Extended Data Fig. 5: Simple kinematic model for slip propagation. | Nature Geoscience

Extended Data Fig. 5: Simple kinematic model for slip propagation.

From: Slip-rate-dependent friction as a universal mechanism for slow slip events

Extended Data Fig. 5

a, Model illustration. We assume 200 km × 63 km slipping patch (light yellow) embedded in a half space with its lower edge at a depth of 26 km. For displacement of each patch, we impose the time evolution of slip derived from the spring-slider model adjusted to the Guerrero example (Fig. 4d). We considered three cases for slip propagation along the strike direction at: (i) 1 km/day, (ii) 5 km/day, and (iii) a case with simultaneous slip in the entire patch. Panel b, shows an example of slip propagation for the 1 km/day case. The fault slip is converted to surface deformation using an elastic dislocation (Okada) model48 and the normalized displacements are plotted in panels c&d, for comparison with the observed Guerrero gap GPS timeseries. The result shows that the case with a propagation rate of 5 km/day (red) is nearly indistinguishable from the case of simultaneous slip (equivalent to an infinitely fast propagation). The case with 1 km/day (blue) which is at the lower end of the typical rate of propagation of SSEs, is also only slightly altered by the effect of the propagation.

Back to article page