Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Plastic pollution has the potential to alter ecological and evolutionary processes in aquatic ecosystems

Subjects

Abstract

We are beginning to understand the ecotoxicological effects of plastic pollution at the suborganismal, individual, population and community levels, but research has only just begun to explore the ecological and evolutionary impacts of plastic as a new habitat. The global introduction of plastic waste into aquatic environments introduces diverse and variable habitat modifications, altering ecosystems and potentially forming new ecological niches. This widespread habitat modification spans several aquatic ecosystems, including the pelagic ocean, deep-sea benthos, lakes and rivers. Recent studies suggest that habitat modification may interact with and alter ecological and evolutionary processes, affecting populations, communities and species, for example, through feeding ecology, mating behaviour and dispersal. However, further research is necessary to understand the potential long-term effects of plastic pollution on ecological and evolutionary processes across global aquatic ecosystems. Here, we review this emerging field of research and its trajectory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Animals using plastic debris as habitat.
Fig. 2: Conceptual figures demonstrate how niche space may be altered by the introduction of plastic debris into aquatic ecosystems.

Similar content being viewed by others

References

  1. Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).

    CAS  PubMed  Google Scholar 

  2. Bean, T. H. Effects of garbage on fish. Forest and Stream 38, 1 (1892).

    Google Scholar 

  3. Bucci, K., Tulio, M. & Rochman, C. M. What is known and unknown about the effects of plastic pollution: a meta-analysis and systematic review. Ecol. Appl. 30, e02044 (2020).

    CAS  PubMed  Google Scholar 

  4. Høiberg, M. A., Woods, J. S. & Verones, F. Global distribution of potential impact hotspots for marine plastic debris entanglement.Ecol. Indic. 135, 108509 (2022).

    Google Scholar 

  5. Koelmans, A. A. et al. Risk assessment of microplastic particles. Nat. Rev. Mater. 7, 138–152 (2022).

    Google Scholar 

  6. Mehinto, A. C. et al. Risk-based management framework for microplastics in aquatic ecosystems. Microplast. Nanoplast. 2, 17 (2022).

    Google Scholar 

  7. Hermabessiere, L. et al. Occurrence and effects of plastic additives on marine environments and organisms: a review. Chemosphere 182, 781–793 (2017).

    CAS  PubMed  Google Scholar 

  8. Bridson, J. H., Gaugler, E. C., Smith, D. A., Northcott, G. L. & Gaw, S. et al. Leaching and extraction of additives from plastic pollution to inform environmental risk: a multidisciplinary review of analytical approaches. J. Hazard. Mater. 414, 125571 (2021).

    CAS  PubMed  Google Scholar 

  9. Li, Y. et al. Leaching of chemicals from microplastics: a review of chemical types, leaching mechanisms and influencing factors. Sci. Total Environ. 906, 167666 (2024).

    CAS  PubMed  Google Scholar 

  10. Teuten, E. L. et al. Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. B Biol. Sci. 364, 2027–2045 (2009).

    CAS  Google Scholar 

  11. Godoy, V., Blázquez, G., Calero, M., Quesada, L. & Martín-Lara, M. A. The potential of microplastics as carriers of metals. Environ. Pollut. 255, 113363 (2019).

    CAS  PubMed  Google Scholar 

  12. Puckowski, A., Cwięk, W., Mioduszewska, K., Stepnowski, P. & Białk-Bielińska, A. Sorption of pharmaceuticals on the surface of microplastics. Chemosphere 263, 127976 (2021).

    CAS  PubMed  Google Scholar 

  13. Atugoda, T. et al. Interactions between microplastics, pharmaceuticals and personal care products: implications for vector transport. Environ. Int. 149, 106367 (2021).

    CAS  PubMed  Google Scholar 

  14. Diepens, N. J. & Koelmans, A. A. Accumulation of plastic debris and associated contaminants in aquatic food webs. Environ. Sci. Technol. 52, 8510–8520 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lambert, S., Scherer, C. & Wagner, M. Ecotoxicity testing of microplastics: considering the heterogeneity of physicochemical properties. Integr. Environ. Assess. Manag. 13, 470–475 (2017).

    CAS  PubMed  Google Scholar 

  16. Cózar, A. et al. Plastic debris in the open ocean. Proc. Natl Acad. Sci. USA 111, 10239–10244 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. Lebreton, L. et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci. Rep. 8, 4666 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pinheiro, H. T. et al. Plastic pollution on the world’s coral reefs. Nature 619, 311–316 (2023).

    CAS  PubMed  Google Scholar 

  19. Zhu, X., Rochman, C. M., Hardesty, B. D. & Wilcox, C. Plastics in the deep sea—a global estimate of the ocean floor reservoir. Deep-Sea Res. I Oceanogr. Res. Pap. 206, 104266 (2024).

    CAS  Google Scholar 

  20. Nava, V. et al. Plastic debris in lakes and reservoirs. Nature 619, 317–322 (2023).

    CAS  PubMed  Google Scholar 

  21. Weiss, L. et al. The missing ocean plastic sink: gone with the rivers. Science 373, 107–111 (2021).

    CAS  PubMed  Google Scholar 

  22. Barnes, D. K. A. Invasions by marine life on plastic debris. Nature 416, 808–809 (2002).

    CAS  PubMed  Google Scholar 

  23. Haram, L. E. et al. Extent and reproduction of coastal species on plastic debris in the North Pacific Subtropical Gyre. Nat. Ecol. Evol. 7, 687–697 (2023).

    PubMed  PubMed Central  Google Scholar 

  24. Goldstein, M. C., Rosenberg, M. & Cheng, L. Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect. Biol. Lett. 8, 817–820 (2012).

    PubMed  PubMed Central  Google Scholar 

  25. Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. Life in the ‘plastisphere’: microbial communities on plastic marine debris. Environ. Sci. Technol. 47, 7137–7146 (2013).

    CAS  PubMed  Google Scholar 

  26. Harrison, J. P. et al. Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol. 14, 232 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. McCormick, A., Hoellein, T., Mason, S. A., Schluep, J. & Kelly, J. J. Microplastic is an abundant and distinct microbial habitat in an urban river. Environ. Sci. Technol. 48, 11863–11871 (2014).

    CAS  PubMed  Google Scholar 

  28. Lazcano, R. F., Kelly, J. J. & Hoellein, T. J. Biofilms on plastic litter in an urban river: community composition and activity vary by substrate type. Water Environ. Res. 96, e11008 (2024).

    CAS  PubMed  Google Scholar 

  29. Wright, R. J., Erni-Cassola, G., Zadjelovic, V., Latva, M., & Christie-Oleza, J. A. Marine plastic debris: a new surface for microbial colonization. Environ. Sci. Technol. 54, 11657–11672 (2020).

    CAS  PubMed  Google Scholar 

  30. Davidson, T. M. Boring crustaceans damage polystyrene floats under docks polluting marine waters with microplastic. Mar. Pollut. Bull. 64, 1821–1828 (2012).

    CAS  PubMed  Google Scholar 

  31. Jang, M., Shim, W. J., Han, G. M., Song, Y. K. & Hong, S. H. Formation of microplastics by polychaetes (Marphysa sanguinea) inhabiting expanded polystyrene marine debris. Mar. Pollut. Bull. 131, 365–369 (2018).

    CAS  PubMed  Google Scholar 

  32. Zheng, Y., Zhu, J., Li, J., Li, G. & Shi, H. Burrowing invertebrates induce fragmentation of mariculture styrofoam floats and formation of microplastics. J. Hazard. Mater. 447, 130764 (2023).

    CAS  PubMed  Google Scholar 

  33. Rech, S. et al. A desert in the ocean—depauperate fouling communities on marine litter in the hyper-oligotrophic South Pacific Subtropical Gyre. Sci. Total Environ. 759, 143545 (2021).

    CAS  PubMed  Google Scholar 

  34. Barry, P. J., Silburn, B., Bakir, A., Russell, J. & Tidbury, H. J. Seafloor macrolitter as a settling platform for non-native species: a case study from UK waters. Mar. Pollut. Bull. 204, 116499 (2024).

    CAS  PubMed  Google Scholar 

  35. Bottari, T. et al. Plastic litter colonization in a brackish water environment. Sci. Total Environ. 912, 169177 (2024).

    CAS  PubMed  Google Scholar 

  36. Orpwood, J. E., Magurran, A. E., Armstrong, J. D. & Griffiths, S. W. Minnows and the selfish herd: effects of predation risk on shoaling behaviour are dependent on habitat complexity. Anim. Behav. 76, 143–152 (2008).

    Google Scholar 

  37. Figueiredo, B. R., Mormul, R. P. & Thomaz, S. M. Swimming and hiding regardless of the habitat: prey fish do not choose between a native and a non-native macrophyte species as a refuge. Hydrobiologia 746, 285–290 (2014).

    Google Scholar 

  38. Grabowski, J. H. Habitat complexity disrupts predator–prey interactions but not the trophic cascade on oyster reefs. Ecology 85, 995–1004 (2004).

    Google Scholar 

  39. Crowder, L. B. & Cooper, W. E. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63, 1802–1813 (1982).

    Google Scholar 

  40. Lamb, J. B. et al. Plastic waste associated with disease on coral reefs. Science 359, 460–462 (2018).

    CAS  PubMed  Google Scholar 

  41. Jagiello, Z., Dylewski, Ł. & Szulkin, M. The plastic homes of hermit crabs in the Anthropocene. Sci. Total Environ. 913, 168959 (2024).

    CAS  PubMed  Google Scholar 

  42. Elwood, R. W., Marks, N. & Dick, J. T. A. Consequences of shell-species preferences for female reproductive success in the hermit crab Pagurus bernhardus. Mar. Biol. 123, 431–434 (1995).

    Google Scholar 

  43. Goldstein, M. C., Carson, H. S. & Eriksen, M. Relationship of diversity and habitat area in North Pacific plastic-associated rafting communities. Mar. Biol. 161, 1441–1453 (2014).

    Google Scholar 

  44. Adams, T. P., Miller, R. G., Aleynik, D. & Burrows, M. T. Offshore marine renewable energy devices as stepping stones across biogeographical boundaries. J. Appl. Ecol. 51, 330–338 (2014).

    Google Scholar 

  45. Degraer, S. et al. Offshore wind farm artificial reefs affect ecosystem structure and functioning. Oceanography 33, 48–57 (2020).

    Google Scholar 

  46. McLean, D. L. et al. Influence of offshore oil and gas structures on seascape ecological connectivity. Glob. Change Biol. 28, 3515–3536 (2022).

    CAS  Google Scholar 

  47. Benadon, C. et al. Marine debris facilitates the long-distance dispersal of fish species. Mar. Biol. 171, 43 (2024).

    CAS  Google Scholar 

  48. Sheridan, E. A. et al. Plastic pollution fosters more microbial growth in lakes than natural organic matter. Nat. Commun. 13, 4175 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Romera-Castillo, C., Pinto, M., Langer, T. M., Álvarez-Salgado, X. A. & Herndl, G. J. Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nat. Commun. 9, 1430 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. Li, H.-X. et al. Effects of toxic leachate from commercial plastics on larval survival and settlement of the barnacle Amphibalanus amphitrite. Environ. Sci. Technol. 50, 924–931 (2016).

    CAS  PubMed  Google Scholar 

  51. Soberón, J. & Nakamura, M. Niches and distributional areas: concepts, methods, and assumptions. Proc. Natl Acad. Sci. USA 106, 19644–19650 (2009).

    PubMed  PubMed Central  Google Scholar 

  52. Yoshida, S. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1199 (2016).

    CAS  PubMed  Google Scholar 

  53. Jacquin, J. et al. Microbial ecotoxicology of marine plastic debris: a review on colonization and biodegradation by the ‘plastisphere’. Front. Microbiol. 10, 865 (2019).

    PubMed  PubMed Central  Google Scholar 

  54. Amobonye, A., Bhagwat, P., Singh, S. & Pillai, S. Plastic biodegradation: frontline microbes and their enzymes. Sci. Total Environ. 759, 143536 (2021).

    CAS  PubMed  Google Scholar 

  55. Okada, H., Negoro, S., Kimura, H. & Nakamura, S. Evolutionary adaptation of plasmid-encoded enzymes for degrading nylon oligomers. Nature 306, 203–206 (1983).

    CAS  PubMed  Google Scholar 

  56. Kinoshita, S. et al. Utilization of a cyclic dimer and linear oligomers of ε-aminocaproic acid by Achrornobacter guttatus KI 72. Agric. Biol. Chem. 39, 1219–1223 (1974).

    Google Scholar 

  57. Prijambada, I. D., Negoro, S., Yomo, T. & Urabe, I. Emergence of nylon oligomer degradation enzymes in Pseudomonas aeruginosa PAO through experimental evolution. Appl. Environ. Microbiol. 61, 2020–2022 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Winchell, K. M., Reynolds, R. G., Prado-Irwin, S. R., Puente-Rolón, A. R. & Revell, L. J. Phenotypic shifts in urban areas in the tropical lizard Anolis cristatellus. Evolution 70, 1009–1022 (2016).

    PubMed  Google Scholar 

  59. Velasquez, E. et al. Age and area predict patterns of species richness in pumice rafts contingent on oceanic climatic zone encountered. Ecol. Evol. 8, 5034–5046 (2018).

    PubMed  PubMed Central  Google Scholar 

  60. Diamond, J. Animal art: variation in bower decorating style among male bowerbirds Amblyornis inornatus. Proc. Natl Acad. Sci. USA 83, 3042–3046 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Marshall, A. J. Bower‐birds. Biol. Rev. 29, 1–45 (1954).

    Google Scholar 

  62. Diamond, J. Bower building and decoration by the bowerbird Amblyornis inornatus. Ethology 74, 177–204 (1987).

    Google Scholar 

  63. Diamond, J. Experimental study of bower decoration by the bowerbird Amblyornis inornatus, using colored poker chips. Am. Nat. 131, 631–653 (1988).

    Google Scholar 

Download references

Acknowledgements

This work was funded by a Natural Sciences and Engineering Research Council of Canada Discovery grant awarded to C.M.R.

Author information

Authors and Affiliations

Authors

Contributions

J.H. and C.M.R. collaborated on the design of this study. The study was led by J.H. J.H. wrote the first draft of the manuscript. C.M.R. reviewed and edited the manuscript.

Corresponding author

Correspondence to Chelsea M. Rochman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Linsey Haram and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haney, J., Rochman, C.M. Plastic pollution has the potential to alter ecological and evolutionary processes in aquatic ecosystems. Nat Ecol Evol 9, 762–768 (2025). https://doi.org/10.1038/s41559-025-02678-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41559-025-02678-8

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene