Ammonia has been proposed as a shipping fuel, yet potential adverse side-effects are poorly understood. We argue that if nitrogen releases from ammonia are not tightly controlled, the scale of the demands of maritime transport are such that the global nitrogen cycle could be substantially altered.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Green energy and steel imports reduce Europe’s net-zero infrastructure needs
Nature Communications Open Access 12 June 2025
-
Exploring techno-economic landscapes of abatement options for hard-to-electrify sectors
Nature Communications Open Access 28 April 2025
-
Expanding the emissions trading system coverage can increase the cost competitiveness of low-carbon ammonia in China
Communications Earth & Environment Open Access 24 March 2025
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout

Change history
14 March 2023
A Correction to this paper has been published: https://doi.org/10.1038/s41560-023-01243-6
References
IPCC Climate Change 2018: Summary for Policymakers. In Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (IPCC, 2018).
Fourth IMO GHG Study 2020 (IMO, 2020); https://www.imo.org/en/OurWork/145Environment/Pages/Fourth-IMO-Greenhouse-Gas-Study-2020.aspx
Bird, F., Clarke, A., Davies, P. & Surkovic, E. Ammonia: Zero–Carbon Fertiliser, Fuel and Energy Store (The Royal Society, 2020); https://royalsociety.org/-/media/policy/projects/green-ammonia/green-ammonia-policy-briefing.pdf
Imhoff, T. B., Gkantonas, S. & Mastorakos, E. Energies 14, 7447 (2021).
Stolz, B., Held, M., Georges, G. & Boulouchos, K. Nat. Energy 7, 203–212 (2022).
Yapicioglu, A. & Dincer, I. Renew. Sustain. Energy Rev. 103, 96–108 (2019).
Gruber, N. & Galloway, J. N. Nature 451, 293–296 (2008).
Steffen, W. et al. Science 347, 1259855 (2015).
Cho, C. P., Pyo, Y. D., Jang, J. Y., Kim, G. C. & Shin, Y. J. Appl. Therm. Eng. 110, 18–24 (2017).
Gill, S. S., Chatha, G. S., Tsolakis, A., Golunski, S. E. & York, A. P. E. Int. J. Hydro. En. 37, 6074–6083 (2012).
Kumar, A., Kamasamudram, K., Currier, N. & Yezerets, A. SCR Architectures for Low N 2 O Emissions (SAE Technical Paper No. 2015-01-1030, 2015).
Chmielarz, L. & Jabłońska, M. RSC Adv. 5, 43408–43431 (2015).
Derwent, R. G. et al. Int. J. Hydro. En. 45, 9211–9221 (2020).
2017 national emissions inventory (NEI) data (USEPA, 2021); https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data
Lhuillier, C., Brequigny, P., Contino, F. & Mounaïm-Rousselle, C. Fuel 269, 117448 (2020).
Tan, P. Q., Zhang, S. C., Wang, S. Y., Hu, Z. Y. & Lou, D. M. J. Energy Inst. 93, 2280–2292 (2020).
Kröcher, O. & Elsener, M. Appl. Catal. B 77, 215–227 (2008).
Ichikawa, Y., Niki, Y., Takasaki, K., Kobayashi, H. & Miyanagi, A. Appl. Energy Combust. Sci. 10, 100071 (2022).
Galloway, J. N. et al. Bioscience 53, 341–356 (2003).
Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. 2006 IPCC guidelines for national greenhouse gas inventories (IGES, 2006).
Signor, D., Cerri, C. E. P. & Conant, R. Environ. Res. Lett. 8, 015013 (2013).
Soil nutrient budget, fertilizers by nutrient (FAOSTAT, 2022); https://www.fao.org/faostat/en/#data/ESB
O’Rourke, P. R. et al. CEDS v_2021_02_05 Release Emission Data (Zenodo, 2021); https://zenodo.org/record/4509372#.Yyyml-zMLdo
IPCC Climate Change 2013: Anthropogenic and natural radiative forcing (eds Myhre, G. et al.) (IPCC, 2014).
Acknowledgements
In the course of our research, we reached out to a large network of scientists specializing in a variety of relevant fields, including nitrogen cycling, energy modeling, emissions estimation, and combustion physics. Their contributions were essential for this Comment. We wish to thank especially Felix Leach, Jasper Verschuur, Rene Banares (Oxford Uni), Martin Haigh (Shell), Epaminondas Mastorakos, Pedro M. de Oliveira (Cambridge Uni), David McCollum (ORNL), Matteo Craglia, Luis Martinez (ITF/OECD), Christopher Ramig (US EPA), Jackson Bryan (Uni Georgia), Bryan Comer, Dan Rutherford (ICCT), Maridee Weber, Haewon McJeon, Jay Fuhrman, and Patrick O’Rourke (JGCRI).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Energy thanks Eiko Nemitz, Agustin Valera-Medina and Elizabeth Lindstad for their contribution to the peer review of this work.
Rights and permissions
About this article
Cite this article
Wolfram, P., Kyle, P., Zhang, X. et al. Using ammonia as a shipping fuel could disturb the nitrogen cycle. Nat Energy 7, 1112–1114 (2022). https://doi.org/10.1038/s41560-022-01124-4
Published:
Issue date:
DOI: https://doi.org/10.1038/s41560-022-01124-4
This article is cited by
-
Green energy and steel imports reduce Europe’s net-zero infrastructure needs
Nature Communications (2025)
-
Emerging opportunities and research questions for green ammonia adoption in agriculture and beyond
Nature Reviews Clean Technology (2025)
-
Expanding the emissions trading system coverage can increase the cost competitiveness of low-carbon ammonia in China
Communications Earth & Environment (2025)
-
Exploring techno-economic landscapes of abatement options for hard-to-electrify sectors
Nature Communications (2025)
-
Environmental risks of the third re-purposing of the Haber-Bosch reaction
Environmental Sustainability (2025)