Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Electrolyte tank costs are an overlooked factor in flow battery economics

Subjects

Abstract

The economic viability of flow battery systems has garnered substantial attention in recent years, but technoeconomic models often overlook the costs associated with electrolyte tanks. This work challenges the commonly assumed insignificance of electrolyte tank costs in flow battery research and demonstrates their substantial impact on overall system economics. Using prices quoted by globally distributed tank manufacturers, it is shown that tank costs in most published technoeconomic models are severely underestimated, if not entirely neglected. Back-of-the-envelope calculations show that electrolyte tanks may constitute up to 40% of the energy component (tank plus electrolyte) costs in MWh-scale flow battery systems. Standardization of flow battery components and the development of high-voltage chemistries are highlighted as paths towards decreasing costs and achieving greater market penetration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Impact of flow battery tank size on cost and installation footprint.

Similar content being viewed by others

References

  1. Sánchez-Díez, E. et al. Redox flow batteries: status and perspective towards sustainable stationary energy storage. J. Power Sources 481, 228804 (2021).

    Google Scholar 

  2. Zhu, Z. et al. Rechargeable batteries for grid scale energy storage. Chem. Rev. 122, 16610–16751 (2022).

    Google Scholar 

  3. Huang, Z. et al. Comprehensive analysis of critical issues in all-vanadium redox flow battery. ACS Sustain. Chem. Eng. 10, 7786–7810 (2022).

    MATH  Google Scholar 

  4. Li, Z. & Lu, Y. C. Material design of aqueous redox flow batteries: fundamental challenges and mitigation strategies. Adv. Mater. 32, 2002132 (2020).

    Google Scholar 

  5. Albertus, P., Manser, J. S. & Litzelman, S. Long-duration electricity storage applications, economics and technologies. Joule 4, 21–32 (2020).

    MATH  Google Scholar 

  6. Li, Z. et al. Air-breathing aqueous sulfur flow battery for ultralow-cost long-duration electrical storage. Joule 1, 306–327 (2017).

    MATH  Google Scholar 

  7. Brushett, F. R., Aziz, M. J. & Rodby, K. E. On lifetime and cost of redox-active organics for aqueous flow batteries. ACS Energy Lett. 5, 879–884 (2020).

    MATH  Google Scholar 

  8. Reber, D., Jarvis, S. R. & Marshak, M. P. Beyond energy density: flow battery design driven by safety and location. Energy Adv. 2, 1357–1365 (2023).

    MATH  Google Scholar 

  9. Viva energy opens Australia’s largest crude oil tank at the Geelong Refinery. Viva Energy Australia (22 November 2017); https://www.vivaenergy.com.au/media/news/2017/viva-energy-opens-australias-largest-crude-oil-tank-at-the-geelong-refinery

  10. Reber, D., Thurston, J. R., Becker, M. & Marshak, M. P. Stability of highly soluble ferrocyanides at neutral pH for energy-dense flow batteries. Cell Rep. Phys. Sci. 4, 101215 (2023).

    Google Scholar 

  11. Trovò, A., Prieto-Díaz, P. A., Zatta, N., Picano, F. & Guarnieri, M. Early investigations on electrolyte mixing issues in large flow battery tanks. Batteries 10, 133 (2024).

    Google Scholar 

  12. Wang, H., Pourmousavi, S. A., Soong, W. L., Zhang, X. & Ertugrul, N. Battery and energy management system for vanadium redox flow battery: a critical review and recommendations. J. Energy Storage 58, 106384 (2023).

    Google Scholar 

  13. Prieto-Díaz, P. A., Ibáñez, S. E. & Vera, M. Fluid dynamics of mixing in the tanks of small vanadium redox flow batteries: insights from order-of-magnitude estimates and transient two-dimensional simulations. Int. J. Heat Mass Transf. 216, 124567 (2023).

    Google Scholar 

  14. Horne, C. R., Hickey, D. B., Kinoshita, K., Mosso, R. J. & Lin, B. Redox flow battery system with divided tank system. PCT patent US20130011702A1 (2013).

  15. Liu, B., Zheng, M., Sun, J. & Yu, Z. No-mixing design of vanadium redox flow battery for enhanced effective energy capacity. J. Energy Storage 23, 278–291 (2019).

    MATH  Google Scholar 

  16. Nemani, V. P. & Smith, K. C. Uncovering the role of flow rate in redox-active polymer flow batteries: simulation of reaction distributions with simultaneous mixing in tanks. Electrochim. Acta 247, 475–485 (2017).

    MATH  Google Scholar 

  17. Mengenschwellen Gemäss Störfallverordnung (StFV) (Bundesamt für Umwelt BAFU, 2024); https://www.bafu.admin.ch/bafu/de/home/themen/stoerfallvorsorge/publikationen-studien/publikationen/mengenschwellen-gemaess-stoerfallverordnung.html

  18. Minke, C. & Ledesma, M. A. D. Impact of cell design and maintenance strategy on life cycle costs of vanadium redox flow batteries. J. Energy Storage 21, 571–580 (2019).

    MATH  Google Scholar 

  19. Minke, C., Kunz, U. & Turek, T. Techno-economic assessment of novel vanadium redox flow batteries with large-area cells. J. Power Sources 361, 105–114 (2017).

    MATH  Google Scholar 

  20. Poli, N., Bonaldo, C., Moretto, M. & Guarnieri, M. Techno-economic assessment of future vanadium flow batteries based on real device/market parameters. Appl. Energy 362, 122954 (2024).

    Google Scholar 

  21. Milshtein, J. D., Darling, R. M., Drake, J., Perry, M. L. & Brushett, F. R. The critical role of supporting electrolyte selection on flow battery cost. J. Electrochem. Soc. 164, A3883 (2017).

    Google Scholar 

  22. Viswanathan, V. et al. Cost and performance model for redox flow batteries. J. Power Sources 247, 1040–1051 (2014).

    MATH  Google Scholar 

  23. Rodby, K. E., Jaffe, R. L., Olivetti, E. A. & Brushett, F. R. Materials availability and supply chain considerations for vanadium in grid-scale redox flow batteries. J. Power Sources 560, 232605 (2023).

    Google Scholar 

  24. Darling, R. M. Techno-economic analyses of several redox flow batteries using levelized cost of energy storage. Curr. Opin. Chem. Eng. 37, 100855 (2022).

    MATH  Google Scholar 

  25. Dmello, R., Milshtein, J. D., Brushett, F. R. & Smith, K. C. Cost-driven materials selection criteria for redox flow battery electrolytes. J. Power Sources 330, 261–272 (2016).

    Google Scholar 

  26. Ha, S. & Gallagher, K. G. Estimating the system price of redox flow batteries for grid storage. J. Power Sources 296, 122–132 (2015).

    MATH  Google Scholar 

  27. Darling, R. M., Gallagher, K. G., Kowalski, J. A., Ha, S. & Brushett, F. R. Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries. Energy Environ. Sci. 7, 3459–3477 (2014).

    Google Scholar 

  28. Turker, B., Klein, S. A., Hammer, E.-M., Lenz, B. & Komsiyska, L. Modeling a vanadium redox flow battery system for large scale applications. Energy Convers. Manag. 66, 26–32 (2013).

    MATH  Google Scholar 

  29. Li, Y., Kienbaum, D., Lüth, T. & Skyllas-Kazacos, M. Long term performance evaluation of a commercial vanadium flow battery system. J. Energy Storage 90, 111790 (2024).

    MATH  Google Scholar 

  30. Noack, J., Wietschel, L., Roznyatovskaya, N., Pinkwart, K. & Tübke, J. Techno-economic modeling and analysis of redox flow battery systems. Energies 9, 627 (2016).

    Google Scholar 

  31. ISO Tank Container (Henan Lishixin Logistics Equipment Co. Ltd, 2024); https://hnlsxtruck.en.made-in-china.com/product/pdRfMWaoYVcE/China-25000-to-26000-Litre-Un-Portable-T11-20FT-Liquid-ISO-Tank-Container-for-Sale.html

  32. Arjun Bhattarai VFlowTech Pte Ltd. Performance Evaluation of a 400 kW-1600 kWh System Designed for Oil Terminals (International Flow Battery Forum, 2024).

  33. Kusano, M., Kanai, T., Arao, Y. & Kubouchi, M. Degradation behavior and lifetime estimation of fiber reinforced plastics tanks for hydrochloric acid storage. Eng. Fail. Anal. 79, 971–979 (2017).

    MATH  Google Scholar 

  34. Amaro, A., Reis, P., Neto, M. & Louro, C. Effects of alkaline and acid solutions on glass/epoxy composites. Polym. Degrad. Stab. 98, 853–862 (2013).

    Google Scholar 

  35. Tang, L. et al. Capital cost evaluation of conventional and emerging redox flow batteries for grid storage applications. Electrochim. Acta 437, 141460 (2023).

    Google Scholar 

  36. Amini, K., Shocron, A. N., Suss, M. E. & Aziz, M. J. Pathways to high-power-density redox flow batteries. ACS Energy Lett. 8, 3526–3535 (2023).

    Google Scholar 

  37. Robb, B. H., Waters, S. E., Saraidaridis, J. D. & Marshak, M. P. Realized potential as neutral pH flow batteries achieve high power densities. Cell Rep. Phys. Sci 3, 101118 (2022).

    Google Scholar 

  38. Perry, M. L., Rodby, K. E. & Brushett, F. R. Untapped potential: the need and opportunity for high-voltage aqueous redox flow batteries. ACS Energy Lett. 7, 659–667 (2022).

    Google Scholar 

  39. Suo, L. et al. ‘Water-in-salt’ electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    MATH  Google Scholar 

  40. Yamada, Y. et al. Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nat. Energy 1, 16129 (2016).

    Google Scholar 

  41. Reber, D., Figi, R., Kuehnel, R.-S. & Battaglia, C. Stability of aqueous electrolytes based on LiFSI and NaFSI. Electrochim. Acta 321, 134644 (2019).

    Google Scholar 

  42. Ding, M. S., von Cresce, A. & Xu, K. Conductivity, viscosity and their correlation of a super-concentrated aqueous electrolyte. J. Phys. Chem. C 121, 2149–2153 (2017).

    MATH  Google Scholar 

  43. Amini, K., Gostick, J. & Pritzker, M. D. Metal and metal oxide electrocatalysts for redox flow batteries. Adv. Funct. Mater. 30, 1910564 (2020).

    MATH  Google Scholar 

  44. Jiang, Q. et al. Recent advances in carbon-based electrocatalysts for vanadium redox flow battery: mechanisms, properties and perspectives. Compos. B. Eng. 242, 110094 (2022).

    MATH  Google Scholar 

  45. Proctor, A. D., Robb, B. H., Saraidaridis, J. D. & Marshak, M. P. Bismuth electrocatalyst enabling reversible redox kinetics of a chelated chromium flow battery anolyte. J. Electrochem. Soc. 169, 030506 (2022).

    Google Scholar 

  46. Jacquemond, R. R. et al. Microstructural engineering of high-power redox flow battery electrodes via non-solvent induced phase separation. Cell Rep. Phys. Sci. 3, 100943 (2022).

    MATH  Google Scholar 

  47. van Gorp, R., van der Heijden, M., Sadeghi, M. A., Gostick, J. & Forner-Cuenca, A. Bottom-up design of porous electrodes by combining a genetic algorithm and a pore network model. Chem. Eng. J. 455, 139947 (2023).

    Google Scholar 

  48. van der Heijden, M., Kroese, M., Borneman, Z. & Forner‐Cuenca, A. Investigating mass transfer relationships in stereolithography 3D printed electrodes for redox flow batteries. Adv. Mater. Technol. 8, 2300611 (2023).

    Google Scholar 

  49. Xi, D. et al. Mild pH-decoupling aqueous flow battery with practical pH recovery. Nat. Energy 9, 479–490 (2024).

    Google Scholar 

  50. Jin, S. et al. Near neutral pH redox flow battery with low permeability and long‐lifetime phosphonated viologen active species. Adv. Energy Mater. 10, 2000100 (2020).

    MATH  Google Scholar 

  51. Zhang, C., Yuan, Z. & Li, X. Designing better flow batteries: an overview on fifty years’ research. ACS Energy Lett. 9, 3456–3473 (2024).

    MATH  Google Scholar 

  52. Luo, J. et al. A 1.51 V pH neutral redox flow battery towards scalable energy storage. J. Mater. Chem. A 7, 9130–9136 (2019).

    MATH  Google Scholar 

  53. Peng, K. et al. Progress and prospects of pH-neutral aqueous organic redox flow batteries: electrolytes and membranes. J. Energy Chem. 96, 89–109 (2024).

    MATH  Google Scholar 

Download references

Acknowledgements

D.R. acknowledges funding from the Swiss National Science Foundation (SNSF) Ambizione Fellowship Z00P2_209078. D.R. also thanks Corsin Battaglia and Empa’s Laboratory Materials for Energy Conversion for hosting his research group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Reber.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Energy thanks Massimo Guarnieri and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source Data Fig. 1

Quoted prices shown in Fig. 1a

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reber, D. Electrolyte tank costs are an overlooked factor in flow battery economics. Nat Energy 10, 23–27 (2025). https://doi.org/10.1038/s41560-024-01677-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41560-024-01677-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing