Abstract
Infectious diseases pose a substantial threat to global health security. Key wildlife species, potentially harbouring numerous zoonotic pathogens, are increasingly being forced to adapt to disturbances from land-use change, human encroachment and climate change. Although the evidence is rather convincing pertaining to the increased risks of zoonotic diseases with degradation and disturbances, the scientific literature on the mitigating effects of ecosystem restoration on zoonotic spillover is scattered, inconclusive and challenged by the lack of a conceptual framework and practical guidance. In light of rising restoration needs and activities, we outline six critical considerations when examining impacts of zoonotic diseases from ecosystem restoration: (1) assessment of zoonotic disease targets; (2) time lag between restoration and recovery; (3) integration of trophic rewilding; (4) robust study designs; (5) controlling for confounding and modifying drivers; and (6) stakeholder engagement and co-creation with communities. Failure to account for these considerations makes the scientific contribution of restoration less valuable and may even jeopardize global efforts to reverse the global biodiversity decline.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).
Carlson, C. J. et al. Pathogens and planetary change. Nat. Rev. Biodivers. 1, 32–49 (2025).
Gibb, R., Franklinos, L. H. V., Redding, D. W. & Jones, K. E. Ecosystem perspectives are needed to manage zoonotic risks in a changing climate. BMJ 371, m3389 (2020).
Baker, R. E. et al. Infectious disease in an era of global change. Nat. Rev. Microbiol. 20, 193–205 (2022).
Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).
Qiu, Y. et al. The global distribution and diversity of wild-bird-associated pathogens: an integrated data analysis and modeling study. Med 6, 100553 (2025).
Han, B. A., Kramer, A. M. & Drake, J. M. Global patterns of zoonotic disease in mammals. Trends Parasitol. 32, 565–577 (2016).
Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic diseases. Proc. Natl Acad. Sci. USA 112, 7039–7044 (2015).
Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006).
Ostfeld, R. S. & Keesing, F. Biodiversity and disease risk: the case of Lyme disease. Conserv. Biol. 14, 722–728 (2000).
Keesing, F. & Ostfeld, R. S. Impacts of biodiversity and biodiversity loss on zoonotic diseases. Proc. Natl Acad. Sci. USA 118, e2023540118 (2021).
Khalil, H., Ecke, F., Evander, M., Magnusson, M. & Hörnfeldt, B. Declining ecosystem health and the dilution effect. Sci. Rep. 6, 31314 (2016).
Wang, Y. X. G. et al. The impact of wildlife and environmental factors on hantavirus infection in the host and its translation into human risk. Proc. R. Soc. B 290, 20222470 (2023).
Tersago, K. et al. Population, environmental, and community effects on local bank vole (Myodes glareolus) Puumala virus infection in an area with low human incidence. Vector-Borne Zoonotic Dis. 8, 235–244 (2008).
Clay, C. A., Lehmer, E. M., Jeor, S. S. & Dearing, M. D. Sin Nombre virus and rodent species diversity: a test of the dilution and amplification hypotheses. PLoS ONE 4, e6467 (2009).
Khalil, H., Ecke, F., Evander, M. & Hörnfeldt, B. Selective predation on hantavirus-infected voles by owls and confounding effects from landscape properties. Oecologia 181, 597–606 (2016).
Ecke, F. et al. Selective predation by owls on infected bank voles (Myodes glareolus) as a possible sentinel of tularemia outbreaks. Vector-Borne Zoonotic Dis. 20, 630–632 (2020).
Mahon, M. B. et al. A meta-analysis on global change drivers and the risk of infectious disease. Nature 629, 830–836 (2024).
Barouki, R. et al. The COVID-19 pandemic and global environmental change: emerging research needs. Environ. Int. 146, 106272 (2021).
Ecke, F. et al. Population fluctuations and synanthropy explain transmission risk in rodent-borne zoonoses. Nat. Commun. 13, 7532 (2022).
Civitello, D. J. et al. Biodiversity inhibits parasites: broad evidence for the dilution effect. Proc. Natl Acad. Sci. USA 112, 8667–8671 (2015).
Rohr, J. R. et al. Towards common ground in the biodiversity–disease debate. Nat. Ecol. Evol. 4, 24–33 (2020).
Wood, C. L., McInturff, A., Young, H. S., Kim, D. & Lafferty, K. D. Human infectious disease burdens decrease with urbanization but not with biodiversity. Phil. Trans R Soc. B 372, 20160122 (2017).
Magnusson, M., Fischhoff, I. R., Ecke, F., Hörnfeldt, B. & Ostfeld, R. S. Effect of spatial scale and latitude on diversity–disease relationships. Ecology 101, e02955 (2020).
Halliday, F. W., Rohr, J. R. & Laine, A. L. Biodiversity loss underlies the dilution effect of biodiversity. Ecol. Lett. 23, 1611–1622 (2020).
Prist, P. R. et al. Promoting landscapes with a low zoonotic disease risk through forest restoration: the need for comprehensive guidelines. J. Appl. Ecol. 60, 1510–1521 (2023).
Breed, M. F. et al. Ecosystem restoration: a public health intervention. EcoHealth 18, 269–271 (2021).
Reaser, J. K., Witt, A., Tabor, G. M., Hudson, P. J. & Plowright, R. K. Ecological countermeasures for preventing zoonotic disease outbreaks: when ecological restoration is a human health imperative. Restor. Ecol. 29, e13357 (2021).
European Commission: Directorate-General for Environment Nature Restoration Law – For People, Climate, and Planet (Publications Office of the European Union, 2022).
Reaser, J. K. et al. Fostering landscape immunity to protect human health: a science-based rationale for shifting conservation policy paradigms. Conserv. Lett. 15, e12869 (2022).
Daszak, P. et al. (eds) Workshop Report on Biodiversity and Pandemics of the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2020).
Hopkins, S. R. et al. Evidence gaps and diversity among potential win–win solutions for conservation and human infectious disease control. Lancet Planet. Health 6, e694–e705 (2022).
Plowright, R. K. et al. Ecological countermeasures to prevent pathogen spillover and subsequent pandemics. Nat. Commun. 15, 2577 (2024).
IPCC in Climate Change 2023: Synthesis Report (eds Core Writing Team, Lee, H. & Romero, J.) 35–115 (IPCC, 2023).
Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
Lindgren, E., Andersson, Y., Suk, J. E., Sudre, B. & Semenza, J. C. Monitoring EU emerging infectious disease risk due to climate change. Science 336, 418–419 (2012).
Monaghan, A. J., Moore, S. M., Sampson, K. M., Beard, C. B. & Eisen, R. J. Climate change influences on the annual onset of Lyme disease in the United States. Ticks Tick-Borne Dis. 6, 615–622 (2015).
Semenza, J. C. & Paz, S. Climate change and infectious disease in Europe: impact, projection and adaptation. Lancet Reg. Health Eur. 9, 100230 (2021).
Semenza, J. C. & Ko, A. I. Waterborne diseases that are sensitive to climate variability and climate change. N. Engl. J. Med. 389, 2175–2187 (2023).
Pfenning-Butterworth, A. et al. Interconnecting global threats: climate change, biodiversity loss, and infectious diseases. Lancet Planet. Health 8, e270–e283 (2024).
UNEP. UN Decade of Ecosystem Restoration: 10 Flagship Initiatives Boosting Nature and Livelihoods Around the World. unep.org https://www.unep.org/interactive/flagship-initiatives-boosting-nature-livelihoods/#5 (2023).
African Parks. Rewilding 2,000 Rhino. africanparks.org https://www.africanparks.org/campaign/rewilding-2000-rhino (accessed 1 October 2024).
UNDP. UNDP Green Aral Sea Initiative – Planting a Forest on the Aral Seabed. undp.org https://www.undp.org/uzbekistan/press-releases/green-aral-sea-initiative-planting-forest-aral-seabed (2020).
National Geographic. The Great Green Wall. National Geographic https://education.nationalgeographic.org/resource/great-green-wall/ (accessed 1 October 2024).
UNEP. Becoming #GenerationRestoration: Ecosystem Restoration for People, Nature and Climate (UN Environment Programme, 2021).
Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis (Island Press, 2005).
One Health High-Level Expert Panel et al. One Health: a new definition for a sustainable and healthy future. PLoS Pathog. 18, e1010537 (2022).
Rohr, J. R. et al. A planetary health innovation for disease, food and water challenges in Africa. Nature 619, 782–787 (2023).
European Environment Agency. The Importance of Restoring Nature in Europe Briefing No. 09/2023. eea.europa.eu https://doi.org/10.2800/269094 (2023).
Lepori, F., Palm, D. & Malmqvist, B. Effects of a stream restoration on ecosystem functioning: detritus retentiveness and decomposition. J. Appl. Ecol. 42, 228–238 (2005).
Hering, D. et al. Contrasting the roles of section length and instream habitat enhancement for river restoration success: a field study of 20 European restoration projects. J. Appl. Ecol. 52, 1518–1527 (2015).
Collins, S. L., Knapp, A. K., Briggs, J. M. B., Blair, J. M. & Steinauer, E. M. Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 280, 745–747 (1998).
Ecke, F., Nematollahi Mahani, S. A., Evander, M., Hörnfeldt, B. & Khalil, H. Wildfire-induced short-term changes in a small mammal community increase prevalence of a zoonotic pathogen? Ecol. Evol. 9, 12459–12470 (2019).
Harding, J. S., Benfield, E. F., Bolstad, P. V., Helfman, G. S. & Jones, E. B. D. Stream biodiversity: the ghost of land use past. Proc. Natl Acad. Sci. USA 95, 14843–14847 (1998).
Svenning, J.-C. et al. Science for a wilder Anthropocene: synthesis and future directions for trophic rewilding research. Proc. Natl Acad. Sci. USA 113, 898–906 (2016).
Perino, A. et al. Rewilding complex ecosystems. Science 364, eaav5570 (2019).
Halley, D. J., Saveljev, A. P. & Rosell, F. Population and distribution of beavers Castor fiber and Castor canadensis in Eurasia. Mammal Rev. 51, 1–24 (2021).
Awasthi, B., McConkey, K. R., Aluthwattha, S. T., Chen, C. & Chen, J. Restoring ecological function: interactions between vertebrates and latrines in a reintroduced population of Rhinoceros unicornis. Biol. Conserv. 294, 110611 (2024).
Delibes-Mateos, M., Glikman, J. A., Lafuente, R., Villafuerte, R. & Garrido, F. E. Support to Iberian lynx reintroduction and perceived impacts: assessments before and after reintroduction. Conserv. Sci. Pract. 4, e605 (2022).
Devineau, O. et al. Evaluating the Canada lynx reintroduction programme in Colorado: patterns in mortality. J. Appl. Ecol. 47, 524–531 (2010).
Johnsingh, A. & Madhusudan, M. in Reintroduction of Top-Order Predators (eds Hayward, M. W. & Somers, M. J.) 146–163 (Blackwell, 2009).
Hayward, M. W. et al. The reintroduction of large carnivores to the Eastern Cape, South Africa: an assessment. Oryx 41, 205–214 (2007).
Parsons, M. A. et al. Habitat selection and spatiotemporal interactions of a reintroduced mesocarnivore. J. Wildl. Manag. 83, 1172–1184 (2019).
Landa, A. et al. Conservation of the endangered Arctic fox in Norway - are successful reintroductions enough? Biol. Conserv. 275, 109774 (2022).
Gouar, P. L. et al. Roles of survival and dispersal in reintroduction success of griffon vulture (Gyps fulvus). Ecol. Appl. 18, 859–872 (2008).
Dzialak, M. R., Lacki, M. J. & Vorisek, S. Survival, mortality, and morbidity among peregrine falcons reintroduced in Kentucky. J. Raptor Res. 41, 61–65 (2007).
Green, R. E., Pienkowski, M. W. & Love, J. A. Long-term viability of the re-introduced population of the white-tailed eagle Haliaeetus albicilla in Scotland. J. Appl. Ecol. 33, 357–368 (1996).
Leupin, E. E. & Low, D. J. Burrowing owl reintroduction efforts in the Thompson–Nicola region of British Columbia. J. Raptor Res. 35, 19 (2001).
Mitchell, A. M., Wellicome, T. I., Brodie, D. & Cheng, K. M. Captive-reared burrowing owls show higher site-affinity, survival, and reproductive performance when reintroduced using a soft-release. Biol. Conserv. 144, 1382–1391 (2011).
Markandya, A. et al. Counting the cost of vulture decline—an appraisal of the human health and other benefits of vultures in India. Ecol. Econ. 67, 194–204 (2008).
Stier, A. C. et al. Ecosystem context and historical contingency in apex predator recoveries. Sci. Adv. 2, e1501769 (2016).
Hörnfeldt, B., Carlsson, B. G., Löfgren, O. & Eklund, U. Effects of cyclic food supply on breeding performance in Tengmalm’s owl. Can. J. Zool. 68, 522–530 (1990).
Lapshin, A. S., Andreychev, A. V., Alpeev, M. A. & Kuznetsov, V. A. Breeding success of the Eurasian eagle owl (Bubo bubo, Strigiformes, Strigidae) in artificial nests. Biol. Bull. 50, 1486–1492 (2023).
Zagorski, M. E. & Swihart, R. K. Killing time in cover crops? Artificial perches promote field use by raptors. Ann. Appl. Biol. 177, 358–366 (2020).
Kay, B., Twigg, L., Korn, T. & Nicol, H. The use of artifical perches to increase predation on house mice (Mus domesticus) by raptors. Wildl. Res. 21, 95–105 (1994).
Eby, P. et al. Pathogen spillover driven by rapid changes in bat ecology. Nature 613, 340–344 (2023).
Crawford, R. D. & O’Keefe, J. M. Improving the science and practice of using artificial roosts for bats. Conserv. Biol. 38, e14170 (2024).
Frank, E. G. The economic impacts of ecosystem disruptions: costs from substituting biological pest control. Science 385, eadg0344 (2024).
Weterings, R., Umponstira, C. & Buckley, H. L. Landscape variation influences trophic cascades in dengue vector food webs. Sci. Adv. 4, eaap9534 (2018).
Russell, M. C. et al. Both consumptive and non-consumptive effects of predators impact mosquito populations and have implications for disease transmission. eLife 11, e71503 (2022).
Bowatte, G., Perera, P., Senevirathne, G., Meegaskumbura, S. & Meegaskumbura, M. Tadpoles as dengue mosquito (Aedes aegypti) egg predators. Biol. Control 67, 469–474 (2013).
Fischhoff, I. R., Burtis, J. C., Keesing, F. & Ostfeld, R. S. Tritrophic interactions between a fungal pathogen, a spider predator, and the blacklegged tick. Ecol. Evol. 8, 7824–7834 (2018).
Bentley, M. D. & Day, J. F. Chemical ecology and behavioral aspects of mosquito oviposition. Annu. Rev. Entomol. 34, 401–421 (1989).
Gliwicz, J. & Glowacka, B. Differential responses of Clethrionomys species to forest disturbance in Europe and North America. Can. J. Zool. 78, 1340–1348 (2000).
Morgan Ernest, S. K. & Brown, J. H. Delayed compensation for missing keystone species by colonization. Science 292, 101–104 (2001).
Laundré, J. W., Hernández, L. & Altendorf, K. B. Wolves, elk, and bison: reestablishing the “landscape of fear” in Yellowstone National Park, U.S.A. Can. J. Zool. 79, 1401–1409 (2001).
Staats, E. G., Agosta, S. J. & Vonesh, J. R. Predator diversity reduces habitat colonization by mosquitoes and midges. Biol. Lett. 12, 20160580 (2016).
Hartley, M. & Sainsbury, A. Methods of disease risk analysis in wildlife translocations for conservation purposes. Ecohealth 14, 16–29 (2017).
Magnusson, M. et al. Spatial and temporal variation of hantavirus bank vole infection in managed forest landscapes. Ecosphere 6, art163 (2015).
Pardo, I. et al. The European reference condition concept: a scientific and technical approach to identify minimally-impacted river ecosystems. Sci. Total Environ. 420, 33–42 (2012).
Rocklöv, J. et al. Decision-support tools to build climate resilience against emerging infectious diseases in Europe and beyond. Lancet Reg. Health Europe 32, 100701 (2023).
Pan, Y. et al. The enduring world forest carbon sink. Nature 631, 563–569 (2024).
European Environment Agency. Water Resources Across Europe – Confronting Water Stress: An Updated Assessment (Publications Office of the European Union, 2021).
Levesque, K. & Hamann, A. Identifying western North American tree populations vulnerable to drought under observed and projected climate change. Climate 10, 114 (2022).
Brodin, T., Fick, J., Jonsson, M. & Klaminder, J. Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations. Science 339, 814–815 (2013).
Oaks, J. L. et al. Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427, 630–633 (2004).
Stokstad, E. Vultures face new toxic threat. Science 373, 1187 (2021).
Stone, E. L., Harris, S. & Jones, G. Impacts of artificial lighting on bats: a review of challenges and solutions. Mamm. Biol. 80, 213–219 (2015).
Gaddy, H. G. Using local knowledge in emerging infectious disease research. Soc. Sci. Med 258, 113107 (2020).
Halliday, J. E. B. et al. Driving improvements in emerging disease surveillance through locally relevant capacity strengthening. Science 357, 146–148 (2017).
Vora, N. M. et al. Interventions to reduce risk for pathogen spillover and early disease spread to prevent outbreaks, epidemics, and pandemics. Emerg. Infect. Dis. 29, 1–9 (2023).
Elvander, M., Persson, B. & Lewerin, S. Historical cases of anthrax in Sweden 1916–1961. Transbound. Emerg. Dis. 64, 892–898 (2015).
Sjukdomsrapportering 2011: En Uppdatering av Regeringsrapporten 2006 SVA:s Rapportserie 23. sva.se https://www.sva.se/media/zpmpwfhm/sva-rapport-23-sjukdomsrapportering-2011.pdf (SVA, 2011).
Reyes-García, V. et al. The contributions of Indigenous Peoples and local communities to ecological restoration. Restor. Ecol. 27, 3–8 (2018).
Santini, N. S. & Y, M. The restoration of degraded lands by local communities and Indigenous Peoples. Front. Conserv. Sci. 3, 873659 (2022).
Ortega-Álvarez, R., Tobón, W., Urquiza-Haas, T., Ruiz-González, S. P. & Koleff, P. Exploring local perceptions, implementation, benefits, and limitations of community-based restoration projects in Mexico. Restor. Ecol. 30, e13604 (2022).
Meadows, A. J., Stephenson, N., Madhav, N. K. & Oppenheim, B. Historical trends demonstrate a pattern of increasingly frequent and severe spillover events of high-consequence zoonotic viruses. BMJ Glob. Health 8, e012026 (2023).
Semenza, J. C. Lateral public health: advancing systemic resilience to climate change. Lancet Reg. Health Eur. 9, 100231 (2021).
Hemmerling, S. A., Barra, M. & Bienn, H. C. Elevating local knowledge through participatory modeling: active community engagement in restoration planning in coastal Louisiana. J. Geogr. Syst. 22, 241–266 (2020).
Davidson, G. et al. Forest restoration and the zoonotic vector Anopheles balabacensis in Sabah, Malaysia. EcoHealth 21, 21-37 (2024).
Allan, B. F. et al. Invasive honeysuckle eradication reduces tick-borne disease risk by altering host dynamics. Proc. Natl Acad. Sci. USA 107, 18523–18527 (2010).
Understanding Your Risks: Identifying Hazards and Estimating Losses FEMA Publication 386-2 (Federal Emergency Management Agency, 2001).
UN Office for Disaster Risk Reduction. The Sendai Framework Terminology on Disaster Risk Reduction. undrr.org https://www.undrr.org/terminology (2017).
Environmental Indicators: Typology and Use in Reporting (European Environment Agency, 2003).
Acknowledgements
All authors disclose support for the research of this work from the European Union (grant agreement no. 101060568; project BEPREP).
Author information
Authors and Affiliations
Contributions
F.E., J.C.S. and J.R. conceptualized the study. All authors contributed to writing the original draft.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Ecology & Evolution thanks Rory Gibb, Peter Taylor and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ecke, F., Semenza, J.C., Buzan, E. et al. Adaptive ecosystem restoration to mitigate zoonotic risks. Nat Ecol Evol (2025). https://doi.org/10.1038/s41559-025-02869-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41559-025-02869-3