Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Upscaling high-areal-capacity battery electrodes

Abstract

Moving battery technology from the laboratory to large-scale production is a necessary step in achieving cost competitiveness for high-energy-density batteries. So far, academic research has focused on the active material of the electrode and little attention has been paid to cell-level design, hindering the realization of this goal. Therefore, upscaling high-areal-capacity electrode sheets is proposed as a practical way forward. Here we evaluate the impact of high-areal-capacity electrodes on cell energy densities, energy consumption during electrode fabrication and the cost efficiency of cell production. By examining the integration of scalable roll-to-roll electrode-manufacturing techniques (such as slurry casting and dry coating) with the materials chemistry of the electrode components, electrode structure design and cell performance, we aim to outline the areas of development for high-areal-capacity electrodes and provide a structured pathway for bridging the gap between laboratory innovations and industrial scale-up.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Practical viability of electrode-based approaches for achieving high-energy-density batteries.
Fig. 2: Manufacturing and physico-chemical challenges of R2R high-areal-capacity battery electrodes.
Fig. 3: Electrochemical challenges of the high-areal-capacity battery electrodes.
Fig. 4: Development directions for scalable high-areal-capacity battery electrodes.

Similar content being viewed by others

References

  1. Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018). This paper discusses the development of the entire battery value chain for EV applications.

    Article  Google Scholar 

  2. Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Article  MATH  Google Scholar 

  3. Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

    Article  Google Scholar 

  4. Kim, J.-H. et al. Regulating electrostatic phenomena by cationic polymer binder for scalable high-areal-capacity Li battery electrodes. Nat. Commun. 14, 5721 (2023).

    Article  MATH  Google Scholar 

  5. Park, C. W. et al. Graphene collage on Ni-rich layered oxide cathodes for advanced lithium-ion batteries. Nat. Commun. 12, 2145 (2021).

    Article  MATH  Google Scholar 

  6. Cao, Y., Li, M., Lu, J., Liu, J. & Amine, K. Bridging the academic and industrial metrics for next-generation practical batteries. Nat. Nanotechnol. 14, 200–207 (2019).

    Article  MATH  Google Scholar 

  7. Wu, J. et al. From fundamental understanding to engineering design of high‐performance thick electrodes for scalable energy‐storage systems. Adv. Mater. 33, 2101275 (2021). This paper summarizes the current academic studies of high-areal-capacity electrodes on a laboratory scale.

    Article  Google Scholar 

  8. Xiao, J., Shi, F., Glossmann, T., Burnett, C. & Liu, Z. From laboratory innovations to materials manufacturing for lithium-based batteries. Nat. Energy 8, 329–339 (2023). This paper discusses the knowledge gap between the laboratory-scale synthesis of materials and the mass production of them.

    Article  Google Scholar 

  9. Knehr, K. W., Kubal, J. J., Nelson, P. A. & Ahmed, S. Battery Performance and Cost Modeling for Electric-Drive Vehicles: A Manual for BatPaC v5.0 (Argonne National Laboratory, 2022).

  10. Li, Y. et al. Progress in solvent-free dry-film technology for batteries and supercapacitors. Mater. Today 55, 92–109 (2022).

    Article  MATH  Google Scholar 

  11. Yao, W. et al. A 5 V-class cobalt-free battery cathode with high loading enabled by dry coating. Energy Environ. Sci. 16, 1620–1630 (2023).

    Article  MATH  Google Scholar 

  12. Ludwig, B., Zheng, Z., Shou, W., Wang, Y. & Pan, H. Solvent-free manufacturing of electrodes for lithium-ion batteries. Sci. Rep. 6, 23150 (2016).

    Article  Google Scholar 

  13. Pendashteh, A., Tomey, R. & Vilatela, J. J. Nanotextile 100% Si anodes for the next generation energy‐dense Li‐ion batteries. Adv. Energy Mater. 14, 2304018 (2024).

    Article  Google Scholar 

  14. Lu, Y. et al. Dry electrode technology, the rising star in solid-state battery industrialization. Matter 5, 876–898 (2022). This paper discusses the development of dry electrode fabrication technology.

    Article  MATH  Google Scholar 

  15. Wei, T.-S., Ahn, B. Y., Grotto, J. & Lewis, J. A. 3D printing of customized Li‐ion batteries with thick electrodes. Adv. Mater. 30, 1703027 (2018).

    Article  Google Scholar 

  16. Zhao, Z. et al. Sandwich, vertical‐channeled thick electrodes with high rate and cycle performance. Adv. Funct. Mater. 29, 1809196 (2019).

    Article  Google Scholar 

  17. Chen, C. et al. Highly conductive, lightweight, low‐tortuosity carbon frameworks as ultrathick 3D current collectors. Adv. Energy Mater. 7, 1700595 (2017).

    Article  Google Scholar 

  18. Wu, J. et al. Ultrahigh-capacity and scalable architected battery electrodes via tortuosity modulation. ACS Nano 15, 19109–19118 (2021).

    Article  Google Scholar 

  19. Spiegel, S. et al. Investigation of edge formation during the coating process of Li-ion battery electrodes. J. Coat. Technol. Res. 19, 121–130 (2022).

    Article  MATH  Google Scholar 

  20. Dobroth, T. & Erwin, L. Causes of edge beads in cast films. Polym. Eng. Sci. 26, 462–467 (1986).

    Article  MATH  Google Scholar 

  21. Deegan, R. D. et al. Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829 (1997).

    Article  MATH  Google Scholar 

  22. Schmitt, M., Scharfer, P. & Schabel, W. Slot die coating of lithium-ion battery electrodes: investigations on edge effect issues for stripe and pattern coatings. J. Coat. Technol. Res. 11, 57–63 (2014).

    Article  MATH  Google Scholar 

  23. Günther, T. et al. Classification of calendering‐induced electrode defects and their influence on subsequent processes of lithium‐ion battery production. Energy Technol. 8, 1900026 (2020).

    Article  MATH  Google Scholar 

  24. Jaiser, S. et al. Investigation of film solidification and binder migration during drying of Li-ion battery anodes. J. Power Sources 318, 210–219 (2016).

    Article  MATH  Google Scholar 

  25. Routh, A. F. & Zimmerman, W. B. Distribution of particles during solvent evaporation from films. Chem. Eng. Sci. 59, 2961–2968 (2004).

    Article  MATH  Google Scholar 

  26. Zhou, J., Man, X., Jiang, Y. & Doi, M. Structure formation in soft‐matter solutions induced by solvent evaporation. Adv. Mater. 29, 1703769 (2017).

    Article  Google Scholar 

  27. Kumberg, J. et al. Drying of lithium-ion battery anodes for use in high-energy cells: influence of electrode thickness on drying time, adhesion, and crack formation. Energy Technol. 7, 1900722 (2019).

    Article  Google Scholar 

  28. Kim, J.-H., Kim, J.-M., Cho, S.-K., Kim, N.-Y. & Lee, S.-Y. Redox-homogeneous, gel electrolyte-embedded high-mass-loading cathodes for high-energy lithium metal batteries. Nat. Commun. 13, 2541 (2022).

    Article  MATH  Google Scholar 

  29. Singh, K. B. & Tirumkudulu, M. S. Cracking in drying colloidal films. Phys. Rev. Lett. 98, 218302 (2007).

    Article  Google Scholar 

  30. Park, S.-H. et al. High areal capacity battery electrodes enabled by segregated nanotube networks. Nat. Energy 4, 560–567 (2019).

    Article  MATH  Google Scholar 

  31. Bresser, D., Buchholz, D., Moretti, A., Varzi, A. & Passerini, S. Alternative binders for sustainable electrochemical energy storage–the transition to aqueous electrode processing and bio-derived polymers. Energy Environ. Sci. 11, 3096–3127 (2018).

    Article  Google Scholar 

  32. Kwade, A. et al. Current status and challenges for automotive battery production technologies. Nat. Energy 3, 290–300 (2018).

    Article  MATH  Google Scholar 

  33. Yang, C. et al. Roll-to-roll prelithiation of lithium-ion battery anodes by transfer printing. Nat. Energy 8, 703–713 (2023).

    Article  MATH  Google Scholar 

  34. Schäfer, R. et al. Effects of electrode curvature in Li-ion cells. J. Electrochem. Soc. 170, 120519 (2023).

    Article  MATH  Google Scholar 

  35. Ge, X. et al. Mechano‐graded electrodes mitigate the mismatch between mechanical reliability and energy density for foldable lithium‐ion batteries. Adv. Mater. 34, 2206797 (2022).

    Article  Google Scholar 

  36. Waldmann, T., Scurtu, R.-G., Richter, K. & Wohlfahrt-Mehrens, M. 18650 vs. 21700 Li-ion cells – a direct comparison of electrochemical, thermal, and geometrical properties. J. Power Sources 472, 228614 (2020).

    Article  Google Scholar 

  37. Kim, J. et al. 10 mAh cm−2 cathode by roll‐to‐roll process for low cost and high energy density Li‐ion batteries. Adv. Energy Mater. 14, 2303455 (2024).

    Article  Google Scholar 

  38. Ludwig, B. et al. Understanding interfacial‐energy‐driven dry powder mixing for solvent‐free additive manufacturing of Li‐ion battery electrodes. Adv. Mater. Interfaces 4, 1700570 (2017).

    Article  Google Scholar 

  39. Żenkiewicz, M. Methods for the calculation of surface free energy of solids. J. Achiev. Mater. Manuf. Eng. 24, 137–145 (2007).

    MATH  Google Scholar 

  40. Kim, H. et al. Ozone-treated carbon nanotube as a conductive agent for dry-processed lithium-ion battery cathode. ACS Energy Lett. 8, 3460–3466 (2023).

    Article  MATH  Google Scholar 

  41. Wang, X. et al. A polytetrafluoroethylene-based solvent-free procedure for the manufacturing of lithium-ion batteries. Materials 16, 7232 (2023).

    Article  MATH  Google Scholar 

  42. Sato, K., Tominaga, Y., Imai, Y., Yoshiyama, T. & Aburatani, Y. Deformation capability of poly(tetrafluoroethylene) materials: estimation with X-ray diffraction measurements. Polym. Test. 113, 107690 (2022).

    Article  Google Scholar 

  43. Meyer, C., Kosfeld, M., Haselrieder, W. & Kwade, A. Process modeling of the electrode calendering of lithium-ion batteries regarding variation of cathode active materials and mass loadings. J. Energy Storage 18, 371–379 (2018).

    Article  Google Scholar 

  44. Ryu, H.-H., Park, K.-J., Yoon, C. S. & Sun, Y.-K. Capacity fading of Ni-rich Li[NixCoyMn1−xy]O2 (0.6 ≤ x ≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem. Mater. 30, 1155–1163 (2018).

    Article  Google Scholar 

  45. Chen, S. et al. Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-metal batteries. Joule 3, 1094–1105 (2019).

    Article  MATH  Google Scholar 

  46. Mayer, D. et al. Investigation of the mechanical behavior of electrodes after calendering and its influence on singulation and cell performance. Processes 9, 2009 (2021).

    Article  MATH  Google Scholar 

  47. Ogihara, N., Itou, Y., Sasaki, T. & Takeuchi, Y. Impedance spectroscopy characterization of porous electrodes under different electrode thickness using a symmetric cell for high-performance lithium-ion batteries. J. Phys. Chem. C 119, 4612–4619 (2015).

    Article  MATH  Google Scholar 

  48. Zhang, X. et al. Multiscale understanding and architecture design of high energy/power lithium‐ion battery electrodes. Adv. Energy Mater. 11, 2000808 (2021).

    Article  MATH  Google Scholar 

  49. Westphal, B., Bockholt, H., Günther, T., Haselrieder, W. & Kwade, A. Influence of convective drying parameters on electrode performance and physical electrode properties. ECS Trans. 64, 57 (2015).

    Article  Google Scholar 

  50. Danner, T. et al. Thick electrodes for Li-ion batteries: a model based analysis. J. Power Sources 334, 191–201 (2016).

    Article  MATH  Google Scholar 

  51. Doyle, M., Newman, J., Gozdz, A. S., Schmutz, C. N. & Tarascon, J.-M. Comparison of modeling predictions with experimental data from plastic lithium ion cells. J. Electrochem. Soc. 143, 1890 (1996).

    Article  Google Scholar 

  52. Bruggeman, D. A. G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 416, 636–664 (1935).

    Article  Google Scholar 

  53. Thorat, I. V. et al. Quantifying tortuosity in porous Li-ion battery materials. J. Power Sources 188, 592–600 (2009).

    Article  MATH  Google Scholar 

  54. Park, K.-Y. et al. Understanding capacity fading mechanism of thick electrodes for lithium-ion rechargeable batteries. J. Power Sources 468, 228369 (2020).

    Article  Google Scholar 

  55. Bisquert, J. Influence of the boundaries in the impedance of porous film electrodes. Phys. Chem. Chem. Phys. 2, 4185–4192 (2000).

    Article  MATH  Google Scholar 

  56. Ogihara, N. et al. Theoretical and experimental analysis of porous electrodes for lithium-ion batteries by electrochemical impedance spectroscopy using a symmetric cell. J. Electrochem. Soc. 159, A1034 (2012).

    Article  MATH  Google Scholar 

  57. Doyle, M., Fuller, T. F. & Newman, J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J. Electrochem. Soc. 140, 1526 (1993).

    Article  Google Scholar 

  58. Gallagher, K. G. et al. Optimizing areal capacities through understanding the limitations of lithium-ion electrodes. J. Electrochem. Soc. 163, A138 (2016).

    Article  MATH  Google Scholar 

  59. Tambio, S. et al. The concept of effective porosity in the discharge rate performance of high-density positive electrodes for automotive application. J. Electrochem. Soc. 167, 160509 (2020).

    Article  Google Scholar 

  60. Kim, H. et al. Failure mode of thick cathodes for Li-ion batteries: variation of state-of-charge along the electrode thickness direction. Electrochim. Acta 370, 137743 (2021).

    Article  MATH  Google Scholar 

  61. Ju, Z. et al. Unveiling the dimensionality effect of conductive fillers in thick battery electrodes for high-energy storage systems. Appl. Phys. Rev. 7, 041405 (2020).

    Article  Google Scholar 

  62. Usseglio-Viretta, F. L. E. et al. Resolving the discrepancy in tortuosity factor estimation for Li-ion battery electrodes through micro-macro modeling and experiment. J. Electrochem. Soc. 165, A3403–A3426 (2018).

    Article  MATH  Google Scholar 

  63. Xu, R., Sun, H., de Vasconcelos, L. S. & Zhao, K. Mechanical and structural degradation of LiNixMnyCozO2 cathode in Li-ion batteries: an experimental study. J. Electrochem. Soc. 164, A3333 (2017).

    Article  Google Scholar 

  64. Yan, P. et al. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat. Energy 3, 600–605 (2018).

    Article  MATH  Google Scholar 

  65. Liu, T. et al. Rational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy. Nat. Commun. 12, 6024 (2021).

    Article  MATH  Google Scholar 

  66. Cha, H. et al. Boosting reaction homogeneity in high‐energy lithium‐ion battery cathode materials. Adv. Mater. 32, 2003040 (2020).

    Article  MATH  Google Scholar 

  67. Langdon, J. & Manthiram, A. A perspective on single-crystal layered oxide cathodes for lithium-ion batteries. Energy Storage Mater. 37, 143–160 (2021).

    Article  MATH  Google Scholar 

  68. Chen, Z. & Zhao, Y. Tortuosity estimation and microstructure optimization of non-uniform porous heterogeneous electrodes. J. Power Sources 596, 234095 (2024).

    Article  Google Scholar 

  69. Cho, H. & Park, K. Mitigating the kinetic hindrance of the poly/single-crystalline Ni-rich cathode-based electrode via formation of the superior electronic/ionic pathway. ACS Appl. Energy Mater. 5, 11223–11228 (2022).

    Article  MATH  Google Scholar 

  70. Chung, S.-Y., Bloking, J. T. & Chiang, Y.-M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 1, 123–128 (2002).

    Article  Google Scholar 

  71. Zacharias, N. A. et al. Direct measurements of effective ionic transport in porous Li-ion electrodes. J. Electrochem. Soc. 160, A306 (2012).

    Article  MATH  Google Scholar 

  72. Ebner, M., Chung, D.-W., García, R. E. & Wood, V. Tortuosity anisotropy in lithium-ion battery electrodes. Adv. Energy Mater. 4, 1301278 (2014).

    Article  Google Scholar 

  73. Lu, X. et al. Multiscale dynamics of charging and plating in graphite electrodes coupling operando microscopy and phase-field modelling. Nat. Commun. 14, 5127 (2023).

    Article  MATH  Google Scholar 

  74. Fischer, S., Doose, S., Müller, J., Höfels, C. & Kwade, A. Impact of spheroidization of natural graphite on fast-charging capability of anodes for LIB. Batteries 9, 305 (2023).

    Article  Google Scholar 

  75. Kim, N., Kim, Y., Sung, J. & Cho, J. Issues impeding the commercialization of laboratory innovations for energy-dense Si-containing lithium-ion batteries. Nat. Energy 8, 921–933 (2023).

    Article  MATH  Google Scholar 

  76. Peng, J. & Snyder, G. J. A figure of merit for flexibility. Science 366, 690–691 (2019).

    Article  MATH  Google Scholar 

  77. Choi, S., Kwon, T.-w, Coskun, A. & Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357, 279–283 (2017).

    Article  MATH  Google Scholar 

  78. Hunter, C. A. & Sanders, J. K. M. The nature of ππ interactions. J. Am. Chem. Soc. 112, 5525–5534 (1990).

    Article  MATH  Google Scholar 

  79. Lee, J. et al. Enhancing hydrophilicity of thick electrodes for high energy density aqueous batteries. Nanomicro Lett. 15, 97 (2023).

    MATH  Google Scholar 

  80. Stauffer, D. & Aharony, A. Introduction to Percolation Theory (Taylor & Francis, 2018)

  81. Li, J. et al. Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv. Funct. Mater. 17, 3207–3215 (2007).

    Article  MATH  Google Scholar 

  82. Tian, R. et al. Quantifying the effect of electronic conductivity on the rate performance of nanocomposite battery electrodes. ACS Appl. Energy Mater. 3, 2966–2974 (2020).

    Article  MATH  Google Scholar 

  83. Kim, J. H. et al. Perspective on carbon nanotubes as conducting agent in lithium-ion batteries: the status and future challenges. Carbon Lett. 33, 325–333 (2023).

    Article  MATH  Google Scholar 

  84. Li, H. et al. Significance of current collectors for high performance conventional lithium‐ion batteries: a review. Adv. Funct. Mater. 33, 2305515 (2023).

    Article  Google Scholar 

  85. Ryu, M., Hong, Y.-K., Lee, S.-Y. & Park, J. H. Ultrahigh loading dry-process for solvent-free lithium-ion battery electrode fabrication. Nat. Commun. 14, 1316 (2023).

    Article  MATH  Google Scholar 

  86. Fritsch, M. et al. Lightweight polymer–carbon composite current collector for lithium-ion batteries. Batteries 6, 60 (2020).

    Article  MATH  Google Scholar 

  87. Ye, Y. et al. Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries. Nat. Energy 5, 786–793 (2020).

    Article  MATH  Google Scholar 

  88. Chen, Z. et al. Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nat. Energy 1, 15009 (2016).

    Article  Google Scholar 

  89. Li, L. et al. Large-scale current collectors for regulating heat transfer and enhancing battery safety. Nat. Chem. Eng. 1, 542–551 (2024).

    Article  MATH  Google Scholar 

  90. Frith, J. T., Lacey, M. J. & Ulissi, U. A non-academic perspective on the future of lithium-based batteries. Nat. Commun. 14, 420 (2023). This paper discusses the importance of integrating an understanding of industrial processes into academic research for advancing TRLs.

    Article  Google Scholar 

  91. Oh, H. et al. Development of a feasible and scalable manufacturing method for PTFE-based solvent-free lithium-ion battery electrodes. Chem. Eng. J. 491, 151957 (2024).

    Article  Google Scholar 

  92. Font, F., Protas, B., Richardson, G. & Foster, J. M. Binder migration during drying of lithium-ion battery electrodes: modelling and comparison to experiment. J. Power Sources 393, 177–185 (2018).

    Article  MATH  Google Scholar 

  93. Chang, J. H. et al. Binder migration: frequently observed yet overlooked phenomena in electrode processing for lithium-ion batteries. J. Energy Storage 83, 110729 (2024).

    Article  MATH  Google Scholar 

  94. Liu, D., Chen, L.-C., Liu, T.-J., Chu, W.-B. & Tiu, C. Improvement of lithium‐ion battery performance by two‐layered slot–die coating operation. Energy Technol. 5, 1235–1241 (2017).

    Article  MATH  Google Scholar 

  95. Liu, L., Guan, P. & Liu, C. Experimental and simulation investigations of porosity graded cathodes in mitigating battery degradation of high voltage lithium-ion batteries. J. Electrochem. Soc. 164, A3163 (2017).

    Article  Google Scholar 

  96. Lu, X. et al. Multi-length scale microstructural design of lithium-ion battery electrodes for improved discharge rate performance. Energy Environ. Sci. 14, 5929–5946 (2021).

    Article  MATH  Google Scholar 

  97. Billaud, J., Bouville, F., Magrini, T., Villevieille, C. & Studart, A. R. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat. Energy 1, 16097 (2016).

    Article  Google Scholar 

  98. Shodiev, A. et al. Insight on electrolyte infiltration of lithium ion battery electrodes by means of a new three-dimensional-resolved lattice Boltzmann model. Energy Storage Mater. 38, 80–92 (2021).

    Article  MATH  Google Scholar 

  99. Cui, H., Song, Y., Ren, D., Wang, L. & He, X. Electrocapillary boosting electrode wetting for high-energy lithium-ion batteries. Joule 8, 29–44 (2024).

    Article  MATH  Google Scholar 

  100. Yan, W. et al. Hard-carbon-stabilized Li–Si anodes for high-performance all-solid-state Li-ion batteries. Nat. Energy 8, 800–813 (2023).

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (RS-2024-00344021 and RS-2024-00455177) and LG Energy Solution. G.Y. acknowledges the support from the Center for Mesoscale Transport Properties, an Energy Frontier Research Center supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under award #DE-SC0012673, as well as from the Welch Foundation F-1861.

Author information

Authors and Affiliations

Authors

Contributions

J.-H.K., N.-Y.K. and S.-Y.L. conceived the project. J.-H.K., N.-Y.K. and M.-S.P. investigated the industrial electrode manufacturing processes. J.-H.K. performed the specific energy and cost analyses of the cells. Z.J. conducted the theoretical calculations of cell performance. J.-H.K., K.-D.K. and S.-J.L. conducted the literature studies on slurry-cast electrode processing. J.-H.K., N.-Y.K., J.-H.P. and S.-S.C. carried out the literature studies on dry-coated electrode processing. J.-H.K., Z.J. and Y.-K.H. performed the literature studies on alternative electrode-processing methods. J.-Y.K., G.Y. and S.-Y.L. supervised the overall project. All authors contributed to the writing and revision of the manuscript.

Corresponding authors

Correspondence to Je-Young Kim, Guihua Yu or Sang-Young Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Anyuan Cao, Matthew Li and Moumita Rana for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JH., Kim, NY., Ju, Z. et al. Upscaling high-areal-capacity battery electrodes. Nat Energy 10, 295–307 (2025). https://doi.org/10.1038/s41560-025-01720-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41560-025-01720-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing