinal gradient broadly 

matching that of the climate (Fig. 5b). In contrast, the low climatic 
variability in Spain resulted in tightly synchronous epidemics across 
the locations (Supplementary Fig. 4b). Hence, despite the absence of 
mechanisms causing spatial spread in our model, the shared effect of 
climate between locations resulted in marked spatial correlation in 
observed incidence, up to ~250 km in Colombia and more extensively 
throughout Spain (Fig. 5d and Supplementary Fig. 4d).

To further characterize this spatial correlation, we estimated the 
speed of the—spurious—travelling wave under the incorrect assump-
tion of spatial spread being the sole cause of spatial heterogeneity96. 
Speed estimates were near infinite in Spain (Supplementary Fig. 4a,c), 
suggesting either confounding by climate or extremely strong cou-
pling between the locations74. In Colombia, however, the speed was 
estimated at 218 km per month (95% credible interval (CI): 121–444 km 
per month; Fig. 5a,c), a value consistent with that documented for real 
travelling waves—for example, 110–320 km per month for pertussis 
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Fig. 5 | Confounding bias and how climate variability can masquerade as 
spatial diffusion in Colombia (vignette 3). a,d, Considering 19 locations across 
Colombia (a), we simulated incidence with no spatial diffusion but a common 
effect of climate on transmission (d; see Methods for full details). b, Pairwise 
epidemic synchrony between locations, with the fitted covariance function 
shown as a line and the 95% confidence interval shaded in grey. c, Relative timing 
of the simulated epidemic peaks across Colombia, referenced to the 
northernmost location (Riohacha). The colour indicates the time difference 
between the epidemic peaks of each site and those of the reference site. The line 
represents the line posterior mean from a Bayesian linear model, from which we 
estimated the travelling wave, and the grey envelope represents the 95% credible 

interval. e, Estimated spatial spread from Gaussian process models, with the dark 
lines representing the estimated mean covariance function, light lines 
representing 100 draws from the posterior distribution and shaded envelopes 
(orange and grey) indicating the 95% credible interval. f, Estimated spatial spread 
from two-location transmission models assuming no effect of climate, where the 
orange line denotes the true value of spatial spread, τ  = 0. The points represent 
the maximum likelihood estimate of the spatial spread, and the grey intervals 
represent the 95% confidence interval. Model parameters: basic reproduction 
number of 2.5, average duration of immunity of 2 years and other parameters as 
in Supplementary Table 3.
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during 1951–2010 in the United States98 and 150 km per month for 
dengue during 1983–1997 in Thailand103.

To assess whether a statistical approach can address this confound-
ing bias, we fitted a series of Gaussian process models to estimate the 
covariance in observed incidence rates between all locations in each 
country (Methods). As a control, we first tested the true model implied 
by the DAG, which included the sizes of the susceptible and infected 
populations, in addition to 1-week-lagged weather variables as covari-
ates. As expected, this model correctly identified the absence of spatial 
spread, with the maximum covariance between locations being negli-
gible (η (95% CI) = 0.01 (0–0.02) in Colombia and 0 (0–0.02) in Spain; 
Fig. 5e and Supplementary Fig. 4e left panel). Next, we fitted models with 
smooths of time to try to capture the variations in the susceptible and 
infected population sizes, which would be unobserved in practice. We 
found that a model omitting weather variables (that is, the confounded 
model) estimated a spurious spatial covariance between the locations 
(η (95% CI) = 0.09 (0.05–0.16) in Colombia and 0.38 (0.22–0.70) in 
Spain; Fig. 5e and Supplementary Fig. 4e middle panel). Furthermore, 
a model including the weather variables also led to biased estimates of 
spatial covariance (η (95% CI) = 0.11 (0.06–0.18) in Colombia and 0.39 
(0.23–0.74) in Spain; Fig. 5e and Supplementary Fig. 4e right panel). 
This finding thus re-emphasizes the difficulty of analysing incidence 
data because of measurement bias (vignette 1) and suggests the need 
for explicit models for capturing the unobserved variables.

Next, we thus designed a simple transmission model with climate 
forcing and spatial spread (described by a single coupling parameter τ)  
between two locations. Using the data generated from the model with 
no spatial spread (Fig. 5d), we estimated the value of the coupling 

parameter (Methods). Here, the model including the weather vari-
ables—and thus controlling for the shared weather between the two 
locations—correctly revealed the absence of spatial spread (Fig. 5f and 
Supplementary Fig. 4f, with all confidence intervals of the maximum 
likelihood estimate for τ including 0). Although used for illustration 
here, this deliberately simple model could be extended to include 
more realistic features of spatial spread, such as multiple locations 
with different population sizes, potentially resulting in source–sink 
dynamics between urban and rural areas95. More generally, this vignette 
highlights the importance of integrating explicit causal models with 
transmission models to disentangle the mechanisms underlying spatial 
heterogeneities.

Vignette 4 on mediation and the direct and indirect causal effects 
of temperature on transmission. Weather is the consequence of a 
complex web of causally related environmental variables that can affect 
pathogen transmission through multiple pathways65. For instance, as 
illustrated in our simple causal graph and supported by experimental 
evidence18, both temperature and relative humidity may directly affect 
transmission. However, because temperature also impacts relative 
humidity, its total causal effect may comprise a direct effect (Te → β) 
and an indirect effect mediated by relative humidity (Te → RH → β). 
Importantly, but counter-intuitively, the direct and indirect effects 
may act in opposite directions depending on the causal relationship 
between the parent variable (for example, temperature) and its media-
tor (for example, relative humidity; Fig. 1) in the environmental model.

To illustrate how these two effects play out in different settings, 
we simulated our model in Lübeck, Germany, and Pasto, another 
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Fig. 6 | Mediation and the direct and indirect causal effects of temperature on 
transmission (vignette 4). a,b, Simulated transmission rate (top panels) in 
Lübeck, Germany (a) and Pasto, Colombia (b), from models including the total 
effect of temperature (dark lines, where the direct effect of temperature, δTe, and 
the direct effect of RH, δRH, were −0.2) or only the indirect effect of temperature 
mediated through humidity (light lines, where δTe = 0 and δRH = −0.2; see 

Methods for full details). The bottom panels show the indirect effect of 
temperature through relative humidity on transmission (left panels) and the total 
effect of temperature (right panels). Model parameters: basic reproduction 
number of 1.25, average duration of immunity of 1 year and other parameters as in 
Supplementary Table 3.
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Colombian city with relative humidity variability higher than in Bogotá. 
Owing to climatic differences causing temperature to be more variable 
than relative humidity in Lübeck (CV(Te) = 0.59, CV(RH) = 0.07) but 
less variable in Pasto (1.4° N latitude, CV(Te) = 0.07, CV(RH) = 0.19), we 
hypothesized the total impact of temperature would differ between 
the two cities. In each city, we considered two scenarios. In the first 
scenario, we set the two climatic parameters (see legend of Fig. 2) to 
their baseline values to capture the total effect of temperature—that is, 
the direct effect and the indirect effect mediated by relative humidity. 
In the second scenario, we set the climatic parameter of temperature 
to 0 to capture only its indirect effect, mediated by relative humidity.

In both cities, because of a combination of two negative effects 
(of temperature on relative humidity and relative humidity on trans-
mission), higher temperature increased transmission through the 
indirect pathway (rs(Te, β) = 0.91 in Pasto and 0.72 in Lübeck; Fig. 6a,b). 
In Lübeck, however, the higher temperature variability caused the 
direct effect to outweigh this indirect effect so that, overall, transmis-
sion decreased as temperature increased (rs(Te, β) = −0.99; Fig. 6a). By 
contrast, the higher variability in relative humidity reversed the total 
effect in Pasto, where transmission increased with temperature (rs(Te, 
β) = 0.80; Fig. 6b). Despite this overall positive effect, adjusting for 
relative humidity revealed the negative direct effect of temperature 
in Pasto (partial Spearman’s rank correlation coefficient: rs(Te, β|RH) = 
−0.56; Fig. 6b). Of note, echoing the results of vignette 1, the effects of 
temperature on the observed incidence rates were less definite because 
of measurement bias (Supplementary Fig. 5). Hence, despite identical 
causal mechanisms, climatic differences resulted in divergent effects 
of temperature in the two cities.

These conceptual insights have practical implications for inter-
preting the association between environment and transmission rates. 
Specifically, when evaluating the effect of temperature in a DAG similar 
to that in Fig. 2, models adjusting for relative humidity would identify 
the direct effect of both variables. In contrast, models without adjust-
ment would only identify the total effect of temperature. The lack 
of clear causal frameworks may thus lead to misinterpreting model 
outputs, a risk described by earlier research as the ‘table 2 fallacy’104. 
Hence, this vignette re-emphasizes the critical importance of causal 
reasoning and careful interpretation when probing the effect of climate 
on infection dynamics.

Discussion
Here we aimed to show how causal inference concepts—such as 
descendants and mediators, confounding and measurement biases, 
and quasi-experiments—can guide research into the effects of climate 
on infectious diseases. Through a series of case studies, we illustrated 
how such concepts could help assess study design (vignette 1); strategi-
cally choose a study’s location to achieve the set-up of a natural experi-
ment (vignette 2); evaluate the risk of confounding bias (vignette 3); and 
interpret the direct and—sometimes paradoxical—indirect effects of 
meteorological variables on transmission (vignette 4). In addition, we 
showed that transmission models offer a principled and parsimonious 
tool to capture infectious disease dynamics and encapsulate causal 
frameworks. More broadly, seconding earlier calls in the epidemiologi-
cal field27, we argue that such frameworks are necessary for inferring 
the effect of weather and subsequently predicting the consequences 
of climate change on infectious diseases.

Because of this study’s conceptual focus, we sidestepped the many 
methodological technicalities that inevitably arise in practice. In addi-
tion to mere data problems (for example, a mismatch between the time 
scales of observed data and infection dynamics), the effect of weather 
on infectious diseases can be more intricate than our simple model 
suggests. First, variables other than temperature and relative humidity 
may directly affect transmission, such that disentangling their direct 
and indirect effects may be more challenging than in vignette 4. For 
example, if one assumes a direct effect of dew point temperature on 

transmission in the DAG represented in Fig. 2, then a causal mediation 
analysis would be required to estimate these different effects for all 
the environmental variables. Second, because of interindividual vari-
ability in the period separating exposure from infectiousness (that is, 
the latent period), the effect of weather on transmission is expected 
to be lag-distributed, resulting in a more complex causal diagram than 
Fig. 2. In this case, a standard compartmental model diagram may be 
more suited to depict the causal processes, with the added benefit 
that such diagrams can explicitly represent interactions and interfer-
ence82. Third, this effect may be non-continuous and non-monotonic, 
as illustrated by recent experimental evidence showing a V-shape 
threshold association between relative humidity and survival time 
of coronaviruses18,105. Fourth, although the causal graph of Fig. 2 is 
realistic for pathogens causing acute, directly transmitted infections 
(such as respiratory viruses), the weather may have multiple effects on 
pathogens with more complex relationships with their human hosts. 
Such multiple effects are, for example, expected for invasive bacteria 
with prolonged carrier states (like the pneumococcus106), with weather 
affecting not only transmission of carriage but also progression from 
carriage to invasive disease107,108. Finally, the poor correlation between 
indoor and outdoor meteorological variables (especially observed for 
temperature and relative humidity109) has led to discussions about 
which measure of weather is more appropriate for causal inference, 
with indoor data argued to represent the bulk of weather exposures16,110. 
This problem may be viewed as another form of measurement bias and 
treated in a causal framework by modelling the causal link between 
indoor variables and their outdoor counterparts, with some recent 
research in this direction110. More generally, our simple causal frame-
work could be similarly extended to tackle the other complexities 
listed above, as well as the potential biases illustrated in the vignettes 
simultaneously.

In conclusion, the expanding field of causal inference offers oppor-
tunities to strengthen evidence derived from observed data. This study 
thus presents an early effort to integrate this field with infectious 
disease epidemiology and climatology, with the ultimate research 
aims of elucidating how climate affects pathogens and predicting the 
consequences of climate change. Given that climate is an ever-present 
component of the environment, this research will also advance our 
understanding of the ecology of infectious diseases.

Methods
Model formulation
Meteorological model. The daily average records of dew point tem-
perature (Td, expressed in °C) and ambient temperature (Te, expressed 
in °C) were extracted using the WeatherData function in Mathematica111. 
The data covered the period 2013–2022 in multiple weather stations 
located near the major cities of Colombia, Spain and Germany (Sup-
plementary Table 1). Because the transmission model had a time step 
of 1 week, we calculated weekly averages of Te and Td for inclusion as 
covariates in the model. In case of missing daily records for a given 
week, we calculated the weekly average based on the records observed 
within that week in other years.

The relative humidity (RH, defined as the actual amount of water 
moisture in the air compared with the total amount that the air can 
hold at a given temperature) was then calculated using the formula77,78:

logRH = αTd
λ + Td

− αTe
λ + Te

where α = 17.625 and λ = 243.04 °C are the revised Magnus coefficients112. 
This association can be understood intuitively as follows: relative 
humidity increases as the absolute moisture in the air (quantified by 
Td) increases, while it decreases as ambient temperature increases 
(because of the physical property that the maximum moisture air can 
hold increases exponentially with temperature). To verify the adequacy 
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of this formula, we also extracted actual RH records from the weather 
stations: the agreement between predictions and measurements was 
excellent (>90% correlation in all the locations considered), even 
though the predicted RH was overestimated at low ambient tempera-
tures in temperate climates, such as in Germany.

In the following, we denote by Tet and RHt the weekly time series 
of ambient temperature and relative humidity, Te  and RH  their tem-
poral averages (over the entire time series), and Te′t =

Tet
Te

 and RH′
t =

RHt

RH
 

their renormalized values.

Transmission model. To illustrate the different causal inference con-
cepts, we formulated a discrete-time SIRS74 model with the transmis-
sion rate βt forced by the two climatic variables:

logβt = logβ + δTe(Te
′
t − 1) + δRH(RH

′
t − 1)

where β is the average transmission rate, δTe the effect of ambient tem-
perature and δRH the effect of relative humidity. Based on experimental 
evidence on respiratory viruses18,113, we assumed a small negative effect 
of both climatic variables: δTe = δRH = −0.2. In other words, we assumed 
that transmission decreased as either climatic variable increased.

To derive the equations of the discrete-time model, we first write 
the system of ordinary differential equations for the continuous-time 
model:

dS
dt

= μN + αR − (λ(t) + μ)S

dI
dt

= λ(t)S − (γ + μ)I

dR
dt

= γI − (α + μ)R

where λ(t) = β(t)I(t)/N  is the force of infection, N is the population size, 
μ is the birth/death rate, γ−1 is the generation time, and α−1 is the average 
duration of protection. All parameters are listed in Supplementary 
Table 3. Assuming a fixed time step Δt = 1 week and a fixed generation 
time equal to this time step (γ−1 = Δt = 1 week), we discretized the system 
of ordinary differential equations (using the approximation dX

dt
≈ Xt+Δt−Xt

Δt
) 

to get the equations of the discrete-time model:

St+1 = St + μN + αRt − (λt + μ)St

It+1 = λtSt − μIt

Rt+1 = Rt + It − (α + μ)Rt

For all simulations, we initialized the state variables to their equi-
librium values for the model with no seasonal forcing (δTe = δRH = 0). 
For the discrete-time model, these equilibria are given by S∗ = N

R0
, 

I∗ = α+μ
α+μ+1

(N − S∗) and R∗ = N − S∗ − I∗, where R0 =
β

μ+1
 is the basic repro-

duction number.

Observation model. To complete the model formulation, we specified 
a stochastic observation model to generate observed data from the 
transmission model’s outputs. Let

Ct = λt−1St−1 = βt−1
It−1
N St−1

represent the (true) incidence rate (Fig. 2), defined as the weekly num-
ber of new cases. We then used a negative binomial (NB) model to 
sample the observed incidence rate:

C(O)t ∼ NB(μt = ρ̄Ct,ρk)

where ρ̄ is the mean reporting probability and ρk  the reporting 
over-dispersion, representing extra variability in the mean reporting 
probability.

Complete model and causal graph. The complete model thus con-
sisted of the discrete-time transmission model and the observation 
model described above. Because of our simplifying assumptions (in 
particular, a fixed generation time and an immediate effect of climate 
on transmission), this model was exactly represented by the causal 
graph displayed in the main text (Fig. 2).

Numerical implementation. The model was implemented in the R 
package pomp114, operating in R version 4.4.1115. All figures were created 
with the R package ggplot116, and the data for the maps was obtained 
from Natural Earth (https://www.naturalearthdata.com). Other pack-
ages used for specific vignettes are cited below.

Vignette 1 on descendants and measurement bias
Simulation details. The simulations for this vignette were based on 
climatic data in Lübeck, Germany, a location with a temperate oce-
anic climate (Köppen–Geiger classification: Cfb) characterized by 
large seasonal variability in temperature (CV: 0.59), little variability in 
relative humidity (CV: 0.07) and marked correlation between the two  
(rs = −0.48). The model was simulated for three different values of the 
basic reproduction number (1.25, 2.5 and 5) and an average duration 
of immunity of 1 year; the other parameters were fixed to the values 
indicated in Supplementary Table 3.

Regression model for time series of observed cases. To identify a 
candidate regression model for the variable C(O)t  (observed incidence 
rate), we first log-transformed the variable Ct (true incidence rate):

logCt = log (βt−1
It−1
N St−1) = C + δTeTe

′
t−1 + δRHRH

′
t−1 + log (It−1St−1)

where C is a constant. This equation, alongside the negative binomial 
observation model connecting C(O)t  and Ct, shows that a natural candi-
date model for C(O)t  is a negative binomial regression model with 
log-link, and Te′t−1 and RH′

t−1 as covariates. In practice, the variable It−1St−1 
is unobserved but may be captured by including a function of time as 
a covariate68. Here, we fitted a negative binomial GAM117 that included 
the climatic covariates and a smooth of time to capture temporal vari-
ations in this variable. To give the regression model enough flexibility 
to capture these variations (which may occur over fast time scales; see 
Fig. 3), we set the basis dimension of the smooth to 50, or approximately 
1 degree of freedom per 10 weeks of data. As a control, we also verified 
that the exact model with log(St−1It−1) as a covariate yielded, on average, 
unbiased estimates of δTe and δRH (Supplementary Fig. 1). All the regres-
sion models were fitted using the mgcv package (version 1.8-42) in R117.

Regression models for time series of effective reproduction num-
bers. By definition, the time-varying effective reproduction number 
Re,t  equals:

Re,t =
R0,tSt
N ≈ βtSt

N

where R0,t =
βt

(μ+1)
 is the time-varying basic reproduction number and 

μ ≪ 1 (per week) is the death rate. Taking logs, we find that:

logRe,t = C + δTeTe
′
t + δRHRH

′
t + log(St)

where C is a constant. The corresponding DAG, shown in Supplemen-
tary Fig. 2, differs from the DAG for the incidence rate (Fig. 2) in that 
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the effective reproduction number depends on just one unobserved 
variable (St), while the incidence rate depends on two (St  and It).

To derive an estimator for Re,t, we first express it as a function of 
the incidence rates Ct . Specifically (see ‘Model formulation’), 
Ct+1 = λtSt =

βtItSt
N

≈ Re,tIt  and It = Ct − μIt−1 ≈ Ct  (neglecting mortality). 
Hence, we find the following equation for Re,t:

Re,t ≈
Ct+1
Ct

In other words, the effective reproduction number is approxi-
mately equal to the epidemic growth rate, as expected intuitively 
because of our assumption of a 1-week fixed generation time.

In practice, because of under-reporting, the true values of Re,t  are 
unobserved. However, estimation is possible via renewal models that 
back-calculate Re,t  values from the generation time distribution and 
the observed incidence rates. Denoting by R(O)e,t  this estimator, we gener-
ated it as follows:

logR(O)e,t ∼ N(μ = logRe,t,σ = 0.1)

In other words, we assumed a small dose of noise (approximately 
10% around the true value) but no systematic bias in the estimation Re,t.

We then fitted normal (N) regression models of logR(O)e,t  (outcomes) 
with Te′t, RH′

t and a smooth of time as covariates (Supplementary Fig. 1). 
As a control, we also verified that the true regression model with Te′t, 
RH′

t  and log St  as covariates yielded, on average, unbiased estimates 
(Supplementary Fig. 1).

Vignette 2 on climate variability as natural experiments
Simulation details. The simulations for this vignette were based on 
climatic data in Bogotá, Colombia, and Lübeck, Germany. In marked 
contrast to Lübeck’s climate (see above), Bogotá’s climate is classified 
as warm and temperate (Köppen classification: Csb), with little season-
ality in temperature because of proximity to the Equator (CV: 0.04) 
but larger variability in relative humidity (CV: 0.07) and decoupling 
between the two climatic variables (rs = −0.1).

To introduce model misspecification during the estimation of 
model parameters, we implemented a stochastic transmission model 
where the deterministic transmission rate βt was multiplied at every 
time step by gamma white noise with mean 1 and standard deviation 
0.02 (ref. 118). The complete model was, therefore, fully stochastic, 
with noise affecting both the transmission and the observation models. 
The model parameters were set as follows: basic reproduction number 
of 1.25, average duration of immunity of 1 year and other parameters 
fixed to the values indicated in Supplementary Table 3.

Parameter estimation protocol. The following six model parameters 
were assumed unknown and estimated from the data: basic reproduc-
tion number (R0), waning immunity rate (α), mean reporting probabil-
ity ( ρ̄), reporting over-dispersion (ρk) and climatic parameters (δTe and 
δRH). To generate the synthetic data for estimation, we first generated 
100 replicate time series of observed weekly cases (C(O)t ) from the fully 
stochastic model. For every replicate time series, we then fitted the 
misspecified model—with a deterministic transmission model and 
stochastic observation model—using trajectory matching92. Specifi-
cally, we used the Nelder–Mead algorithm119 (initialized at the true 
parameter values) to maximize the log-likelihood and identify the 
maximum likelihood parameter estimates. All the parameters were 
estimated on an unconstrained scale using log (parameters R0, α  and 
ρk) or logit (parameter ρ̄) transformations.

Vignette 3 on confounding bias
Simulation details. The simulations for this vignette were based on 
climatic data from 15 weather stations in Spain and 19 in Colombia, 

located near the major cities of both countries. Continental Spain 
exhibits relatively uniform temperate climates with consistent seasonal 
variations of temperature and humidity seasonality across the country. 
In contrast, Colombia displays a range of tropical climates, with diverse 
seasonal patterns of precipitation along a latitudinal gradient101. The 
models were simulated without incorporating spatial spread between 
the locations and with a basic reproduction number of 2.5 and an aver-
age duration of immunity of 2 years to achieve yearly epidemics in all 
the locations. The other parameters were fixed to the values indicated 
in Supplementary Table 3.

Epidemic synchrony and assessment of spatial spread. To assess 
spatial synchrony between locations, we estimated the non-parametric 
(cross-) correlation function (NCF) of the simulated time series using 
the NCF package100. We estimated the 95% confidence intervals using 
500 bootstraps.

To diagnose the risk of confounding bias caused by climate, we 
estimated the speed of the potential travelling wave that would have 
resulted from spatial diffusion. To do so, we first estimated the differ-
ence in epidemic peak timing as the lag (in weeks), maximizing the 
cross-correlation function between every location and a reference loca-
tion (Riohacha for Colombia and Gijón for Spain). We then regressed 
this difference against the geographical distance between locations and 
estimated the speed wave as the inverse of the regression coefficient.

To further evaluate how climate can confound the estimate of 
spatial spread between locations, we fitted negative binomial Gauss-
ian process models, that assumes a joint multivariate normal (MVN) 
distribution, to the time series of observed incidence from all locations 
in Colombia:
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The Gaussian process captures the covariance K(ij) between the inci-
dence of any pair of locations i and j as a function of the geographic dis-
tance between locations, defined by the exponential quadratic kernel:

K (ij) = η2exp (− ||x
(i) − x( j)||2

2φ2 )

where ||x(i) − x(j)|| is the Euclidean distance between two locations, η is 
the maximum covariance between locations and φ is a characteristic 
distance that controls the spatial scale over which the covariance varies. 
Based on the proposed ‘true’ and ‘smooth’ regression models described 
in the methods for vignette 1, we fitted models including the size of the 
infected and susceptible population or a smooth of time with or without 
the environmental variables. For example, for the true model, we wrote 
logμ(1)t ≈ log(S(1)t−1I

(1)
t−1) + Te(1)

′

t−1 + RH(1)′

t−1 in location 1. Finally, we calculated 
the correlation matrix between the incidence of all locations from the 
estimated covariance matrix K. All models were fitted using the brms 
package120 with four Markov chains, each run for 10,000 iterations, 
assuming uninformative priors.

Two-location transmission model with spatial diffusion. As purely 
statistical approaches resulted in confounded estimations of spatial 
spread, we moved on to estimate spatial spread with transmission 
models. We extended our climate-forced SIRS model to include spatial 
diffusion by dividing the population into two coupled locations, for i 
= 1,2 (refs. 121,122):

S(i)t+1 = S(i)t + μN(i) + αR(i)t − (λ(i)t + μ)S(i)t

http://www.nature.com/natecolevol
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I(i)t+1 = λ(i)t S(i)t − μI(i)t

R(i)t+1 = R(i)t + I(i)t − (α + μ)R(i)t

with the force of infection in each location i given by:

λ(i)(t) = β(i1)I(1)(t)
N(1)

+ β(i2)I(2)(t)
N(2)

We assumed a symmetric scenario where the transmission rate is 
the same within patches (β(ij) = β  if i = j) but differs between patches 
(β(ij) = τβ if i ≠ j, where 0 ≤ τ ≤ 1 is the coupling strength). In this case, 
each location had the same population (N(1) = N(2) = N ), and the 
endemic equilibria were independent of the location, given by S∗ = N

R0
, 

I∗ = α+μ
α+μ+1

(N − S∗), and R∗ = N − S∗ − I∗, where R0 =
β(1+τ)
μ+1

.

Parameter estimation protocol. As in vignette 2, we assumed the same 
six parameters unknown and estimated from the simulated data with-
out spatial spread. We fitted the two-location transmission model with 
spatial diffusion for every location and a reference location (Riohacha 
for Colombia and Gijón for Spain) using trajectory matching92. Again, 
we used the Nelder–Mead algorithm119 (initialized at the true parameter 
values) to maximize the log-likelihood and identify the maximum 
likelihood parameter estimates. Then, we generated likelihood profiles 
to estimate the spatial spread parameter τ  by varying the parameter 
while maximizing the likelihood over the remaining parameters to 
obtain likelihood-ratio-test-based confidence intervals. All the param-
eters were estimated on an unconstrained scale using log (parameters 
R0, α  and ρk) or logit (parameter ρ̄ and τ) transformations.

Vignette 4 on mediation, direct and indirect causal effects
Simulation details. The simulations in this vignette were based on cli-
matic data from Pasto, Colombia, and Lübeck, Germany. As described 
before, in Lübeck, temperature displays larger seasonal variability than 
relative humidity. In contrast, in Pasto, seasonal variability in relative 
humidity is larger (CV: 0.19) than in temperature (CV: 0.07).

As temperature affects humidity, the total causal effect of tem-
perature comprises a direct effect and an indirect effect mediated by 
relative humidity. Thus, we simulated a model representing the total 
effect of temperature (with climatic parameters to δTe = −0.2 and 
δRH = −0.2) and another model representing only the indirect effect of 
temperature (with climatic parameters fixed to δTe = 0 and δRH = −0.2). 
For these simulations, we fixed the other parameters as follows: basic 
reproduction number of 1.25, average duration of immunity of 1 year 
and other parameters as indicated in Supplementary Table 3.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data are available at https://github.com/DomenechLab/Causality_
Seasonality and stored in Edmond, the open research data repository 
of the Max Planck Society, at https://doi.org/10.17617/3.9CWN7W. All 
weather data were extracted using the WeatherData function in Math-
ematica (https://reference.wolfram.com/language/ref/WeatherData.
html), with the weather station names indicated in Supplementary 
Table 2.

Code availability
All R programming codes are available at https://github.com/Dome-
nechLab/Causality_Seasonality and stored in Edmond, the open 
research data repository of the Max Planck Society, at https://doi.
org/10.17617/3.9CWN7W.
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