Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Chemical factors controlling the behaviour of oxide cathodes in batteries

Subjects

Abstract

Oxide cathodes enable high-energy lithium-ion and sodium-ion batteries, with their performances fundamentally governed by three interrelated chemical factors: electronic configuration, chemical bonding and chemical reactivity. Here we illustrate how these factors dictate the redox energy, structural stability, ionic and electronic transport, and interfacial behaviour in both layered oxide and polyanion oxide cathodes. We discuss how crystal field effects and octahedral-site stabilization energies influence cation migration, and how inductive effects tune bond covalency and operating voltages. We also explain how chemical bonding governs thermal stability, gas evolution and first-cycle capacity loss, and how alignment of the transition metal redox band with the oxygen 2p band determines electrolyte reactivity. A comparison between lithium and sodium layered oxides further reveals how differences in Li–O and Na–O bond ionicity affect chemical reactivity. Finally, we outline strategies, including compositional tuning, surface doping and electrolyte optimization, for the development of new materials with improved performance, and emphasize how high-throughput, data-driven approaches can offer guidance for the design of next-generation oxide cathodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Battery performance metrics and influencing factors.
Fig. 2: Influence of electronic configuration on the oxide cathode performance.
Fig. 3: Influence of chemical bonding on the oxide cathode performance.
Fig. 4: Influence of chemical reactivity on the oxide cathode performance.
Fig. 5: Comparison between lithium and sodium layered oxide cathodes.

Similar content being viewed by others

References

  1. Battery market size, share, and trends 2025 to 2034. Precedence Research https://www.precedenceresearch.com/battery-market (2025).

  2. Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 192, 1126–1127 (1976).

    Article  Google Scholar 

  3. Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. LixCoO2 (0 < x < −1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980).

    Article  Google Scholar 

  4. Thackeray, M. M., David, W. I. F., Bruce, P. G. & Goodenough, J. B. Lithium insertion into manganese spinels. Mater. Res. Bull. 18, 461–472 (1983).

    Article  Google Scholar 

  5. Manthiram, A. & Goodenough, J. B. Lithium insertion into Fe2(MO4)3 frameworks: comparison of M = W with M = Mo. J. Solid State Chem. 71, 349–360 (1987).

    Article  Google Scholar 

  6. Manthiram, A. & Goodenough, J. B. Lithium insertion into Fe2(SO4)3 frameworks. J. Power Sources 26, 403–408 (1989).

    Article  Google Scholar 

  7. Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997).

    Article  Google Scholar 

  8. Kwade, A. et al. Current status and challenges for automotive battery production technologies. Nat. Energy 3, 290–300 (2018).

    Article  Google Scholar 

  9. Li, W., Erickson, E. M. & Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 5, 26–34 (2020).

    Article  Google Scholar 

  10. Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020).

    Article  Google Scholar 

  11. Armstrong, A. R., Dupre, N., Paterson, A. J., Grey, C. P. & Bruce, P. G. Combined neutron diffraction, NMR, and electrochemical investigation of the layered-to-spinel transformation in LiMnO2. Chem. Mater. 16, 3106–3118 (2004).

    Article  Google Scholar 

  12. Dunitz, J. D. & Orgel, L. E. Electronic properties of transition-metal oxides-II. J. Phys. Chem. Solids 3, 318–323 (1957).

    Article  Google Scholar 

  13. McClure, D. S. The distribution of transition metal cations in spinels. J. Phys. Chem. Solids 3, 311–317 (1957).

    Article  Google Scholar 

  14. Zhan, C. et al. Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate–carbon systems. Nat. Commun. 4, 2437 (2013).

    Article  Google Scholar 

  15. Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022).

    Article  Google Scholar 

  16. Wang, P.-F., You, Y., Yin, Y.-X. & Guo, Y.-G. Layered oxide cathodes for sodium-ion batteries: phase transition, air stability, and performance. Adv. Energy Mater. 8, 1701912 (2018).

    Article  Google Scholar 

  17. Guo, Y.-J. et al. Sodium layered oxide cathodes: properties, practicality and prospects. Chem. Soc. Rev. 53, 7828–7874 (2024).

    Article  Google Scholar 

  18. Asl, H. Y. & Manthiram, A. Reining in dissolved transition-metal ions. Science 369, 140–141 (2020).

    Article  Google Scholar 

  19. Asl, H. Y. & Manthiram, A. Proton-induced disproportionation of Jahn–Teller-active transition-metal ions in oxides due to electronically driven lattice instability. J. Am. Chem. Soc. 142, 21122–21130 (2020).

    Article  Google Scholar 

  20. Chebiam, R. V., Kannan, A. M., Prado, F. & Manthiram, A. Comparison of the chemical stability of the high energy density cathodes of lithium-ion batteries. Electrochem. Commun. 3, 624–627 (2001).

    Article  Google Scholar 

  21. Nishizawa, M. & Yamamura, S. Irreversible conductivity change of Li1−xCoO2 on electrochemical lithium insertion/extraction, desirable for battery applications. Chem. Commun. 1631–1632 (1998).

  22. Chen, L., Cui, Z. & Manthiram, A. Decoding gas evolution pathways and interfacial chemistry in layered oxide cathodes for safer sodium-ion batteries. Adv. Energy Mater. https://doi.org/10.1002/aenm.202504756 (2025).

  23. Cui, Z., Liu, C., Wang, F. & Manthiram, A. Navigating thermal stability intricacies of high-nickel cathodes for high-energy lithium batteries. Nat. Energy 10, 490–501 (2025).

    Article  Google Scholar 

  24. Guo, Z., Cui, Z. & Manthiram, A. Reducing the initial capacity loss in high-nickel cathodes with a higher upper cut-off voltage formation cycle protocol. ACS Energy Lett. 9, 3316–3323 (2024).

    Article  Google Scholar 

  25. Croguennec, L., Pouillerie, C. & Delmas, C. Structural characterisation of new metastable NiO2 phases. Solid State Ion. 135, 259–266 (2000).

    Article  Google Scholar 

  26. Pouillerie, C., Croguennec, L. & Delmas, C. The LixNi1−yMgyO2 (y = 0.05, 0.10) system: structural modifications observed upon cycling. Solid State Ion. 132, 15–29 (2000).

    Article  Google Scholar 

  27. Croguennec, L., Pouillerie, C. & Delmas, C. NiO2 obtained by electrochemical lithium deintercalation from lithium nickelate: structural modifications. J. Electrochem. Soc. 147, 1314–1321 (2000).

    Article  Google Scholar 

  28. Cui, Z., Guo, Z. & Manthiram, A. Assessing the intrinsic roles of key dopant elements in high-nickel layered oxide cathodes in lithium-based batteries. Adv. Energy Mater. 13, 2203853 (2023).

    Article  Google Scholar 

  29. Choi, J. & Manthiram, A. Structural and electrochemical characterization of the layered LiNi0.5−yMn0.5−yCo2yO2 (0 ≤ 2y ≤ 1) cathodes. Solid State Ion. 176, 2251–2256 (2005).

    Article  Google Scholar 

  30. Cho, J., Kim, Y. J. & Park, B. Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chem. Mater. 12, 3788–3791 (2000).

    Article  Google Scholar 

  31. Liu, Q. et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy 3, 936–943 (2018).

    Article  Google Scholar 

  32. Yamada, S., Fujiwara, M. & Kanda, M. Synthesis and properties of LiNiO2 as cathode material for secondary batteries. J. Power Sources 54, 209–213 (1995).

    Article  Google Scholar 

  33. Li, H., Zhang, N., Li, J. & Dahn, J. R. Updating the structure and electrochemistry of LixNiO2 for 0 ≤ x ≤ 1. J. Electrochem. Soc. 165, A2985–A2993 (2018).

    Article  Google Scholar 

  34. Jung, R., Metzger, M., Maglia, F., Stinner, C. & Gasteiger, H. A. Chemical versus electrochemical electrolyte oxidation on NMC111, NMC622, NMC811, LNMO, and conductive carbon. J. Phys. Chem. Lett. 8, 4820–4825 (2017).

    Article  Google Scholar 

  35. Wandt, J., Freiberg, A. T. S., Ogrodnik, A. & Gasteiger, H. A. Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries. Mater. Today 21, 825–833 (2018).

    Article  Google Scholar 

  36. Jung, R., Strobl, P., Maglia, F., Stinner, C. & Gasteiger, H. A. Temperature dependence of oxygen release from LiNi0.6Mn0.2Co0.2O2 (NMC622) cathode materials for Li-ion batteries. J. Electrochem. Soc. 165, A2869–A2879 (2018).

    Article  Google Scholar 

  37. Sim, R., Cui, Z. & Manthiram, A. Impact of dopants on suppressing gas evolution from high-nickel layered oxide cathodes. ACS Energy Lett. 8, 5143–5148 (2023).

    Article  Google Scholar 

  38. Sim, R. & Manthiram, A. Factors influencing gas evolution from high-nickel layered oxide cathodes in lithium-based batteries. Adv. Energy Mater. 14, 2303985 (2024).

    Article  Google Scholar 

  39. Cui, Z., Zuo, P., Guo, Z., Wang, C. & Manthiram, A. Formation and detriments of residual alkaline compounds on high-nickel layered oxide cathodes. Adv. Mater. 36, 2402420 (2024).

    Article  Google Scholar 

  40. Liu, C., Cui, Z. & Manthiram, A. Tuning dopant distribution for stabilizing the surface of high-nickel layered oxide cathodes for lithium-ion batteries. Adv. Energy Mater. 14, 2302722 (2024).

    Article  Google Scholar 

  41. Pan, R., Jo, E., Cui, Z. & Manthiram, A. Degradation pathways of cobalt-free LiNiO2 cathode in lithium batteries. Adv. Funct. Mater. 33, 2211461 (2023).

    Article  Google Scholar 

  42. Lee, S., Su, L., Mesnier, A., Cui, Z. & Manthiram, A. Cracking vs. surface reactivity in high-nickel cathodes for lithium-ion batteries. Joule 7, 2430–2444 (2023).

    Article  Google Scholar 

  43. Nisar, U., Muralidharan, N., Essehli, R., Amin, R. & Belharouak, I. Valuation of surface coatings in high-energy density lithium-ion battery cathode materials. Energy Storage Mater. 38, 309–328 (2021).

    Article  Google Scholar 

  44. Wang, L. et al. Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries. Nano Energy 34, 215–223 (2017).

    Article  Google Scholar 

  45. Sada, K., Kmiec, S. & Manthiram, A. Mitigating sodium ordering for enhanced solid solution behavior in layered NaNiO2 cathodes. Angew. Chem. Int. Ed. 63, e202403865 (2024).

    Article  Google Scholar 

  46. Zuo, W. et al. The stability of P2-layered sodium transition metal oxides in ambient atmospheres. Nat. Commun. 11, 3544 (2020).

    Article  Google Scholar 

  47. Zuo, W. et al. Engineering Na+-layer spacings to stabilize Mn-based layered cathodes for sodium-ion batteries. Nat. Commun. 12, 4903 (2021).

    Article  Google Scholar 

  48. Yang, Y. et al. Decoupling the air sensitivity of Na-layered oxides. Science 385, 744–752 (2024).

    Article  Google Scholar 

  49. Ye, Z. et al. Impact of salts and linear carbonates on the performance of layered oxide/hard carbon sodium-ion pouch cells with alkyl carbonate electrolytes. J. Electrochem. Soc. 171, 040522 (2024).

    Article  Google Scholar 

  50. Hijazi, H. et al. Can layered oxide/hard carbon sodium-ion pouch cells with simple electrolyte additives achieve better cycle life than LFP/graphite cells? J. Electrochem. Soc. 171, 050521 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under award number DE-SC0005397 and the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), Office of Vehicle Technologies of the US Department of Energy through the Advanced Battery Materials Research (BMR) Program (Battery500 Consortium) award number DE-AC05-76RLO1830.

Author information

Authors and Affiliations

Authors

Contributions

A.M. and Z.C. conceived the idea and wrote the paper. A.M. supervised the work.

Corresponding author

Correspondence to Arumugam Manthiram.

Ethics declarations

Competing interests

A.M. is a co-founder of TexPower EV Technologies, a company focusing on cobalt-free cathode materials for lithium-based batteries. Z.C. declares no competing interests.

Peer review

Peer review information

Nature Energy thanks Gui-Liang Xu, Lin Gu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manthiram, A., Cui, Z. Chemical factors controlling the behaviour of oxide cathodes in batteries. Nat Energy (2026). https://doi.org/10.1038/s41560-025-01963-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41560-025-01963-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing