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Macroevolution along developmental lines 
of least resistance in fly wings
 

Patrick T. Rohner    1,3   & David Berger    2,3 

Evolutionary change requires genetic variation, and a reigning paradigm 
in biology is that rates of microevolution can be predicted from estimates 
of available genetic variation within populations. However, the accuracy 
of such predictions should decay on longer evolutionary timescales, as the 
influence of genetic constraints diminishes. Here we show that intrinsic 
developmental variability and standing genetic variation in wing shape in 
two distantly related flies, Drosophila melanogaster and Sepsis punctum, 
are aligned and predict deep divergence in the dipteran phylogeny, 
spanning >900 taxa and 185 million years. This alignment cannot be 
easily explained by constraint hypotheses unless most of the quantified 
standing genetic variation is associated with deleterious side effects and 
is effectively unusable for evolution. However, phenotyping of 71 genetic 
lines of S. punctum revealed no covariation between wing shape and fitness, 
lending no support to this hypothesis. We also find little evidence for 
genetic constraints on the pace of wing shape evolution along the dipteran 
phylogeny. Instead, correlational selection related to allometric scaling, 
simultaneously shaping developmental variability and deep divergence in 
fly wings, emerges as a potential explanation for the observed alignment. 
This suggests that pervasive natural selection has the potential to shape 
developmental architectures of some morphological characters such that 
their intrinsic variability predicts their long-term evolution.

A central aim in evolutionary biology is to predict evolution. Quantita-
tive genetic approaches have played an important role in this endeav-
our by leveraging within-population estimates of evolvability in the 
form of standing genetic variation and de novo mutational variation 
in quantitative traits to predict their evolution1–4. The translation of 
mutational variation at the nucleotide level into variation at the level 
of the phenotype is governed by developmental processes. Frequently, 
these processes channel random nucleotide changes into non-random 
phenotypic variation, giving rise to developmental bias5–7. These biases 
are recognized to impact future adaptation by generating abundant 
substrate for evolution along certain phenotypic dimensions, while 
limiting it in others5,6,8–11. However, much controversy surrounds the 
timescale on which these biases constrain evolution. In particular, 

while limited genetic variation is predicted to slow down evolution, it 
is not expected to prevent phenotypic change entirely, and estimates 
of evolvability within single populations are therefore expected to be 
poor predictors of macroevolutionary diversification12–14.

Yet, several recent studies have challenged this standard expecta-
tion by showing correlations between evolvability estimates within 
populations and rates of macroevolution15–18. One line of evidence 
comes from studies on morphological evolution where mutational 
and standing genetic variation in morphological traits predict their 
long-term divergence16,18–20. Owing to the timescales over which evolu-
tion was observed, these relationships are hard to reconcile with the 
sole action of genetic constraints. Alternatively, it has been suggested 
that such correlations could result from natural selection that shapes 
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perturbations. Here we first use these previous estimates of M (from 
ref. 18) and D (from ref. 16) to predict 185 million years of macroevolu-
tion across 43 families and >900 species of Diptera. We then evaluate 
competing hypotheses invoking genetic constraints and correlational 
selection to reconcile the observed alignment between the generation 
of de novo variation and deep macroevolution.

We focus on the evolution of wing shape in the Eremoneura, a 
clade within the higher flies (Brachycera) that is about 185 million 
years old42 and contains more than 64,000 species (including, among 
others, the fruit, flesh, house and tsetse flies). To quantify variation in 
landmark positioning (Extended Data Fig. 1 and Extended Data Table 1) 
within and between families, we took advantage of published scientific 
illustrations and photographs of fly wings from the taxonomic and sys-
tematic literature (for example, refs. 43,44) (Fig. 1 and Supplementary 
Table 1). Our final dataset contained 988 observations from 933 differ-
ent species. To first assess the accuracy of using illustrations (n = 414) 
compared to photographs of wings (n = 574), we computed the partial 
least-squares (PLS) correlation between coordinates derived from 
illustrations and those derived from photographs for 19 species where 
both types of data were available. This correlation was very strong 
and statistically significant (rPLS = 0.98, Z = 4.21, P < 0.001; Fig. 1 and 
Extended Data Fig. 2). We found similarly strong associations when 
comparing the average wing shape for each genus based on illustra-
tions with the average shape calculated on the basis of measurements 
taken from photographs (rPLS = 0.93, Z = 6.35, P < 0.001, n = 64), showing 
that shape information derived from illustrations adequately captures 
shape variation derived from photographs.

Developmental variance correlates with macroevolution
The 43 fly families analysed differed strongly in their wing shape 
(Fig. 2; Procrustes analysis of variance: F42,926 = 49.60, Z = 27.74, P < 0.001, 
R2 = 0.73). Leave-one-out cross-validation led to a correct classifica-
tion of 82.3% of all individuals (canonical variate analysis), indicat-
ing that fly families can be differentiated on the basis of wing shape 
(Supplementary Table 2 and Extended Data Fig. 3). To quantify the 
macroevolutionary dynamics of wing shape, we computed the evo-
lutionary rate matrix R on the basis of the inverse of the phylogenetic 
relationship matrix among dipteran families45 using animal models 
in ASReml-R (v.4.1.0.154)46. Because large species-level phylogenies 
are lacking on this broad phylogenetic scale, we based our analysis 
on a recent phylogeny that leveraged transcriptomes (3,145 genes) 
to resolve the phylogenetic placement among families47 (Fig. 1). The 
species represented in our database that fall within these families were 
treated as replicated measures for each family’s wing shape at the tip 
of the phylogeny. Macroevolutionary divergence was mostly related 
to the relative positioning of the first branch of the radial vein and the 
placement of the two cross-veins along the proximo-distal axis (Fig. 2).

Next, we tested whether deep divergence among families is related 
to mutational and developmental bias observed in drosophilids and 
sepsids. Specifically, we compared R to the previously estimated D and 
M matrices in S. punctum and D. melanogaster using a modified version 
of Krzanowski’s common subspace analysis following the method 
described previously48 (also see refs. 18,49). In brief, we compared 
the logarithmized variances of both matrices along the same set of 
orthogonal phenotypic dimensions of the wing. To limit bias in our 
estimates of effect sizes48,49, we chose to represent these phenotypic 
dimensions by the eigenvectors of an independently estimated third 
matrix—the phenotypic variance–covariance matrix, P—measured in 
S. fulgens (a morphologically distinct but relatively close relative of S. 
punctum placed in the same species group50 within the same genus). For 
consistency, we used this matrix as the reference to generate compari-
sons of different variance–covariance matrices throughout this study. 
However, we also repeated all comparisons using other matrices as the 
reference (Extended Data Table 2), which showed that our conclusions 
do not depend on the matrix chosen as the reference.

the phenotypic effects of de novo mutations4,6,11,21–24. According to 
this hypothesis, stabilizing selection moulds development so that 
deleterious effects of segregating genetic variants become reduced24,25 
while the phenotypic effects of alleles under persistent directional or 
fluctuating selection instead become magnified26–28. In this process 
correlational selection acts on specific trait combinations so that devel-
opmental bias evolves, with the result that fitness-reducing phenotypic 
outcomes of mutations may become less frequent than expected by 
random chance.

If past forces of selection indeed bias the phenotypic effects of 
de novo mutations, this would suggest that the causal relationships 
between the processes of mutation, selection and adaptation are more 
intricate than often assumed under standard models of evolution, 
with important implications for our ability to predict future evolution 
from current quantitative genetic parameters6,22,28,29. However, the 
role of selection in shaping mutational effects (that is, developmental 
biases) remains controversial and has been disputed on theoretical 
grounds25,26,30–36, and reconciling the observed relationships between 
evolvability and macroevolution with processes occurring at microevo-
lutionary scales remains a fundamental challenge 19,20,29,37–39.

Here we address this controversy by extending recent analyses on 
the relationship between developmental bias and evolutionary diver-
gence in dipteran wings. Houle et al.18 demonstrated that mutations 
cause non-random phenotypic variation in the wings of Drosophila 
melanogaster and, astonishingly, predict 40 million years of divergence 
across the Drosophilidae. These results were recently complemented 
by a study16 showing that intrinsic developmental variability in the 
wings of sepsid flies, a clade that diverged from the Drosophilidae 
around 60 million years ago, is related to the mutational variability 
and macroevolutionary patterns observed by Houle et al.18. Here we 
show that this alignment holds on even longer timescales, providing 
evidence for a relationship between de novo mutational input and 
macroevolution that unfolded over 185 million years. We show that the 
genetic constraint hypothesis alone is a poor fit to the observed pat-
terns. Alternatively, correlational selection on wing traits as a causative 
agent shaping both developmental bias and deep divergence remains 
a plausible, yet disputed, explanation for the observed pattern. Irre-
spective of the ultimate explanation(s), our findings show that deep 
divergence in dipteran wings can be reasonably well predicted from 
their intrinsic developmental variability, even when such variability 
fails to predict evolution on shorter timescales. This challenges our 
understanding of the processes that govern the emergence and evolu-
tion of phenotypic variation.

Results
Developmental bias can be assessed by studying how genetic or envi-
ronmental perturbations affect developmental outputs in the form of 
phenotypic variation. Here we define developmental bias as the degree 
of anisotropy (or, reversibly, deviations from isotropy): that is, the pro-
pensity of a structure to vary more in some dimensions than in others22. 
One way of quantifying developmental bias is to study how phenotypic 
variation in multivariate characters is generated by de novo mutation, 
captured by the mutational variance–covariance matrix, M, an approach 
used by Houle et al.18 to capture mutational bias in wing shape in D. 
melanogaster. An alternative way of quantifying bias is to estimate the 
degree of variability in the developmental system by measuring fluctuat-
ing asymmetry between left and right homologues of paired bilateral 
structures. Because the left and right sides of the same organism share 
the same genome and environment, differences between bilateral homo-
logues can be attributed to developmental noise, and differences in the 
degree of fluctuating asymmetry among phenotypes thus serve as a 
measure of bias in the developmental program40,41. This approach was 
used by Rohner and Berger16 to capture the developmental covariance 
matrix, D, for wing shape in sepsid flies. This covariance matrix thus 
captures how traits (co)vary in response to random developmental 
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To make sure that all matrices were compared along subspaces in 
which there was statistically verified variation, we estimated the rank of 
the matrices by using factor analytical modelling using ASReml-R46. The 
matrices were then compared along the first k dimensions of P, with k 
equal to the rank of the matrix with the lowest rank (k = 10). We applied 
this approach for any pair of variance–covariance matrices compared 
in this study. If macroevolutionary divergence across dipteran families 
can be predicted by developmental bias, we expect R to show similar 
relative amounts of variation as D and M along the eigenvectors of P. 
Regressing the resulting (logarithmized) variances of R on the cor-
responding variances of M and D, we indeed found that the morpho-
logical variation representing macroevolutionary change is similar to 
that generated by mutation (R on M: β = 0.66 (95% confidence interval, 
(0.53, 0.77)); r = 0.89 (0.78, 0.94); Fig. 3) and developmental perturba-
tions (R on D: β = 0.61 (0.5, 0.71); r = 0.87 (0.78, 0.92); Fig. 3). When we 
analysed all 18 phenotypic dimensions of the wing by also including the 
eight additional wing dimensions for which we could not statistically 
certify significant variation at all biological levels compared, the rela-
tionships became even stronger (Extended Data Fig. 4). This suggests 
that macroevolutionary divergence among 43 dipteran families that 
unfolded over 185 million years is aligned with developmental lines of 
least resistance and can thus—at least to some degree—be predicted 
from intrinsic developmental variability documented in single species.

No evidence for pleiotropic constraints on wing evolution
The relationship between developmental bias and macroevolution is 
consistent with fundamental constraints of wing shape development 
and evolution. However, owing to their polygenic basis and large muta-
tional target sizes, the evolution of quantitative characters is typically 
not expected to be strongly constrained over the long time frames 
studied here2,20,51. Indeed, the study on drosophilids by Houle et al.18 
found that a lack of mutational input is unlikely to explain the alignment 
between M and R in drosophilid wing evolution. To explore the possible 

influence of genetic constraints on the studied macroevolution of wing 
shape, we calculated the expected amount of divergence along the 
ten analysed wing shape dimensions (Fig. 3) under a scenario of pure 
genetic drift, which predicts that the rate of divergence should corre-
spond to two times the mutational variance per generation52. Thus, if 
genetic constraints are limiting the evolution of some wing dimensions, 
we expect that the observed rates of divergence should be approxi-
mated by the predicted divergence based on the rate of mutational 
input. However, assuming an average of a single fly generation per year, 
and basing our calculations on estimates of M in D. melanogaster18, we 
found that the observed macroevolutionary variance along each of the 
ten dimensions is around 104 times smaller than expected under drift 
(Extended Data Table 3). Because most species studied here undergo 
more than one generation per year, this calculation underestimates 
the expected divergence under drift (for instance, central European 
populations of S. punctum have at least four generations per year, and 
D. melanogaster has about 15 generations per year53,54). Thus, genetic 
constraints alone are unlikely to explain low rates of divergence and the 
observed correlation between developmental bias and macroevolution.

The constraint hypothesis would remain viable if most of the 
quantified mutational variation had deleterious pleiotropic side effects 
on other unmeasured traits, rendering the variation effectively unus-
able for adaptive evolution18. We tested this hypothesis by quantifying 
genetic variation in fitness-related traits and wing shape in S. punctum. 
If wing shape evolution is indeed constrained by deleterious pleiot-
ropy, we expect to find genetic covariation between wing shape and 
fitness components that are functionally unrelated to wing shape or 
flight. Rearing the 71 isofemale lines of S. punctum assayed for wing 
shape16 in a common-garden experiment limiting direct selection on 
flight (the flies were kept in 50 ml glass vials), we found significant 
heritable variation among isofemale lines in adult longevity (χ2

1 = 8.62, 
P = 0.003), developmental rate (χ2

1 = 369.62, P < 0.001), juvenile survival 
(χ2

1 = 89.79, P < 0.001) and body size (χ2
1 = 225.76, P < 0.001) but not 
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Fig. 1 | Leveraging scientific illustrations to quantify wing shape evolution.  
a, PLS plot showing a strong correlation between the shape measurements derived 
from photographs and those derived from scientific illustrations for 19 species 

where both sources of data were available. b,c, Similarity between a photograph 
of the wing of a house fly (Musca domestica) (b) and an illustration of a wing of the 
same species (c). Panel c adapted from ref. 106, Comstock Publishing Company.
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Fig. 2 | Macroevolutionary divergence in fly wing shape across 185 million 
years. a, Although fly wings evolve slowly, there is large macroevolutionary 
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relationships among the different families within the Eremoneura47. The 
phylogeny was calibrated using the approximate age of the Eremoneura42, 
as well as the split between Drosophilidae, Muscidae and Tephritidae94. c, An 
evolutionary morphospace defined by the first two principal components. 
Individuals are grouped by family (hulls). An arbitrary set of families is 

highlighted. Families with less than five observations were excluded from the 
plot. Shape deformations associated with minimal and maximal loadings relative 
to the average wing shape are indicated with deformation grids for the first two 
principal components. To improve visibility, the magnitude of shape changes 
was reduced by a factor of 0.5. The outline of the wing was based on a drawing 
of Camptoprosopella vulgaris (Lauxaniidae) after Curran107. PCA, principal 
component analysis.
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in early reproductive success (χ2
1 = 0.61, P = 0.218). About half of all 

pairwise genetic correlations between fitness components based on 
best linear unbiased predictors (BLUPs) were positive and statistically 
significant, indicating that some lines had an overall higher fitness 
than others. For instance, isofemale lines with high fecundity also 
had a faster developmental rate (t70 = 3.74, r = 0.41 (95% confidence 
interval, (0.20, 0.59)), P < 0.001), larger adult size (t70 = 2.97, r = 0.34 

(0.11, 0.53), P = 0.004) and longer adult lifespan (t70 = 2.44, r = 0.28 
(0.05, 0.48), P = 0.017; Extended Data Fig. 5). This collinearity was also 
reflected by all five fitness components loading in the same direction 
on the dominant principal component (PC1) describing trait varia-
tion (Fig. 4a). Because individuals with high scores on PC1 had higher 
fitness across all fitness components and considering that PC1 also 
explained a larger proportion of the total variation than expected by 
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chance (37.1%; PRAND < 0.001; Fig. 4b), these patterns suggest that PC1 
captures deleterious pleiotropic alleles affecting life-history traits 
and variation in overall genetic quality. If wing shape is associated with 
deleterious side effects, one would thus expect wing shape to covary 
with PC1. However, PC1 was not related to genetic variation in wing 
shape (rPLS = 0.28, Z = 0.14, P = 0.445), and we also found no evidence 
for a relationship between any of the five fitness components and wing 
shape when all variables were simultaneously analysed in a two-block 
PLS analysis (Fig. 3c; rPLS = 0.39, Z = 0.54, P = 0.299). To test for stabiliz-
ing selection, we also estimated the correlation between the isofemale 
lines’ fitness and their multivariate residuals from the mean wing shape. 
None of the correlations between wing shape residuals and the five fit-
ness correlates were significant (Fig. 4d; |r| < 0.21, P > 0.085). All these 
analyses were repeated while excluding a single outlier (Extended Data 
Fig. 5), with the same result. Thus, on the basis of these data, we found 
no support for the hypothesis that deleterious pleiotropy acts as an 
evolutionary constraint on wing shape divergence. We note, however, 

that our experiment would have had limited power to detect more 
subtle covariation with fitness.

The most variable wing traits are not the fastest evolving
If developmental bias indeed acts as a constraint on evolution, we would 
also predict macroevolutionary divergence along phenotypic dimen-
sions with little developmental variance to be relatively slow1,2,4. To 
test this prediction, we first reconstructed the evolutionary history 
of wing shape and quantified the alignment between developmental 
(D) or mutational (M) bias and the direction of evolutionary shape 
change on each branch of the phylogeny. Here we quantified these 
alignments as the proportion of the trace of D (or M) that was captured 
by the shape change vector along individual branches. We then tested 
whether evolutionary shape changes more closely aligned with the main 
axes of D (or M) have been faster than wing shape changes along axes 
with low developmental variability. Contrary to the expectation under 
the constraint hypothesis, we found no strong correlation between 
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evolutionary rate and the alignment of divergence with D (r = −0.23) 
or M (r = −0.15) (Fig. 5b and Extended Data Fig. 6). The observed cor-
relations are significantly lower than that expected under simulated 
Brownian motion (both PRAND < 0.01; Fig. 5c).

Together, our results render a simple constraint hypothesis 
unsuited to explain the observed pattern of macroevolution, which 
is perhaps unsurprising given the implausibility of genetic drift or 
unidirectional selection on wing characters over such long timescales. 
Holstad et al.19 recently reported a correlation between evolvability and 
macroevolutionary rates and argued that such patterns can emerge 
from rapid fluctuating selection around a global phenotypic adaptive 
zone defined by persistent stabilizing selection common to all taxa. In 
this scenario, evolving taxa are constantly tracking, but lagging behind, 
rapid shifts in phenotypic optima. Such adaptive tracking would be 
more efficient for traits with abundant genetic variation, resulting in 
greater differentiation between taxa, whereas traits with low levels of 
variation would show greater lags and less differentiation, creating a 
positive correlation between trait evolvability and macroevolution 
while evolutionary divergence would remain overall low. However, 
Holstad et al. based their conclusions on patterns observed over a few 
million years (typical divergence times <1 million years), and, as they 
point out, the signal of fluctuating selection and associated tracking 
would probably get overridden by episodes of genetic drift and diver-
gent selection operating over the long macroevolutionary timescales 
we study here19,55 (see also ref. 56). Indeed, our data on fly wings show 
the footprint of substantial accumulated divergence between lineages, 
tracing far back to deep splits in the dipteran phylogeny (Fig. 5d and 
Extended Data Fig. 7). Moreover, the fluctuating selection scenario does 
not by itself generate a strong phylogenetic signal in the data over time. 
In contrast, the phylogenetic signal in our data explained 86% of the 
macroevolutionary variance among families (the mean phylogenetic 
heritability weighted by the total amount of species variance of each 
shape variable18). Our results thus seem incompatible with the con-
straint hypothesis invoking fluctuating selection around stationary 
phenotypic optima envisioned by Holstad et al.19.

Correlational selection as a causative factor shaping 
development and evolution
An alternative explanation for the observed alignments emerges if we 
consider that different dimensions of the wing may experience different 
strengths of directional and stabilizing selection, such that develop-
mental bias has itself evolved to align with the fitness surface6,24,57,58. 
Under this scenario, proportionality between D, M and R is observed, 
not because development constrains macroevolutionary rates, but 
because pervasive correlational selection has shaped developmental 
variability, mutational effects and divergence to occur along similar 
phenotypic dimensions. One such pervasive force is correlational 
selection for optimal allometric relationships between morphologi-
cal characters2,39,59. Indeed, insect wings show strong allometric scal-
ing, probably due to functional constraints60,61. We therefore tested 
whether the observed patterns could be explained by allometric scaling 
so that the relationship between R and D/M could solely be ascribed to 
allometric scaling across Diptera.

Studying the subset of illustrations and photographs that had an 
associated scale bar (n = 127 species), we found evidence for interspe-
cific allometry (multivariate regression of shape against log centroid 
size: F1,126 = 18.7, P < 0.001, R2 = 0.13), which correlates with the intraspe-
cific wing shape allometry vector previously documented in S. punctum 
(vector correlation: r = 0.5, P < 0.001; ref. 62). This is consistent with 
studies suggesting conserved allometric scaling across Diptera60. This 
interspecific allometric vector captured more variation in both D and R 
than expected by chance (PRAND < 0.001), indicating that correlational 
selection for optimal allometric scaling may be causally involved in 
shaping developmental bias and macroevolutionary divergence in 
wing shape (Fig. 6a). Interestingly, however, when recalculating the R 

matrix on the basis of residual wing shape after the effect of a common 
allometric slope was removed, we still recovered a strong alignment 
between developmental bias and evolutionary divergence (M: β = 0.71 
(0.56, 0.83), r = 0.82 (0.68, 0.90); D: β = 0.55 (0.42, 0.66), r = 0.79 (0.69, 
0.88)). Hence, while our analysis provides indirect support for a role of 
correlational selection on allometric scaling in driving the alignment 
between developmental bias and deep divergence, the alignment 
persists even when controlling for the effect of allometry.

Discussion
Here we leveraged within-species estimates of developmental (D) and 
mutational (M) variability to assess developmental bias and show that 
this bias can predict macroevolutionary diversification in deep time. 
Quantitative genetic theory rests firmly on the assumption that, owing 
to genetic constraints on rates of evolution, accurate estimates of muta-
tional and genetic covariance matrices can be used to predict evolu-
tionary change in morphological characters. However, much debate 
remains surrounding the utility of these approaches when applied on 
longer evolutionary timescales4,12,14,22,24.

First, it remains uncertain whether there is enough stability in 
the amount of standing genetic variation in correlated characters 
(captured in the genetic variance–covariance matrix, G; ref. 2) to allow 
accurate predictions of their long-term evolution13. Indeed, if selection 
and drift reshape G, then snapshots of standing genetic variation at any 
point in time are likely to be poor predictors of evolution, even over only 
a few hundred generations. In contrast to this notion, developmental 
bias (D, M and G) in fly wings remains surprisingly conserved across the 
Drosophilidae and Sepsidae (Fig. 3a,b), clades that diverged from each 
other around 60 million years ago. Similarly, McGlothlin et al.63 showed 
that G, while having evolved across species of Anolis lizard, had retained 
its main dimensionality across >20 million years of species divergence.

Second, however, even if G and M were to remain constant, pre-
dictability relies on the consistency of natural selection, which is 
likely to fluctuate even in the short term64,65. It would thus seem that 
evolutionary prediction might be limited to special circumstances. 
Yet, alignments between standing genetic variation within popula-
tions and macroevolutionary rates over a couple of millions of years 
have been observed for morphological features in plants, insects and 
vertebrates4,19,20,63,66,67, notably up to 40 million years in Anolis lizards63. 
Here we show that the recently reported correlations for fly wings16,18 
can extend even longer, with wing shape evolution being predictable—
at least to some degree—over 185 million years.

Macroevolution has been suggested to unfold at a slow pace 
along genetic lines of least resistance delineated by the architecture 
of the developmental system68. While such patterns on their own are 
compatible with evolutionary constraints, they are hard to reconcile 
with observations of contemporary adaptation being exceedingly 
fast69,70, questioning the general applicability of genetic constraints as 
an explanation for evolutionary stasis. Indeed, several analyses have 
demonstrated that evolutionary stasis in the fossil record may not 
represent slow rates of evolution, but rather abundant adaptive change 
in response to fluctuating selection within certain boundaries19,37,56,71,72. 
This scenario is compatible with other observations of stasis in shape 
evolution in the fossil record despite episodes of strong directional 
selection73 and was recently proposed to explain evolvability–mac-
roevolution relationships on the scale of a couple of million years19. 
However, under this scenario, any macroevolutionary divergence 
due to drift or directional selection would be expected to erode such 
a relationship over longer evolutionary timescales. Hence, given the 
time frame of our study and the strong phylogenetic heritability in our 
data (see also ref. 18), it seems doubtful that the hypothesis can explain 
the evolvability–rate correlations observed for fly wings19.

What remains surprising, then, is the conserved alignment 
between D (or M) and the observed divergence in the absence of genetic 
constraints (Fig. 3c). An alternative explanation for our findings is that 
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the observed patterns reflect the forces of stabilizing correlational 
selection exercising a similar influence on both developmental archi-
tectures and species divergence16,20,22,63. To what extent genetic archi-
tecture and developmental systems can evolve by natural selection is, 
however, still a controversial question in need of further theoretical 
and empirical attention. For example, some recent models highlight 
that correlational selection can reshape M on relatively short time 
scales in specific scenarios11,34,35,74,75, while other models suggest that 
mutational and developmental biases evolve to align with the forces of 
correlational selection under fairly restrictive conditions25,26,33,76. The 
main quandaries here are (1) whether correlational selection on epi-
static interactions can be strong and variable enough among traits to 
cause the relatively pronounced mutational and developmental biases 
often observed in quantitative traits, and (2) whether such genetic 
architectures can be maintained for long enough to stably align with 
repeated macroevolutionary adaptations. Theory nevertheless sug-
gests that conditions are particularly permissive when selection acts 
on multiple correlated characters77 and fluctuates predictably between 
alternative fitness optima78, which we argue is probably the case for 
patterns of selection on wing shape allometry, both within and between 
dipteran species (Fig. 6). Interestingly, allometries are often referred 
to as examples of constrained evolution owing to the relatively stable 
nature of allometric exponents, and wing shape is no exception79–81. 
Yet, both theory and data also highlight that allometric relation-
ships may be outcomes of common forces of correlational selection  

(for example, for morphology39, metabolism82, growth83 and repro-
ductive investment84; but see ref. 80 for an alternative interpretation 
regarding wing shape). Further work is needed to understand and 
describe correlational selection on allometric scaling in fly wings.

What is the most plausible explanation for the observed correla-
tions between measures of developmental bias, evolvability and mac-
roevolutionary rates? Judging from the recent flurry of comparative 
studies16,18–20,29, the answer seems to depend on the timescale and trait 
under consideration. For fly wing evolution on these large timescales, 
there has been little evidence for genetic constraints, and a role for 
correlational selection simultaneously driving D, G and R seems more 
plausible. However, explanations invoking genetic constraints or natu-
ral selection are not mutually exclusive and might simultaneously 
contribute to the alignment between developmental bias, evolvability 
and evolution. Our study highlights the conundrum of explaining 
how these evolvability–rate relationships can persist over such deep 
macroevolutionary time (see also refs. 20,29,39). To understand the 
fundamental limits of adaptive morphological evolution, future studies 
must assess the theoretical plausibility of alternative explanations and 
identify the relevant timescales on which they apply. If developmental 
biases are indeed shaped by past forces of natural selection, then con-
temporary rates of adaptive evolution will depend on whether current 
selection pressures reflect those of the past, and when they do not, to 
what extent natural selection restructures the genotype–phenotype 
map and facilitates adaptation to new trait optima.

a Alignment of wing shape evolution with D 

c    Null distribution of the correlation under
       Brownian motion

0.5

1.0

1.5

2.0

log10[branch
length (Myr)]

Matrix
D
M

0

0.1

0.2

0.3

0 0.002 0.004 0.006 0.008

Evolutionary rate (distance per Myr)

D
ev

el
op

m
en

ta
l v

ar
ia

nc
e 

ca
pt

ur
ed

by
 s

ha
pe

 e
vo

lu
tio

n

0

250

500

750

1,000

–0.3 0 0.3 0.6

Correlation coe�icient (r)

N
um

be
r o

f s
im

ul
at

io
ns

dmax

d10

0

0.2

0.4

0 50 100 150

Divergence time (Myr)

D
iv

er
ge

nc
e 

in
 to

ta
l w

in
g 

sh
ap

e 
(p

ai
rw

is
e 

Pr
oc

ru
st

es
 d

is
ta

nc
e)

Divergence among 
dipteran families
Divergence within 
Drosophilidae 
(data from Houle et al.)

Drosophilidae
Cryptochetidae
Diastatidae
Curtonotidae
Ephydridae

Tachinidae
Calliphoridae
Sarcophagidae
Scathophagidae
Muscidae
Glossinidae

Agromyzidae
Odiniidae
Fergusoninidae
Periscelididae
Aulacigastridae

Ropalomeridae

Anthomyzidae
Canacidae

Syringogastridae
Diopsidae
Sepsidae
Opomyzidae
Psilidae
Strongylophthalmyiidae
Ulidiidae
Tephritidae
Piophilidae
Micropezidae
Neriidae
Sphaeroceridae
Heleomyzidae
Teratomyzidae
Chyromyidae
Clusiidae
Sciomyzidae
Lauxaniidae
Coelopidae
Chamaemyiidae
Pipunculidae
Platypezidae
Hybotidae
Dolichopodidae

0 0.1 0.2 0.3

Developmental variance
captured by

shape evolution

Correlation between the rate of evolution 
and direction relative to D

b Divergence in wing shape with time since
most recent common ancestor

d

Fig. 5 | Dimensions with the most developmental variation do not evolve the 
fastest. a, If developmental bias constrains evolution, morphological evolution 
is expected to be faster if it aligns well with the main axes of the D matrix. To test 
this hypothesis, we first quantified the vector of shape change along the edges 
of the phylogeny and computed the developmental variance captured by shape 
evolution. If evolution occurs mainly along the main axes of D, this variance will 
be large and close to the variance explained by the first eigenvector of D (dmax), 
indicating an alignment between shape evolution and developmental bias.  
b, We then correlated the strength of this alignment with the rate of evolution 

(shape evolution in Procrustes distance per million years) along the branch, 
expecting a positive relationship if fast rates of evolution are constrained along 
wing dimensions with high variability. In contrast to this expectation, the rate of 
evolutionary change does not depend on its alignment with D (or M; Extended 
Data Fig. 6). c, This observed correlation (dashed vertical lines) is also much 
lower than what is expected under pure Brownian motion. d, The increase in wing 
shape divergence with phylogenetic distance. The data in grey (below 40 million 
years) are from Houle et al.18.
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Methods
Quantifying wing shape and divergence across fly taxa
We focused on the evolution of wing shape within the Eremoneura, 
a clade within the Brachycera characterized by the presence of three 
larval instars. This clade is about 185 million years old42 and includes 
the dance and long-legged flies (Empidoidea) as well as the Cyclor-
rhapha (flies that pupate within the cuticle of the last larval instar 
(that is, the puparium)42). We used the phylogenetic relationships 
among families proposed by Bayless et al.47 as the backbone for our 
comparative analysis.

To quantify the morphological variation within and between fami-
lies, we took advantage of illustrations and photographs of fly wings 
from the taxonomic and systematic literature. An initial dataset was 
sourced from the Manuals of Nearctic Diptera and the Manuals of Afro-
tropical Diptera44,85. We focused on those families that are represented 
in the phylogenetic hypothesis generated by Bayless et al.47. Additional 
photographs and illustrations were collected from a wide range of 
publications (Supplementary Table 1).

Wing vein reduction has evolved numerous times across 
the phylogeny and can even be present as intraspecific (genetic) 
polymorphisms86,87. Because homology is difficult to establish in 
these cases, we were unable to include these species in our analysis, 
in which we only included observations where the locations of all 11 
two-dimensional landmarks used in Rohner and Berger16 could be 
assigned. In total, we collected wing shape data from 827 individuals 
belonging to 53 families. Using tpsDig2 (ref. 88), we manually quantified 
wing morphology as depicted on the illustrations and images. Addi-
tional morphometric data originally collected from images were added 
for 119 species of drosophilids from Houle et al.18 and 36 sepsid species 
from Rohner and Berger16. The final dataset contained 993 observations 
of 933 species in 530 genera and 68 families. Family affiliations of indi-
vidual genera were checked using the Systema Dipterorum repository89.

The number of observations varied strongly across families (mean, 
17.40; median, 12; minimum, 1; maximum, 130). This uneven sampling 
was caused by a varying number of species per family (for example, 
Australimyzidae is a monogeneric family containing just 9 described 
species, whereas Tachinidae has 9,626 species90), the loss of landmarks 
in several species (for example, Sphaeroceridae87) and often incomplete 
illustrations or photographs showing only part of the wing (for example, 
Muscidae). The landmark coordinates were aligned to the mean configu-
ration of Houle et al.18 using Procrustes analysis in MorphoJ (v.1.07a)91.

To illustrate the main axes of morphological variation, we applied 
a canonical variate analysis in the statistical package MASS (v.7.3-55)92. 
This ordination technique finds the axes that maximize variation 
among families. For the canonical variate analysis, we only considered 
those families with five or more individual observations.

Estimating the phylogenetic variance–covariance matrix
The phylogeny includes the placement of individual families. We thus 
used the observations of different species within these families as 
repeated measures to approximate the phenotypic variation within the 
families. To calculate evolutionary rates per million years, we calibrated 
the phylogeny described previously47 using the R package ape (v.5.0)93, 
modelling correlated substitution rate variation among branches. 
The approximate age of the Eremoneura (185 million years)42 and the 
divergence between Drosophilidae and Muscidae and Tephritidae (esti-
mated to be 29–80 and 48–86 million years, respectively94) were used 
as calibration points. We computed the phylogenetic variance–covari-
ance matrix R on the basis of the inverse of the relationship matrix 
among families (S−1)45 using animal models in ASReml-R. To account for 
variation due to repeated observations within each family, we added 
species as an additional random effect (using ‘ide()’ structure). The 
samples within families thus serve as replicated measures. We only 
included families for which we had at least five species in our dataset.
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Fig. 6 | Allometry aligns with both developmental and evolutionary variance. 
a, Wing shape changes with size across 127 species of flies (spanning 30 different 
families), indicating allometric scaling of shape (multivariate regression of shape 
against log centroid size: F1,126 = 18.7, P < 0.001, R2 = 0.13). b, These evolutionary 

allometric shape changes align with the main axes of developmental and 
macroevolutionary variance in fly wings. c, These alignments are much stronger 
than expected by chance. The displacement of relative landmark positioning 
with an evolutionary increase in wing size is indicated by black arrows in b.
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Estimating the dimensionality of covariance matrices
Although all our analysed matrices contain 18 dimensions (due to the 
loss of four dimensions for scaling, rotation and positioning during 
Procrustes analysis), geometric morphometric covariance matrices 
are often rank deficient due to redundant covariance among landmark 
variables95. To assess how many dimensions of R had statistical support, 
we fitted reduced-rank factor analytic mixed models in ASReml-R. 
We began by fitting a covariance model with a single dimension and 
continually increased the number of dimensions until increasing the 
number of dimensions did not lead to a significant increase in model 
fit (on the basis of Akaike’s information criterion). We then extracted 
the reduced-rank variance–covariance matrices from these best-fitting 
models for further analysis using the R package ASExtra4 (v.1.1)96. 
Error variances were estimated separately for each shape variable in 
all models.

Comparison of variance–covariance matrices
The D, G and P matrices for sepsids were taken from ref. 16. In brief, that 
study estimated G and P matrices on the basis of a common-garden 
experiment with 71 isofemale lines deriving from seven populations of 
S. punctum and 42 lines and nine populations of S. fulgens. The D matrix 
was calculated on the basis of 87 male S. punctum and 96 male S. fulgens. 
M, estimated in its homozygous state in Drosophila, was extracted 
from ref. 18. Even though we focused on comparisons between D in S. 
punctum and our other variance–covariance matrices of interest, we 
compared the variances of these matrices along the eigenvectors of 
P estimated in S. fulgens to minimize bias in estimates of regression 
slopes48. Following refs. 48,49, we decomposed the P matrix estimated 
in S. fulgens into its eigenvectors KD and calculated the variance along 
KD for each of the respective variance–covariance matrices of interest 
as the diagonal entries of the matrix KD

TXKD, where T denotes transposi-
tion and X refers to the matrix being compared (D and G for S. punctum; 
M for D. melanogaster; R for all Diptera measured). We then calculated 
Pearson’s correlation coefficients (r) and OLS slopes (β) between these 
logarithmized variances for a given pair of matrices. To avoid compar-
ing matrices along null spaces with deficient variance, each matrix pair 
was compared along only the first k dimensions of P, with k equal to the 
rank of the matrix with the lowest rank (ten dimensions in all cases).

To provide 95% confidence limits around correlations and slopes, 
we resampled the variance–covariance matrices from the factor ana-
lytical models with the best support (on the basis of Akaike’s informa-
tion criterion), using the REML-MVN approach97. This approach uses 
asymptotic resampling of REML estimates, taking advantage of the 
fact that the sampling distributions of variance–covariance matrices 
are well approximated by a multivariate normal distribution at large 
sample sizes. We performed the MVN resampling on the G-scale using 
the mvtnorm package for R (see also refs. 66,67). With this approach 
we resampled 10,000 matrices of each kind and subjected them to the 
common subspace analysis.

Quantifying genetic quality and deleterious pleiotropy
To quantify fitness variance across the same isofemale lines of S. punc-
tum as measured for wing shape, we reared all 71 lines (originating from 
the seven European populations) in a common-garden experiment 
including nine temperature treatments ranging from 15 to 31 °C. Note 
that these isofemale lines were created by pairing a single male and 
female, expanding the population size to 100–200 flies immediately 
over a single generation and then maintaining the lines at n ≈ 200 
for five to ten generations before the experiment. Thus, the studied 
among-line difference is likely to reflect more dominance variance 
than expected in a natural population due to inbreeding, but not to any 
extreme extent due to the rapid population expansion98. F0 containers 
with fly cultures were equipped with vials of previously frozen cow 
dung to attain freshly laid eggs. Each line was seeded with four vials 
per temperature treatment. For each vial, the juvenile development 

rate was estimated as the inverse of the time (in days) between the date 
of a laid clutch and the subsequent emergence of F1 adults. Juvenile 
survival was calculated as the fraction of laid eggs that emerged as 
adults. Emerged F1 females were paired with a male from the same line 
and placed in a 50 ml vial with access to sugar, water and cow dung as 
an egg-laying substrate. The sugar, water and dung were replaced every 
5 days for the first 15 days. Early reproductive success was estimated 
as the total number of offspring produced within the first 15 days of 
adult female life, excluding females that died during this time frame 
(probably due to accidental deaths). Females that did not lay any eggs 
during this period were not included in estimates of early reproduc-
tive success. Lifespan was estimated as the time from the start of the 
experiment until the focal female died. A total of 245 females (17%) did 
not die during the period of observation and were recorded as censored 
data. After their death, females were measured for their tibia length as 
an estimate of body size99. In total, 1,445 females were measured across 
all lines and temperature treatments. These females produced a total 
of 173,556 offspring.

To test for heritable variation in early reproductive success, juve-
nile survival, developmental rate and body size, we used mixed-effects 
models using restricted maximum likelihood as implemented in 
ASReml-R46. Temperature treatment, population and their interaction 
were fitted as fixed effects. Line was added as a random effect. Note that 
we did not estimate line-by-treatment interactions (that is, G-by-E) as 
our aim was to capture overall differences in genetic quality among 
lines. Repeating the analysis excluding the highest (31 °C) and lowest 
(15 °C) (that is, the most stressful) temperature treatments led to similar 
results. Residual variances were allowed to vary across treatments. The 
significance of the random effect of line was tested using likelihood 
ratio tests. BLUPs were extracted and used for further analysis. For 
the analysis of adult lifespan, we fitted a censored mixed-effects Cox 
model using the coxme package100 using treatment and population 
as fixed effects and line as a random effect. Likelihood ratio tests were 
used to test whether line effects were significant. BLUPs were extracted 
by taking the inverse of the hazard ratio for each line as our estimates 
for adult longevity.

We applied principal component analysis on the correlation matrix 
based on BLUPs to inspect the loadings on PC1. To test whether the pro-
portion of variance explained by PC1 is larger than expected by chance, 
we used two different randomization procedures. First, we simulated 
10,000 random and unstructured covariance matrices based on the 
same sample size as in our real data (using the R function rnorm101) to 
generate a null distribution for the proportion of variance explained 
by PC1. Second, we generated an alternative null distribution by rand-
omizing breeding values among families 10,000 times and calculated 
the relative eigenvalue of the first eigenvector that was compared with 
the observed eigenvalue for PC1.

To test for genetic correlations between wing shape and fitness, 
we used two-block PLS regression as implemented in geomorph 4.0 
(ref. 102). This is an ordination technique that finds the latent variables 
within two sets of variables with maximal covariance between the 
two sets of variates. We used wing shape in the first block. To account 
for shape allometry and local adaptation, we used the residuals of a 
multivariate regression of shape on centroid size and population. The 
second block consisted of scores on PC1 based on the five fitness cor-
relates or breeding values for the five variables separately. Significance 
was assessed using permutation tests (10,000 random permutations).

Estimating the relationship between the rate and direction of 
evolution with respect to D
To test whether evolutionary change that aligns with the main axes of D 
is faster than evolutionary change in other directions (as expected if D 
constrains macroevolution), we reconstructed ancestral wing shape at 
each node and extracted the vectors of shape change observed on each 
edge of the phylogeny (using the gm.prcomp function in geomorph). 
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We then quantified the developmental variance captured by shape 
evolution as:

eβ =
βTD′β
||β||2

where β is the evolutionary shape change vector of interest, and D′ is the 
D matrix scaled by its trace. If evolution occurs primarily along the main 
axes of D, we expect eβ to be large and close to the variance explained 
by the first eigenvector of D (dmax). In contrast, if shape evolution is 
independent of D, this variance is expected to be small and closer to 
the variance explained by the tenth eigenvector of D (d10). To test for 
constraints, we computed the correlation between eβ and the magni-
tude of the shape change along all edges in the phylogeny (measured 
as shape change in Procrustes distance per million years), expecting a 
positive correlation if fast rates of evolution are constrained to occur 
along dimensions with high developmental variability. These analyses 
were repeated using M as the base of comparison.

To compare the observed correlation between the rate of evolution 
and its direction with respect to D, to the expected correlation under 
Brownian motion, we simulated wing shape evolution using the mvSIM 
function implemented in the mvMORPH package (v.1.1.7)103. To simulate 
Brownian motion, where the evolutionary changes are more likely to 
occur along the dimensions of high evolvability, we sampled evolution-
ary changes from the distribution N(μ,Σ), where μ is a 22-dimensional 
vector of means equal to zero and Σ is a covariance matrix set equal 
to D scaled to the same size as R. In these simulations, evolutionary 
changes are thus governed by Brownian motion but constrained by 
the orientation of D. For each simulation, we then computed eβ as 
described above and compared the resulting distribution of eβ and 
its correction with D to the observed values. We again repeated this 
analysis using the M matrix.

Testing for allometry
To assess whether allometric scaling is associated with D/M, we calcu-
lated centroid size for those specimens where scale bars were available 
(n = 127). We then used a multivariate regression of wing shape on log 
centroid size to estimate the evolutionary allometric shape change vec-
tor (using procD.lm in geomorph). A phylogenetic regression of family 
mean shape on mean centroid size was also significant and resulted 
in a very similar vector (vector correlation: r = 0.92, P < 0.001). The 
alignment between this vector and D and R was calculated using the 
method described above. Allometric shape changes were visualized 
using shape scores following ref. 104.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The wing shape and fitness data are available via Dryad at https://doi.org/ 
10.5061/dryad.08kprr599 (ref. 105). Source data are provided with 
this paper.
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Extended Data Fig. 1 | Morphology a sepsid fly wing. Location of two-dimensional landmarks used for this study illustrated on a picture of a sepsid wing. Wing veins 
are indicated in blue. Cells are indicated in green. Nomenclature follows [43 and108].
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Extended Data Fig. 2 | Similarity between morphological measurements 
sourced from scientific illustrations and pictures. Morphospace (principal 
components) showing the similarity between wing shape measured on 
photographs or scientific illustrations from the systematic and taxonomic 

literature. The intraspecific variation observed in Sepsis fulgens (data from62) was 
projected into the morphospace to provide a reference point for the amount of 
morphological disparity that can be expected in natural populations.
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Extended Data Fig. 3 | Canonical variate analysis. Evolutionary morphospace 
defined by the first three canonical variates. Individuals are grouped by family 
(hulls). An arbitrary set of families is highlighted. The source of the shape data is 
indicated with shape (scientific illustration and pictures). Families with less than 

five observations were excluded from the analysis, leading to a total number of 43 
families (n = 884). The overall leave-one-out cross-validation success of the CVA 
was 82.3%.
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Extended Data Fig. 4 | Relationship between developmental and macroevolutionary variance along all 18 eigenvectors. Results of a common subspace analysis 
where the amount of developmental variance predicts the macroevolutionary variance along all possible 18 eigenvectors of the P matrix estimated in S. fulgens  
(slope = 1.38, r = 0.94).
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Extended Data Fig. 5 | Genetic correlations between fitness components. Data 
points indicate best linear unbiased predictions (BLUPs). BLUPs for offspring 
survival, developmental rate, size and adult fecundity were extracted from mixed 

effect models using restricted maximum likelihood. BLUPs for adult lifespan 
were extracted from a censored mixed effects cox model. All data have been 
transformed to z-scores.
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Extended Data Fig. 6 | Relationship between evolutionary rate and the amount 
of developmental variance captured by the vector of evolutionary shape 
change. a,b, The relationship between evolutionary rate (in Procrustes distance 
per My) along individual branches of the phylogeny and the amount of variance 

in either matrix captured by the vector of evolutionary shape change. In contrast 
to the expectation based on the constraint hypothesis, the speed of evolutionary 
change does not increase when its direction aligns with the main axes of either 
matrix.
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Extended Data Fig. 7 | Increase of phenotypic differences with 
macroevolutionary divergence. Accumulation of divergence in overall wing 
shape (quantified by Procrustes distance, A), as well as the first 10 principal 
components with evolutionary time (B-K). For comparison with the common 
subspace analysis, the wing shape data were first multiplied by 1,000 and then 

projected onto the eigenvectors of the phenotypic variance covariance matrix 
(P) estimated in Sepsis fulgens (as in the main analyses presented in the main 
text). Panel L) shows the total amount of variance in our dataset along the first ten 
eigenvectors of P. Data on species divergence among drosophilids (spanning up 
to 40 My) are from18.
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Extended Data Table 1 | Morphological description of landmarks

Landmarks were defined based on the position of the longitudinal wing veins (Costa (C), Radius (R1-5), Media (M1-3), Cubitus (CuA1)) and the two cross-veins R-M and DM-Cu, as well as the 
wing cells that are delineated by these veins (see Extended Data Fig. 1). Nomenclature follows 108 (also see43).
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Extended Data Table 2 | Common Subspace Analysis

A modified version of Krzanowski’s common subspace analysis18,48,49 was used to compare different covariance matrices along an arbitrary set of orthogonal phenotypic dimensions (or 
eigenvectors). Because the choice of reference matrix can bias estimates of slopes and correlation coefficients, all comparisons were repeated using different sets of eigenvectors. k refers to 
the number of dimensions considered for comparisons.
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Extended Data Table 3 | Expected amounts of macroevolution under drift

Observed and expected amount of macroevolutionary variance along 10 phenotypic dimensions under a pure drift scenario. The expected divergence under drift was calculated as two 
times the mutational variance along each dimension times 1.85 ×108 (this is equivalent to assuming one fly generation per year for 180MY). For consistency with Fig. 3 and S6, the dimensions 
1−10 are the first 10 eigenvectors of the phenotypic variance covariance matrix (P) estimated in S. fulgens. In all instances, the observed macroevolutionary variance is more than 4,000 times 
smaller than expected under a pure drift scenario. Shape variables were multiplied by 1,000 (as in18)
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