Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Present status of and future opportunities for all-perovskite tandem photovoltaics

Abstract

All-perovskite tandem solar cells represent the forefront of next-generation photovoltaic technologies, offering a promising pathway to exceeding the Shockley–Queisser efficiency limits of single-junction solar cells while maintaining cost-effectiveness and scalability. However, the transition from laboratory-scale prototypes to commercially viable products faces numerous challenges. Large-area fabrication requires the development of scalable manufacturing techniques while minimizing performance losses compared with laboratory-scale spin coating. Additionally, achieving long-term stability, reliability, efficient integration from cell to module, and high yield during practical deployment remain critical hurdles. Here we address these key aspects, summarize the latest field advancements and highlight strategies to overcome these challenges. By offering insights into the pathway towards reliable, durable and high-performance all-perovskite tandem photovoltaics, we aim to support their deployment in large-scale applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies to enhance efficiency in WBG and NBG subcells.
Fig. 2: Operational stability of subcells and tandem photovoltaics.
Fig. 3: Upscaling the fabrication of all-perovskite tandem cells.
Fig. 4: Prospects of all-perovskite tandem photovoltaics.

Similar content being viewed by others

References

  1. Green, M. A. et al. Solar cell efficiency tables (version 65). Prog. Photovolt. Res. Appl. 33, 3–15 (2025).

    Article  Google Scholar 

  2. Aydin, E. et al. Pathways toward commercial perovskite/silicon tandem photovoltaics. Science 383, eadh3849 (2024).

    Article  Google Scholar 

  3. Marti, A. & Araújo, G. L. Limiting efficiencies for photovoltaic energy conversion in multigap systems. Sol. Energy Mater. Sol. Cells 43, 203–222 (1996).

    Article  Google Scholar 

  4. Chung, I. et al. CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 134, 8579–8587 (2012).

    Article  Google Scholar 

  5. Lin, R. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nat. Energy 4, 864–873 (2019). This work demonstrates an NBG subcell exceeding 21% efficiency, accompanied by the design of a key tunnel junction structure.

    Article  Google Scholar 

  6. Xiao, K. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5, 870–880 (2020).

    Article  Google Scholar 

  7. Yu, D. et al. Electron-withdrawing organic ligand for high-efficiency all-perovskite tandem solar cells. Nat. Energy 9, 298–307 (2024).

    Article  Google Scholar 

  8. Wang, D. et al. All‐in‐one additive enabled efficient and stable narrow‐bandgap perovskites for monolithic all‐perovskite tandem solar cells. Adv. Mater. 36, 2411677 (2024).

    Article  Google Scholar 

  9. Yang, M. et al. Sn–Pb perovskite with strong light and oxygen stability for all‐perovskite tandem solar cells. Adv. Mater. 37, 2415627 (2025).

    Article  Google Scholar 

  10. Yang, Z. et al. Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells. Nat. Commun. 10, 4498 (2019).

    Article  Google Scholar 

  11. Lin, R. et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature 603, 73–78 (2022). This study shows all-perovskite tandem solar cells outperforming their highest-efficiency single-junction counterparts.

    Article  Google Scholar 

  12. Tong, J. et al. Carrier control in Sn–Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nat. Energy 7, 642–651 (2022).

    Article  Google Scholar 

  13. Oliver, R. D. J. et al. Understanding and suppressing non-radiative losses in methylammonium-free wide-bandgap perovskite solar cells. Energy Environ. Sci. 15, 714–726 (2022).

    Article  Google Scholar 

  14. Mahesh, S. et al. Revealing the origin of voltage loss in mixed-halide perovskite solar cells. Energy Environ. Sci. 13, 258–267 (2020).

    Article  MathSciNet  Google Scholar 

  15. Stolterfoht, M. et al. How to quantify the efficiency potential of neat perovskite films: perovskite semiconductors with an implied efficiency exceeding 28%. Adv. Mater. 32, 2000080 (2020).

    Article  Google Scholar 

  16. Hörantner, M. T. & Snaith, H. J. Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions. Energy Environ. Sci. 10, 1983–1993 (2017).

    Article  Google Scholar 

  17. Macpherson, S. et al. Local nanoscale phase impurities are degradation sites in halide perovskites. Nature 607, 294–300 (2022).

    Article  Google Scholar 

  18. Frohna, K. et al. The impact of interfacial quality and nanoscale performance disorder on the stability of alloyed perovskite solar cells. Nat. Energy 10, 66–76 (2024).

    Article  Google Scholar 

  19. Jiang, Q. et al. Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. Science 378, 1295–1300 (2022). This work advances WBG subcell performance and achieves long-lasting stability of all-perovskite tandem solar cells.

    Article  Google Scholar 

  20. Wen, J. et al. Steric engineering enables efficient and photostable wide‐bandgap perovskites for all‐perovskite tandem solar cells. Adv. Mater. 34, 2110356 (2022).

    Article  Google Scholar 

  21. Ternes, S., Laufer, F. & Paetzold, U. W. Modeling and fundamental dynamics of vacuum, gas, and antisolvent quenching for scalable perovskite processes. Adv. Sci. 11, 2308901 (2024).

    Article  Google Scholar 

  22. Wang, C. et al. A universal close-space annealing strategy towards high-quality perovskite absorbers enabling efficient all-perovskite tandem solar cells. Nat. Energy 7, 744–753 (2022).

    Article  Google Scholar 

  23. Wu, Z. et al. Enhancing photovoltaically preferred orientation in wide‐bandgap perovskite for efficient all‐perovskite tandem solar cells. Adv. Mater. 37, 202412943 (2025).

    Google Scholar 

  24. Isikgor, F. H. et al. Molecular engineering of contact interfaces for high-performance perovskite solar cells. Nat. Rev. Mater. 8, 89–108 (2022).

    Article  Google Scholar 

  25. Lin, R. et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature 620, 994–1000 (2023).

    Article  Google Scholar 

  26. Li, C. et al. Diamine chelates for increased stability in mixed Sn–Pb and all-perovskite tandem solar cells. Nat. Energy 9, 1388–1396 (2024).

    Article  Google Scholar 

  27. Yang, G. et al. Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nat. Photonics 15, 681–689 (2021).

    Article  Google Scholar 

  28. Caprioglio, P. et al. Open-circuit and short-circuit loss management in wide-gap perovskite p–i–n solar cells. Nat. Commun. 14, 932 (2023).

    Article  Google Scholar 

  29. Liu, Z. et al. Reducing perovskite/C60 interface losses via sequential interface engineering for efficient perovskite/silicon tandem solar cell. Adv. Mater. 36, 2308370 (2024).

    Article  Google Scholar 

  30. Pan, Y. et al. Surface chemical polishing and passivation minimize non-radiative recombination for all-perovskite tandem solar cells. Nat. Commun. 15, 7335 (2024).

    Article  Google Scholar 

  31. Wang, X. et al. Highly efficient perovskite/organic tandem solar cells enabled by mixed‐cation surface modulation. Adv. Mater. 35, 2305946 (2023).

    Article  Google Scholar 

  32. Liu, C. et al. Bimolecularly passivated interface enables efficient and stable inverted perovskite solar cells. Science 382, 810–815 (2023).

    Article  Google Scholar 

  33. Sun, R. et al. An orientation-enhanced interlayer enables efficient Sn–Pb binary perovskite solar cells and all-perovskite tandem solar cells with high fill factors. Nano Lett. 25, 138–146 (2025).

    Article  Google Scholar 

  34. Liu, Z. et al. All-perovskite tandem solar cells achieving >29% efficiency with improved (100) orientation in wide-bandgap perovskites. Nat. Mater. 24, 252–259 (2025).

    Article  Google Scholar 

  35. Liu, J. et al. Efficient and stable perovskite–silicon tandem solar cells through contact displacement by MgFx. Science 377, 302–306 (2022).

    Article  Google Scholar 

  36. Yang, X. et al. Buried interfaces in halide perovskite photovoltaics. Adv. Mater. 33, 2006435 (2021).

    Article  Google Scholar 

  37. Xiao, T. et al. Elimination of grain surface concavities for improved perovskite thin-film interfaces. Nat. Energy 9, 999–1010 (2024).

    Article  Google Scholar 

  38. Zhu, J. et al. A donor–acceptor-type hole-selective contact reducing non-radiative recombination losses in both subcells towards efficient all-perovskite tandems. Nat. Energy 8, 714–724 (2023).

    Article  Google Scholar 

  39. Zhu, J. et al. Self-assembled hole-selective contact for efficient Sn–Pb perovskite solar cells and all-perovskite tandems. Nat. Commun. 16, 240 (2025).

    Article  Google Scholar 

  40. Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020). This work broadens the use of SAMs in WBG subcells, offering important insights for inverted perovskite architectures.

    Article  Google Scholar 

  41. He, R. et al. Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature 618, 80–86 (2023).

    Article  Google Scholar 

  42. Zhou, S. et al. Aspartate all-in-one doping strategy enables efficient all-perovskite tandems. Nature 624, 69–73 (2023).

    Article  Google Scholar 

  43. Hu, S. et al. Optimized carrier extraction at interfaces for 23.6% efficient tin–lead perovskite solar cells. Energy Environ. Sci. 15, 2096–2107 (2022).

    Article  Google Scholar 

  44. Wang, J. et al. Halide homogenization for low energy loss in 2-eV-bandgap perovskites and increased efficiency in all-perovskite triple-junction solar cells. Nat. Energy 9, 70–80 (2023).

    Article  Google Scholar 

  45. Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).

    Article  Google Scholar 

  46. Barker, A. J. et al. Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett. 2, 1416–1424 (2017).

    Article  Google Scholar 

  47. Beal, R. E. et al. Structural origins of light-induced phase segregation in organic–inorganic halide perovskite photovoltaic materials. Matter 2, 207–219 (2020).

    Article  Google Scholar 

  48. Mcmeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–156 (2016).

    Article  Google Scholar 

  49. Palmstrom, A. F. et al. Enabling flexible all-perovskite tandem solar cells. Joule 3, 2193–2204 (2019).

    Article  Google Scholar 

  50. Huang, Z. et al. Stable, bromine-free, tetragonal perovskites with 1.7 eV bandgaps via A-site cation substitution. ACS Mater. Lett. 2, 869–872 (2020).

    Article  Google Scholar 

  51. Xu, J. et al. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science 367, 1097–1104 (2020).

    Article  Google Scholar 

  52. Tang, X. et al. Local observation of phase segregation in mixed-halide perovskite. Nano Lett. 18, 2172–2178 (2018).

    Article  Google Scholar 

  53. Ahn, N. et al. Trapped charge-driven degradation of perovskite solar cells. Nat. Commun. 7, 13422 (2016).

    Article  Google Scholar 

  54. Khenkin, M. V., Anoop, K. M., Katz, E. A. & Visoly-Fisher, I. Bias-dependent degradation of various solar cells: lessons for stability of perovskite photovoltaics. Energy Environ. Sci. 12, 550–558 (2019).

    Article  Google Scholar 

  55. Lin, Y. et al. Excess charge-carrier induced instability of hybrid perovskites. Nat. Commun. 9, 4981 (2018).

    Article  Google Scholar 

  56. Wen, J. et al. Heterojunction formed via 3D-to-2D perovskite conversion for photostable wide-bandgap perovskite solar cells. Nat. Commun. 14, 7118 (2023).

    Article  Google Scholar 

  57. Park, S. M. et al. Low-loss contacts on textured substrates for inverted perovskite solar cells. Nature 624, 289–294 (2023).

    Article  Google Scholar 

  58. Tang, H. et al. Reinforcing self-assembly of hole transport molecules for stable inverted perovskite solar cells. Science 383, 1236–1240 (2024).

    Article  Google Scholar 

  59. Elnaggar, M. et al. Decoupling contributions of charge‐transport interlayers to light‐induced degradation of p–i–n perovskite solar cells. Sol. RRL 4, 2000191 (2020).

    Article  Google Scholar 

  60. Liu, L. et al. Self‐assembled amphiphilic monolayer for efficient and stable wide‐bandgap perovskite solar cells. Adv. Energy Mater. 13, 2202802 (2023).

    Article  Google Scholar 

  61. Wang, R. et al. Efficient wide-bandgap perovskite photovoltaics with homogeneous halogen-phase distribution. Nat. Commun. 15, 8899 (2024).

    Article  Google Scholar 

  62. Xie, Y. et al. Homogeneous grain boundary passivation in wide‐bandgap perovskite films enables fabrication of monolithic perovskite/organic tandem solar cells with over 21% efficiency. Adv. Funct. Mater. 32, 2112126 (2022).

    Article  Google Scholar 

  63. Susic, I., Gil-Escrig, L., Palazon, F., Sessolo, M. & Bolink, H. J. Quadruple-cation wide-bandgap perovskite solar cells with enhanced thermal stability enabled by vacuum deposition. ACS Energy Lett. 7, 1355–1363 (2022).

    Article  Google Scholar 

  64. Li, T. et al. Inorganic wide-bandgap perovskite subcells with dipole bridge for all-perovskite tandems. Nat. Energy 8, 610–620 (2023).

    Article  Google Scholar 

  65. Wang, C. et al. Suppressing phase segregation in wide bandgap perovskites for monolithic perovskite/organic tandem solar cells with reduced voltage loss. Small 18, 2204081 (2022).

    Article  Google Scholar 

  66. Shen, X. et al. Chloride‐based additive engineering for efficient and stable wide‐bandgap perovskite solar cells. Adv. Mater. 35, 2211742 (2023).

    Article  Google Scholar 

  67. Zhang, Z. et al. Organizing uniform phase distribution in methylammonium‐free 1.77 eV wide‐bandgap inverted perovskite solar cells. Small 19, 2303213 (2023).

    Article  Google Scholar 

  68. Guo, X. et al. Stabilizing efficient wide-bandgap perovskite in perovskite–organic tandem solar cells. Joule 8, 2554–2569 (2024).

    Article  Google Scholar 

  69. Fang, H. et al. Efficient blade‐coated wide‐bandgap and tandem perovskite solar cells via a three‐step restraining strategy. Adv. Mater. 37, 2414790 (2025).

    Article  Google Scholar 

  70. Tzoganakis, N., Spiliarotis, E., Tsikritzis, D. & Kymakis, E. 4F-phenethylammonium chloride as a key component for interfacial engineering of wide-bandgap perovskite absorber. Nano Energy 128, 109914 (2024).

    Article  Google Scholar 

  71. Azmi, R. et al. Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022).

    Article  Google Scholar 

  72. Chen, H. et al. Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photonics 31, 1903559 (2022).

    Google Scholar 

  73. Choi, H. et al. A review on reducing grain boundaries and morphological improvement of perovskite solar cells from methodology and material-based perspectives. Small Methods 4, 1900569 (2020).

    Article  Google Scholar 

  74. Chen, B. et al. Bifacial all-perovskite tandem solar cells. Sci. Adv. 8, eadd0377 (2022).

    Article  Google Scholar 

  75. Sun, Q. et al. Surface charge transfer doping of narrow-bandgap Sn–Pb perovskites for high-performance tandem solar cells. Energy Environ. Sci. 17, 2512–2520 (2024).

    Article  Google Scholar 

  76. Wang, J. et al. Enhancing photostability of Sn–Pb perovskite solar cells by an alkylammonium pseudo‐halogen additive. Adv. Energy Mater. 13, 2204115 (2023).

    Article  Google Scholar 

  77. Wang, M. et al. Ammonium cations with high pKa in perovskite solar cells for improved high-temperature photostability. Nat. Energy 8, 1229–1239 (2023).

    Article  Google Scholar 

  78. Zhou, Y. et al. Defect-less formamidinium Sn–Pb perovskite grown on a fluorinated substrate with top-down crystallization control for efficient and stable photovoltaics. Energy Environ. Sci. 17, 2845–2855 (2024).

    Article  Google Scholar 

  79. Wu, P. et al. Efficient and thermally stable all‐perovskite tandem solar cells using all‐FA narrow‐bandgap perovskite and metal‐oxide‐based tunnel junction. Adv. Energy Mater. 12, 2202948 (2022).

    Article  MathSciNet  Google Scholar 

  80. Tan, S. et al. Sustainable thermal regulation improves stability and efficiency in all-perovskite tandem solar cells. Nat. Commun. 15, 4136 (2024).

    Article  Google Scholar 

  81. Lin, Z. et al. Self-assembly construction of a homojunction of Sn–Pb perovskite using an antioxidant for all-perovskite tandem solar cells with improved efficiency and stability. Energy Environ. Sci. 17, 6314–6322 (2024).

    Article  Google Scholar 

  82. Yu, Z. et al. Solution‐processed ternary tin (ii) alloy as hole‐transport layer of Sn–Pb perovskite solar cells for enhanced efficiency and stability. Adv. Mater. 34, 2205769 (2022).

    Article  Google Scholar 

  83. Lee, S. et al. Unprecedented inorganic HTL-based MA-free Sn–Pb perovskite photovoltaics with an efficiency over 23%. Energy Environ. Sci. 17, 8140–8150 (2024).

    Article  Google Scholar 

  84. Alsulami, A. et al. Triiodide formation governs oxidation mechanism of tin–lead perovskite solar cells via A-site choice. J. Am. Chem. Soc. 146, 22970–22981 (2024).

    Article  Google Scholar 

  85. Zhang, Y. et al. Synchronized crystallization in tin–lead perovskite solar cells. Nat. Commun. 15, 6887 (2024).

    Article  Google Scholar 

  86. Duan, C. et al. Durable all-inorganic perovskite tandem photovoltaics. Nature 637, 1111–1117 (2025).

    Article  Google Scholar 

  87. He, D. et al. Synergistic passivation of buried interface and grain boundary of tin–lead mixed perovskite films for efficient solar cells. Adv. Funct. Mater. 34, 2411750 (2024).

    Article  Google Scholar 

  88. Song, J. et al. Multifunctional ammonium sulfide enables highest efficiency lead–tin perovskite solar cells. Adv. Funct. Mater. 35, 202411746 (2025).

    Article  Google Scholar 

  89. Zhu, J. et al. Custom-tailored hole transport layer using oxalic acid for high-quality tin–lead perovskites and efficient all-perovskite tandems. Sci. Adv. 10, eadl2063 (2024).

    Article  Google Scholar 

  90. Li, G. et al. Boosting all‐perovskite tandem solar cells by revitalizing the buried tin–lead perovskite interface. Adv. Mater. 36, 2401698 (2024).

    Article  Google Scholar 

  91. Fu, S. et al. Suppressed deprotonation enables a durable buried interface in tin–lead perovskite for all-perovskite tandem solar cells. Joule 8, 2220–2237 (2024).

    Article  Google Scholar 

  92. Yu, Z. et al. Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nat. Energy 5, 657–665 (2020).

    Article  Google Scholar 

  93. Wang, Y. et al. Oxidation-resistant all-perovskite tandem solar cells in substrate configuration. Nat. Commun. 14, 1819 (2023).

    Article  Google Scholar 

  94. Liu, C. et al. Efficient all‐perovskite tandem solar cells with low‐optical‐loss carbazolyl interconnecting layers. Angew. Chem. 135, e202313374 (2023).

    Article  Google Scholar 

  95. Chen, W. et al. Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nat. Energy 7, 229–237 (2022).

    Article  Google Scholar 

  96. Brinkmann, K. O. et al. Perovskite–organic tandem solar cells with indium oxide interconnect. Nature 604, 280–286 (2022).

    Article  Google Scholar 

  97. Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).

    Article  Google Scholar 

  98. Wang, Y. et al. Homogenized contact in all-perovskite tandems using tailored 2D perovskite. Nature 635, 867–873 (2024).

    Article  Google Scholar 

  99. Xiao, K. et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science 376, 762–767 (2022). Report of an all-blade-coated all-perovskite tandem mini-module.

    Article  Google Scholar 

  100. Gao, H. et al. Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules. Science 383, 855–859 (2024).

    Article  Google Scholar 

  101. Dai, X. et al. Efficient monolithic all-perovskite tandem solar modules with small cell-to-module derate. Nat. Energy 7, 923–931 (2022).

    Article  Google Scholar 

  102. Duan, C. et al. Scalable fabrication of wide-bandgap perovskites using green solvents for tandem solar cells. Nat. Energy 10, 318–328 (2025).

    Article  Google Scholar 

  103. Abdollahi Nejand, B. et al. Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency. Nat. Energy 7, 620–630 (2022). Report on all-perovskite tandem modules.

    Article  Google Scholar 

  104. Park, N. G. & Zhu, K. Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 5, 333–350 (2020).

    Article  Google Scholar 

  105. Li, L. et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nat. Energy 7, 708–717 (2022). Report on flexible all-perovskite tandem solar cells.

    Article  Google Scholar 

  106. Shi, Y. et al. High‐speed deposition of large‐area narrow‐bandgap perovskite films for all‐perovskite tandem solar mini‐modules. Adv. Funct. Mater. 33, 2307209 (2023).

    Article  Google Scholar 

  107. Sun, H. et al. Scalable solution-processed hybrid electron transport layers for efficient all-perovskite tandem solar modules. Adv. Mater. 36, 2308706 (2024).

    Article  Google Scholar 

  108. Siegrist, S. et al. Stabilizing solution–substrate interaction of perovskite ink on PEDOT:PSS for scalable blade coated narrow bandgap perovskite solar modules by gas quenching. Sol. RRL 8, 2400447 (2024).

    Article  Google Scholar 

  109. Zhou, X. et al. Suppressing nonradiative losses in wide-band-gap perovskites affords efficient and printable all-perovskite tandem solar cells with a metal-free charge recombination layer. ACS Energy Lett. 8, 502–512 (2023).

    Article  Google Scholar 

  110. Pu, D. et al. Enhancing efficiency and intrinsic stability of large-area blade-coated wide-bandgap perovskite solar cells through strain release. Adv. Funct. Mater. 34, 202314349 (2024).

    Article  Google Scholar 

  111. Zeng, L. et al. 2D–3D heterostructure enables scalable coating of efficient low-bandgap Sn–Pb mixed perovskite solar cells. Nano Energy 66, 104099 (2019).

    Article  Google Scholar 

  112. Li, C. et al. Vertically aligned 2D/3D Pb–Sn perovskites with enhanced charge extraction and suppressed phase segregation for efficient printable Solar Cells. ACS Energy Lett. 5, 1386–1395 (2020).

    Article  Google Scholar 

  113. Babu, V. et al. Toward up-scaling the four-terminal all-perovskite tandem solar modules on flexible substrates. Mater. Today Energy 28, 101073 (2022).

    Article  Google Scholar 

  114. Yin, M. et al. A revisit of crystallization in tin halide perovskite thin films: from nucleation, intermediate to crystal growth. Adv. Funct. Mater. 34, 2404792 (2024).

    Article  Google Scholar 

  115. Hu, S. et al. Narrow bandgap metal halide perovskites for all-perovskite tandem photovoltaics. Chem. Rev. 124, 4079–4123 (2024).

    Article  Google Scholar 

  116. Philipps, S. P. & Bett, A. W. III–V multi-junction solar cells and concentrating photovoltaic (CPV) systems. Adv. Opt. Technol. 3, 469–478 (2014).

    Article  Google Scholar 

  117. Hörantner, M. T. et al. The potential of multijunction perovskite solar cells. ACS Energy Lett. 2, 2506–2513 (2017).

    Article  Google Scholar 

  118. Hu, S. et al. Steering perovskite precursor solutions for multijunction photovoltaics. Nature 639, 93–101 (2025). Report on the fabrication of four-junction all-perovskite tandem solar cells.

    Article  Google Scholar 

  119. Liu, S. et al. Triple-junction solar cells with cyanate in ultrawide-bandgap perovskites. Nature 628, 306–312 (2024).

    Article  Google Scholar 

  120. Wang, Z. et al. Suppressed phase segregation for triple-junction perovskite solar cells. Nature 618, 74–79 (2023).

    Article  Google Scholar 

  121. Gao, Y. et al. Performance optimization of monolithic all-perovskite tandem solar cells under standard and real-world solar spectra. Joule 6, 1944–1963 (2022).

    Article  Google Scholar 

  122. Gota, F., An, S. X., Hu, H., Abdollahi Nejand, B. & Paetzold, U. W. Energy yield modeling of bifacial all‐perovskite two‐terminal tandem photovoltaics. Adv. Opt. Mater. 11, 2201691 (2023).

    Article  Google Scholar 

  123. Li, H. et al. Revealing the output power potential of bifacial monolithic all-perovskite tandem solar cells. eLight 2, 21 (2022).

    Article  Google Scholar 

  124. Xu, W. et al. Multifunctional entinostat enhances the mechanical robustness and efficiency of flexible perovskite solar cells and minimodules. Nat. Photonics 18, 379–387 (2024).

    Article  Google Scholar 

  125. Mousavi, S. M. et al. Addressing the efficiency loss and degradation of triple cation perovskite solar cells via integrated light managing encapsulation. Mater. Today Energy 46, 101707 (2024).

    Article  Google Scholar 

  126. Zhang, G. et al. Shellac protects perovskite solar cell modules under real-world conditions. Joule 8, 496–508 (2024).

    Article  Google Scholar 

  127. Chen, H. et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2023).

    Article  Google Scholar 

  128. Zhao, D. et al. Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat. Energy 3, 1093–1100 (2018).

    Article  Google Scholar 

  129. Tong, J. et al. Carrier lifetimes of >1 ms in Sn–Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364, 475–479 (2019).

    Article  Google Scholar 

  130. Ko, Y., Park, H., Lee, C., Kang, Y. & Jun, Y. Recent progress in interconnection layer for hybrid photovoltaic tandems. Adv. Mater. 32, 2002196 (2020).

    Article  Google Scholar 

  131. Brivio, F., Walker, A. B. & Walsh, A. Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Mater. 1, 042111 (2013).

    Article  Google Scholar 

  132. Walsh, A. Principles of chemical bonding and band gap engineering in hybrid organic–inorganic halide perovskites. J. Phys. Chem. C 119, 5755–5760 (2015).

    Article  Google Scholar 

  133. Heo, J. H. & Im, S. H. CH3NH3PbBr3–CH3NH3PbI3 perovskite–perovskite tandem solar cells with exceeding 2.2 V open circuit voltage. Adv. Mater. 28, 5121–5125 (2016).

    Article  Google Scholar 

  134. Eperon, G. E. et al. Perovskite–perovskite tandem photovoltaics with optimized band gaps. Science 354, 861–865 (2016). Report on fabricating all-perovskite tandem cells using ideally bandgap-matched subcells.

    Article  Google Scholar 

  135. Forgács, D. et al. Efficient monolithic perovskite/perovskite tandem solar cells. Adv. Energy Mater. 7, 1602121 (2017).

    Article  Google Scholar 

  136. Rajagopal, A. et al. Highly efficient perovskite–perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv. Mater. 29, 1702140 (2017).

    Article  Google Scholar 

  137. Leijtens, T. et al. Tin–lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells. Sustain. Energy Fuels 2, 2450–2459 (2018).

    Article  Google Scholar 

  138. Gao, H. et al. Thermally stable all-perovskite tandem solar cells fully using metal oxide charge transport layers and tunnel junction. Sol. RRL 5, 2100814 (2021).

    Article  Google Scholar 

  139. Zhou, H. et al. Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014).

    Article  Google Scholar 

  140. Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

    Article  Google Scholar 

  141. Yang, W. S. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

    Article  Google Scholar 

  142. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13, 460–466 (2019).

    Article  Google Scholar 

  143. Jeong, J. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021).

    Article  Google Scholar 

  144. Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).

    Article  Google Scholar 

  145. Min, H. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598, 444–450 (2021).

    Article  Google Scholar 

  146. Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023).

    Article  Google Scholar 

  147. Chen, H. et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 193, 189–193 (2024).

    Article  Google Scholar 

  148. Zhao, D. et al. Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy 2, 17018 (2017).

    Article  Google Scholar 

  149. Moradbeigi, M. & Razaghi, M. Investigation of optical and electrical properties of novel 4T all perovskite tandem solar cell. Sci. Rep. 12, 6733 (2022).

    Article  Google Scholar 

  150. Zeng, G. et al. Trapping tetravalent tin and protecting stannous in tin–lead mixed perovskites for efficient all‐perovskite tandem solar cells. Adv. Funct. Mater. 35, 4048–4058 (2025).

    Article  Google Scholar 

  151. Guan, H. et al. Efficient 1.77 eV-bandgap perovskite and all-perovskite tandem solar cells enabled by long-alkyl phosphonic acid. Energy Environ. Sci. 17, 8219–8227 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

H.T. and J.W. acknowledge financial support from the National Key Research and Development Program of China (2022YFB4200304), National Natural Science Foundation of China (T2325016, U21A2076, 61974063, 62125402, 62321166653 and 62305150), Natural Science Foundation of Jiangsu Province (BE2022021, BE2022026, BK20202008, BK20190315 and BK20232022), Fundamental Research Funds for the Central Universities (0213/14380206 and 0205/14380252), Frontiers Science Center for Critical Earth Material Cycling Fund (DLTD2109), “GeoX” Interdisciplinary Research Funds for the Frontiers Science Center for Critical Earth Material Cycling at Nanjing University and Program for Innovative Talents and Entrepreneurs in Jiangsu. H.H. and U.W.P. acknowledge funding partly provided by the European Union (ERC Consolidator Grant, LAMI-PERO; 101087673). However, the views and opinions expressed are those of the authors only and do not necessarily reflect those of the European Union or European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them. H.H. and U.W.P. acknowledge funding by the Helmholtz Association via the programme-oriented funding (POFIV, MTET T1, 38.01.03) and SolarTAP. C.C. acknowledges support from the Innovation Project of Optics Valley Laboratory (OVL2024ZD002). D.P.M. and H.J.S. are funded by the European Union. However, the views and opinions expressed are those of the authors only and do not necessarily reflect those of the European Union or the Research and Innovation Agency. Neither the European Union nor the granting authority can be held responsible for them. The NEXUS project has received funding from the European Union’s Horizon Europe research and innovation programme under grant agreement number 101075330. We acknowledge additional support from the programme grants funded by the Engineering and Physical Sciences Research Council, including Application Targeted and Integrated Photovoltaics (EP/T028513/1) and Health Education and Training for Public Value (EP/V027131/1).

Author information

Authors and Affiliations

Authors

Contributions

J.W., H.H., C.C. and D.P.M. jointly contributed to the conceptualization, literature analysis, figure preparation, and manuscript writing. R.L., K.X. and Y.L. compiled the data for the article. H.T., H.J.S., U.W.P. and J.T. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Henry J. Snaith, Jiang Tang, Ulrich W. Paetzold or Hairen Tan.

Ethics declarations

Competing interests

H.T. is the founder, Chief Scientific Officer and Chairman of Renshine Solar, a company that is commercializing perovskite photovoltaics. H.J.S. is the co-founder and Chief Scientific Officer of Oxford PV. The other authors declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Michael Saliba, Atsushi Wakamiya and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, J., Hu, H., Chen, C. et al. Present status of and future opportunities for all-perovskite tandem photovoltaics. Nat Energy 10, 681–696 (2025). https://doi.org/10.1038/s41560-025-01782-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41560-025-01782-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing