Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Variation in slip behaviour along megathrusts controlled by multiple physical properties

Abstract

Megathrusts, faults at the plate interface in subduction zones, exhibit substantial spatiotemporal variability in their slip behaviour. Many previous attempts to discern the physical controls on their slip behaviour have focused on individual variables, often associated with the physical properties of either the subducting plate (for example, its age and roughness) or the overriding plate (for example, its thickness and rigidity). Such studies, which are often location-specific or focused on single variables, have fuelled contrasting views on the relative importance of various physical properties on megathrust slip behaviour. Here we synthesize observations of the Alaska, Hikurangi and Nankai subduction zones to ascertain the main causes of the well-documented changes in interseismic coupling and earthquake behaviour along their megathrusts. In all three cases, along-trench changes in the distribution of rigid crustal rocks in the forearc, the geometry of the subducting slab and the upper-plate stress state drive considerable variability in the downdip width of the seismogenic zone. The subducting plate is systematically rougher in creeping regions, with fault-zone heterogeneity promoting a mixture of moderate to large earthquakes, near-trench seismicity and slow-slip events. Smoother subducting plate segments (with thicker sediment cover) are more strongly correlated with deep interseismic coupling and great (>Mw 8) earthquakes. In the three regions considered, there is no one dominant variable. Rather, we conclude that several physical properties affecting the dimensions and heterogeneity of megathrusts collectively explain observed along-trench transitions in slip behaviour at these subduction zones, and potentially at many other subduction zones worldwide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spatial variability in slip behaviour.
Fig. 2: Incoming plate roughness and trench-slope morphology.
Fig. 3: Incoming plate roughness and sediment cover.
Fig. 4: Downdip dimensions of the seismogenic zone.
Fig. 5: Along-strike synthesis.
Fig. 6: Common factors impacting slip behaviour in Alaska, New Zealand and southwestern Japan and the interplay between these.

Similar content being viewed by others

References

  1. McCaffrey, R. Global frequency of magnitude 9 earthquakes. Geology 36, 263–266 (2008).

    Google Scholar 

  2. Wang, K., Zhu, Y., Nissen, E. & Shen, Z. K. On the relevance of geodetic deformation rates to earthquake potential. Geophys. Res. Lett. 48, e2021GL093231 (2021).

    Google Scholar 

  3. Wang, K. & Bilek, S. L. Invited review paper: fault creep caused by subduction of rough seafloor relief. Tectonophysics 610, 1–24 (2014).

    Google Scholar 

  4. Saffer, D. M. & Wallace, L. M. The frictional, hydrologic, metamorphic and thermal habitat of shallow slow earthquakes. Nat. Geosci. 8, 594–600 (2015).

    CAS  Google Scholar 

  5. Saffer, D. M. & Tobin, H. J. Hydrogeology and mechanics of subduction zone forearcs: fluid flow and pore pressure. Annu. Rev. Earth Planet. Sci. 39, 157–186 (2011).

    CAS  Google Scholar 

  6. Barnes, P. M. et al. Slow slip source characterized by lithological and geometric heterogeneity. Sci. Adv. 6, eaay3314 (2020).

    CAS  Google Scholar 

  7. Scholz, C. & Campos, J. On the mechanism of seismic decoupling and back arc spreading at subduction zones. J. Geophys. Res. Solid Earth 100, 22103–22115 (1995).

    Google Scholar 

  8. Scholz, C. H. & Campos, J. The seismic coupling of subduction zones revisited. J. Geophys. Res. Solid Earth 117, B05310 (2012).

    Google Scholar 

  9. Heuret, A., Conrad, C., Funiciello, F., Lallemand, S. & Sandri, L. Relation between subduction megathrust earthquakes, trench sediment thickness and upper plate strain. Geophys. Res. Lett. 39, L05304 (2012).

    Google Scholar 

  10. Hyndman, R. & Wang, K. Thermal constraints on the zone of major thrust earthquake failure: the Cascadia subduction zone. J. Geophys. Res. Solid Earth 98, 2039–2060 (1993).

    Google Scholar 

  11. Hyndman, R., Wang, K. & Yamano, M. Thermal constraints on the seismogenic portion of the southwestern Japan subduction thrust. J. Geophys. Res. Solid Earth 100, 15373–15392 (1995).

    Google Scholar 

  12. Hyndman, R., Yamano, M. & Oleskevich, D. A. The seismogenic zone of subduction thrust faults. Isl. Arc 6, 244–260 (1997).

    Google Scholar 

  13. Audet, P., Bostock, M. G., Christensen, N. I. & Peacock, S. M. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature 457, 76–78 (2009).

    CAS  Google Scholar 

  14. Wallace, L. M., Fagereng, Å. & Ellis, S. Upper plate tectonic stress state may influence interseismic coupling on subduction megathrusts. Geology 40, 895–898 (2012).

    Google Scholar 

  15. Bassett, D., Sandwell, D. T., Fialko, Y. & Watts, A. B. Upper-plate controls on co-seismic slip in the 2011 magnitude 9.0 Tohoku-oki earthquake. Nature 531, 92–96 (2016).

    CAS  Google Scholar 

  16. Sallarès, V. & Ranero, C. R. Upper-plate rigidity determines depth-varying rupture behaviour of megathrust earthquakes. Nature 576, 96–101 (2019).

    Google Scholar 

  17. Heuret, A., Lallemand, S., Funiciello, F., Piromallo, C. & Faccenna, C. Physical characteristics of subduction interface type seismogenic zones revisited. Geochem. Geophys. Geosyst. 12, Q01004 (2011).

    Google Scholar 

  18. Wallace, L. M., Beavan, J., McCaffrey, R. & Darby, D. Subduction zone coupling and tectonic block rotations in the North Island, New Zealand. J. Geophys. Res. https://doi.org/10.1029/2004JB003241 (2004).

  19. Wallace, L. M., Beavan, J., Bannister, S. & Williams, C. Simultaneous long‐term and short‐term slow slip events at the Hikurangi subduction margin, New Zealand: implications for processes that control slow slip event occurrence, duration, and migration. J. Geophys. Res. Solid Earth 117, B11402 (2012).

    Google Scholar 

  20. Wallace, L. M. et al. Slow slip near the trench at the Hikurangi subduction zone, New Zealand. Science 352, 701–704 (2016).

    CAS  Google Scholar 

  21. Wallace, L. M. Slow slip events in New Zealand. Annu. Rev. Earth Planet. Sci. 48, 175–203 (2020).

    CAS  Google Scholar 

  22. Clark, K. et al. Geological evidence for past large earthquakes and tsunamis along the Hikurangi subduction margin, New Zealand. Mar. Geol. 412, 139–172 (2019).

    Google Scholar 

  23. Pizer, C. et al. Paleotsunamis on the southern Hikurangi subduction zone, New Zealand, show regular recurrence of large subduction earthquakes. Seism. Rec. 1, 75–84 (2021).

    Google Scholar 

  24. Bell, R., Holden, C., Power, W., Wang, X. & Downes, G. Hikurangi margin tsunami earthquake generated by slow seismic rupture over a subducted seamount. Earth Planet. Sci. Lett. 397, 1–9 (2014).

    CAS  Google Scholar 

  25. Wallace, L. M. et al. Enigmatic, highly active left-lateral shear zone in southwest Japan explained by aseismic ridge collision. Geology 37, 143–146 (2009).

    Google Scholar 

  26. Yokota, Y., Ishikawa, T., Watanabe, S.-I., Tashiro, T. & Asada, A. Seafloor geodetic constraints on interplate coupling of the Nankai Trough megathrust zone. Nature 534, 374–377 (2016).

    CAS  Google Scholar 

  27. Nishimura, T., Yokota, Y., Tadokoro, K. & Ochi, T. Strain partitioning and interplate coupling along the northern margin of the Philippine Sea plate, estimated from Global Navigation Satellite System and Global Positioning System-Acoustic data. Geosphere 14, 535–551 (2018).

    Google Scholar 

  28. Kano, M. et al. Development of a slow earthquake database. Seismol. Res. Lett. 89, 1566–1575 (2018).

    Google Scholar 

  29. Sagiya, T. & Thatcher, W. Coseismic slip resolution along a plate boundary megathrust: the Nankai Trough, southwest Japan. J. Geophys. Res. Solid Earth 104, 1111–1130 (1999).

    Google Scholar 

  30. Kikuchi, M., Nakamura, M. & Yoshikawa, K. Source rupture processes of the 1944 Tonankai earthquake and the 1945 Mikawa earthquake derived from low-gain seismograms. Earth Planets Space 55, 159–172 (2003).

    Google Scholar 

  31. Baba, T. & Cummins, P. R. Contiguous rupture areas of two Nankai Trough earthquakes revealed by high‐resolution tsunami waveform inversion. Geophys. Res. Lett. 32, L08305 (2005).

    Google Scholar 

  32. Obara, K. Nonvolcanic deep tremor associated with subduction in southwest Japan. Science 296, 1679–1681 (2002).

    CAS  Google Scholar 

  33. Shelly, D. R., Beroza, G. C., Ide, S. & Nakamula, S. Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip. Nature 442, 188–191 (2006).

    CAS  Google Scholar 

  34. Ito, Y., Obara, K., Shiomi, K., Sekine, S. & Hirose, H. Slow earthquakes coincident with episodic tremors and slow slip events. Science 315, 503–506 (2007).

    CAS  Google Scholar 

  35. Araki, E. et al. Recurring and triggered slow-slip events near the trench at the Nankai Trough subduction megathrust. Science 356, 1157–1160 (2017).

    CAS  Google Scholar 

  36. Yokota, Y. & Ishikawa, T. Shallow slow slip events along the Nankai Trough detected by GNSS-A. Sci. Adv. 6, eaay5786 (2020).

    Google Scholar 

  37. Yagi, Y., Kikuchi, M., Yoshida, S. & Yamanaka, Y. Source process of the Hyuga-nada earthquake of April 1, 1968 (MJMA 7.5), and its relationship to the subsequent seismicity. J. Seismol. Soc. Jpn 2, 139–148 (1998).

    Google Scholar 

  38. Hirose, H., Hirahara, K., Kimata, F., Fujii, N. & Miyazaki, S. I. A slow thrust slip event following the two 1996 Hyuganada earthquakes beneath the Bungo Channel, southwest Japan. Geophys. Res. Lett. 26, 3237–3240 (1999).

    Google Scholar 

  39. Tonegawa, T. et al. Spatial relationship between shallow very low frequency earthquakes and the subducted Kyushu–Palau Ridge in the Hyuga-nada region of the Nankai subduction zone. Geophys. J. Int. 222, 1542–1554 (2020).

    Google Scholar 

  40. Yamashita, Y. et al. Migrating tremor off southern Kyushu as evidence for slow slip of a shallow subduction interface. Science 348, 676–679 (2015).

    CAS  Google Scholar 

  41. Fournier, T. J. & Freymueller, J. T. Transition from locked to creeping subduction in the Shumagin region, Alaska. Geophys. Res. Lett. 34, L06303 (2007).

    Google Scholar 

  42. Li, S. & Freymueller, J. T. Spatial variation of slip behavior beneath the Alaska Peninsula along Alaska–Aleutian subduction zone. Geophys. Res. Lett. 45, 3453–3460 (2018).

    Google Scholar 

  43. Xiao, Z. et al. The deep Shumagin gap filled: kinematic rupture model and slip budget analysis of the 2020 Mw 7.8 Simeonof earthquake constrained by GNSS, global seismic waveforms, and floating InSAR. Earth Planet. Sci. Lett. 576, 117241 (2021).

    CAS  Google Scholar 

  44. Elliott, J. & Freymueller, J. T. A block model of present‐day kinematics of Alaska and western Canada. J. Geophys. Res. Solid Earth 125, e2019JB018378 (2020).

    Google Scholar 

  45. Fu, Y. & Freymueller, J. T. Repeated large slow slip events at the southcentral Alaska subduction zone. Earth Planet. Sci. Lett. 375, 303–311 (2013).

    CAS  Google Scholar 

  46. Ohta, Y., Freymueller, J. T., Hreinsdóttir, S. & Suito, H. A large slow slip event and the depth of the seismogenic zone in the south central Alaska subduction zone. Earth Planet. Sci. Lett. 247, 108–116 (2006).

    CAS  Google Scholar 

  47. Suito, H. & Freymueller, J. T. A viscoelastic and afterslip postseismic deformation model for the 1964 Alaska earthquake. J. Geophys. Res. Solid Earth 114, B1140 (2009).

    Google Scholar 

  48. Wei, M., McGuire, J. J. & Richardson, E. A slow slip event in the south central Alaska Subduction Zone and related seismicity anomaly. Geophys. Res. Lett. 39, L15309 (2012).

    Google Scholar 

  49. Brown, J. R., Prejean, S. G., Beroza, G. C., Gomberg, J. S. & Haeussler, P. J. Deep low‐frequency earthquakes in tectonic tremor along the Alaska–Aleutian subduction zone. J. Geophys. Res. Solid Earth 118, 1079–1090 (2013).

    Google Scholar 

  50. Cross, R. S. & Freymueller, J. T. Evidence for and implications of a Bering plate based on geodetic measurements from the Aleutians and western Alaska. J. Geophys. Res. Solid Earth 113, B07405 (2008).

    Google Scholar 

  51. Peterson, C., McNutt, S. R. & Christensen, D. Nonvolcanic tremor in the Aleutian Arc. Bull. Seismol. Soc. Am. 101, 3081–3087 (2011).

    Google Scholar 

  52. Wech, A. G. Extending Alaska’s plate boundary: tectonic tremor generated by Yakutat subduction. Geology 44, 587–590 (2016).

    Google Scholar 

  53. Estabrook, C. H., Jacob, K. H. & Sykes, L. R. Body wave and surface wave analysis of large and great earthquakes along the Eastern Aleutian Arc, 1923–1993: implications for future events. J. Geophys. Res. Solid Earth 99, 11643–11662 (1994).

    Google Scholar 

  54. Freymueller, J. T., Suleimani, E. N. & Nicolsky, D. J. Constraints on the slip distribution of the 1938 MW 8.3 Alaska peninsula earthquake from tsunami modeling. Geophys. Res. Lett. 48, e2021GL092812 (2021).

    Google Scholar 

  55. Elliott, J. L. et al. Cascading rupture of a megathrust. Sci. Adv. 8, eabm4131 (2022).

    Google Scholar 

  56. Liu, C., Lay, T., Xiong, X. & Wen, Y. Rupture of the 2020 MW 7.8 earthquake in the Shumagin gap inferred from seismic and geodetic observations. Geophys. Res. Lett. 47, e2020GL090806 (2020).

    Google Scholar 

  57. López, A. M. & Okal, E. A. A seismological reassessment of the source of the 1946 Aleutian ‘tsunami’ earthquake. Geophys. J. Int. 165, 835–849 (2006).

    Google Scholar 

  58. van Rijsingen, E. et al. How subduction interface roughness influences the occurrence of large interplate earthquakes. Geochem. Geophys. Geosyst. 19, 2342–2370 (2018).

    Google Scholar 

  59. Shillington, D. J. et al. Link between plate fabric, hydration and subduction zone seismicity in Alaska. Nat. Geosci. 8, 961–964 (2015).

    CAS  Google Scholar 

  60. von Huene, R., Miller, J. J. & Weinrebe, W. Subducting plate geology in three great earthquake ruptures of the western Alaska margin, Kodiak to Unimak. Geosphere 8, 628–644 (2012).

    Google Scholar 

  61. Li, J. et al. Connections between subducted sediment, pore-fluid pressure, and earthquake behavior along the Alaska megathrust. Geology 46, 299–302 (2018).

    CAS  Google Scholar 

  62. Gase, A. C., Bangs, N. L., Van Avendonk, H. J., Bassett, D. & Henrys, S. A. Hikurangi megathrust slip behavior influenced by lateral variability in sediment subduction. Geology 50, 1145–1149 (2022).

    CAS  Google Scholar 

  63. Bécel, A. et al. Tsunamigenic structures in a creeping section of the Alaska subduction zone. Nat. Geosci. 10, 609–613 (2017).

    Google Scholar 

  64. Ike, T. et al. Variations in sediment thickness and type along the northern Philippine Sea Plate at the Nankai Trough. Isl. Arc 17, 342–357 (2008).

    Google Scholar 

  65. Kodaira, S., Takahashi, N., Nakanishi, A., Miura, S. & Kaneda, Y. Subducted seamount imaged in the rupture zone of the 1946 Nankaido earthquake. Science 289, 104–106 (2000).

    CAS  Google Scholar 

  66. Arai, R. et al. Thick slab crust with rough basement weakens interplate coupling in the western Nankai Trough. Earth Planets Space 76, 73 (2024).

    Google Scholar 

  67. Chesley, C., Naif, S., Key, K. & Bassett, D. Fluid-rich subducting topography generates anomalous forearc porosity. Nature 595, 255–260 (2021).

    CAS  Google Scholar 

  68. Bray, C. J. & Karig, D. E. Porosity of sediments in accretionary prisms and some implications for dewatering processes. J. Geophys. Res. Solid Earth 90, 768–778 (1985).

    Google Scholar 

  69. Schmidt, M. W. & Poli, S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 163, 361–379 (1998).

    CAS  Google Scholar 

  70. Peacock, S. M. The importance of blueschist → eclogite dehydration reactions in subducting oceanic crust. Geol. Soc. Am. Bull. 105, 684–694 (1993).

    Google Scholar 

  71. Tulley, C., Fagereng, Å., Ujiie, K., Diener, J. & Harris, C. Embrittlement within viscous shear zones across the base of the subduction thrust seismogenic zone. Geochem. Geophys. Geosyst. 23, e2021GC010208 (2022).

    Google Scholar 

  72. Kitajima, H. & Saffer, D. M. Elevated pore pressure and anomalously low stress in regions of low frequency earthquakes along the Nankai Trough subduction megathrust. Geophys. Res. Lett. 39, L23301 (2012).

    Google Scholar 

  73. Hendriyana, A. & Tsuji, T. Influence of structure and pore pressure of plate interface on tectonic tremor in the Nankai subduction zone, Japan. Earth Planet. Sci. Lett. 558, 116742 (2021).

    CAS  Google Scholar 

  74. Miller, P. K. et al. P‐ and S‐wave velocities of exhumed metasediments from the Alaskan subduction zone: implications for the in situ conditions along the megathrust. Geophys. Res. Lett. 48, e2021GL094511 (2021).

    Google Scholar 

  75. Gase, A. et al. Subducting volcaniclastic-rich upper crust supplies fluids for shallow megathrust and slow slip. Sci. Adv. 18, eadh0150 (2023).

    Google Scholar 

  76. Acquisto, T., Bécel, A., Singh, S. C. & Carton, H. Evidence of strong upper oceanic crustal hydration outboard the Alaskan and Sumatran subduction zones. J. Geophys. Res. Solid Earth 127, e2022JB024751 (2022).

    Google Scholar 

  77. Bell, R. et al. Seismic reflection character of the Hikurangi subduction interface, New Zealand, in the region of repeated Gisborne slow slip events. Geophys. J. Int. 180, 34–48 (2010).

    Google Scholar 

  78. Bangs, N. L. et al. Slow slip along the Hikurangi margin linked to fluid-rich sediments trailing subducting seamounts. Nat. Geosci. 16, 505–512 (2023).

    CAS  Google Scholar 

  79. Gao, X. & Wang, K. Rheological separation of the megathrust seismogenic zone and episodic tremor and slip. Nature 543, 416–419 (2017).

    CAS  Google Scholar 

  80. Ruff, L. J. in Subduction Zones Part II (eds Ruff, L. J. & Kanamori, H.) 263–282 (Springer, 1989).

  81. Skarbek, R. M., Rempel, A. W. & Schmidt, D. A. Geologic heterogeneity can produce aseismic slip transients. Geophys. Res. Lett. 39, L21306 (2012).

    Google Scholar 

  82. Shreedharan, S. et al. Frictional and lithological controls on shallow slow slip at the northern Hikurangi Margin. Geochem. Geophys. Geosyst. 23, e2021GC010107 (2022).

    Google Scholar 

  83. Barker, D. H. et al. Geophysical constraints on the relationship between seamount subduction, slow slip, and tremor at the north Hikurangi subduction zone, New Zealand. Geophys. Res. Lett. 45, 12804–12813 (2018).

    Google Scholar 

  84. Arnulf, A. F. et al. Physical conditions and frictional properties in the source region of a slow-slip event. Nat. Geosci. 14, 334–340 (2021).

    CAS  Google Scholar 

  85. Byrne, D. E., Davis, D. M. & Sykes, L. R. Loci and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction zones. Tectonics 7, 833–857 (1988).

    Google Scholar 

  86. Nakanishi, A., Kodaira, S., Park, J.-O. & Kaneda, Y. Deformable backstop as seaward end of coseismic slip in the Nankai Trough seismogenic zone. Earth Planet. Sci. Lett. 203, 255–263 (2002).

    CAS  Google Scholar 

  87. Tsuji, T., Ashi, J., Strasser, M. & Kimura, G. Identification of the static backstop and its influence on the evolution of the accretionary prism in the Nankai Trough. Earth Planet. Sci. Lett. 431, 15–25 (2015).

    CAS  Google Scholar 

  88. Bassett, D. et al. Crustal structure of the Nankai subduction zone revealed by two decades of onshore‐offshore and ocean‐bottom seismic data: implications for the dimensions and slip behavior of the seismogenic zone. J. Geophys. Res. Solid Earth 127, e2022JB024992 (2022).

    Google Scholar 

  89. Nakano, M., Hori, T., Araki, E., Kodaira, S. & Ide, S. Shallow very-low-frequency earthquakes accompany slow slip events in the Nankai subduction zone. Nat. Commun. 9, 984 (2018).

    Google Scholar 

  90. Tamaribuchi, K., Ogiso, M. & Noda, A. Spatiotemporal distribution of shallow tremors along the Nankai Trough, southwest Japan, as determined from waveform amplitudes and cross‐correlations. J. Geophys. Res. Solid Earth 127, e2022JB024403 (2022).

    Google Scholar 

  91. Horowitz, W., Steffy, D., Hoose, P. & Turner, R. Geologic Report for the Shumagin Planning Area, Western Gulf of Alaska. Final Report (Minerals Management Service, 1989).

  92. Shillington, D. J., Bécel, A. & Nedimović, M. R. Upper plate structure and megathrust properties in the Shumagin gap near the July 2020 M 7.8 Simeonof event. Geophys. Res. Lett. 49, e2021GL096974 (2022).

    Google Scholar 

  93. Brooks, B. A. et al. Rapid shallow megathrust afterslip from the 2021 M 8.2 Chignik, Alaska earthquake revealed by seafloor geodesy. Sci. Adv. 9, eadf9299 (2023).

    Google Scholar 

  94. Hu, Y. & Wang, K. Coseismic strengthening of the shallow portion of the subduction fault and its effects on wedge taper. J. Geophys. Res. Solid Earth 113, B12411 (2008).

    Google Scholar 

  95. Bassett, D. et al. Crustal structure of the Hikurangi Margin from SHIRE seismic data and the relationship between forearc structure and shallow megathrust slip behavior. Geophys. Res. Lett. 49, e2021GL096960 (2022).

    Google Scholar 

  96. Bassett, D., Sutherland, R. & Henrys, S. Slow wavespeeds and fluid overpressure in a region of shallow geodetic locking and slow slip, Hikurangi subduction margin, New Zealand. Earth Planet. Sci. Lett. 389, 1–13 (2014).

    CAS  Google Scholar 

  97. Reyners, M., Eberhart-Phillips, D. & Bannister, S. Subducting an old subduction zone sideways provides insights into what controls plate coupling. Earth Planet. Sci. Lett. 466, 53–61 (2017).

    CAS  Google Scholar 

  98. Heise, W. et al. Electrical resistivity imaging of the inter-plate coupling transition at the Hikurangi subduction margin, New Zealand. Earth Planet. Sci. Lett. 524, 115710 (2019).

    CAS  Google Scholar 

  99. Fagereng, A. & Ellis, S. On factors controlling the depth of interseismic coupling on the Hikurangi subduction interface, New Zealand. Earth Planet. Sci. Lett. 278, 120–130 (2009).

    CAS  Google Scholar 

  100. Kahrizi, A. et al. Extensional forearc structures at the transition from Alaska to Aleutian subduction zone: slip partitioning, terranes and large earthquakes. C. R. Geosci. 356, 53–77 (2023).

    Google Scholar 

  101. Hayes, G. P. et al. Slab2, a comprehensive subduction zone geometry model. Science 362, 58–61 (2018).

    CAS  Google Scholar 

  102. Williams, C. A. et al. Revised interface geometry for the Hikurangi subduction zone, New Zealand. Seismol. Res. Lett. 84, 1066–1073 (2013).

    Google Scholar 

  103. Kim, Y. et al. Alaska Megathrust 2: Imaging the megathrust zone and Yakutat/Pacific plate interface in the Alaska subduction zone. J. Geophys. Res. Solid Earth 119, 1924–1941 (2014).

    Google Scholar 

  104. Wang, K., Wada, I. & Ishikawa, Y. Stresses in the subducting slab beneath southwest Japan and relation with plate geometry, tectonic forces, slab dehydration, and damaging earthquakes. J. Geophys. Res. Solid Earth 109, B08304 (2004).

    Google Scholar 

  105. Bassett, D. et al. Heterogeneous crustal structure of the Hikurangi Plateau revealed by SHIRE seismic data: origin and implications for plate boundary tectonics. Geophys. Res. Lett. 50, e2023GL105674 (2023).

    Google Scholar 

  106. Arnulf, A. F. et al. Upper-plate controls on subduction zone geometry, hydration and earthquake behaviour. Nat. Geosci. 15, 143–148 (2022).

    CAS  Google Scholar 

  107. Haines, A. J. & Wallace, L. M. New Zealand‐wide geodetic strain rates using a physics‐based approach. Geophys. Res. Lett. 47, e2019GL084606 (2020).

    Google Scholar 

  108. Sun, T., Saffer, D. & Ellis, S. Mechanical and hydrological effects of seamount subduction on megathrust stress and slip. Nat. Geosci. 13, 249–255 (2020).

    CAS  Google Scholar 

  109. Bilek, S. L. & Lay, T. Tsunami earthquakes possibly widespread manifestations of frictional conditional stability. Geophys. Res. Lett. 29, 1673 (2002).

    Google Scholar 

  110. Wallace, L. et al. Near‐field observations of an offshore Mw 6.0 earthquake from an integrated seafloor and subseafloor monitoring network at the Nankai Trough, southwest Japan. J. Geophys. Res. Solid Earth 121, 8338–8351 (2016).

    Google Scholar 

  111. Oleskevich, D., Hyndman, R. & Wang, K. The updip and downdip limits to great subduction earthquakes: thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile. J. Geophys. Res. Solid Earth 104, 14965–14991 (1999).

    Google Scholar 

  112. Todd, E. K. & Schwartz, S. Y. Tectonic tremor along the northern Hikurangi Margin, New Zealand, between 2010 and 2015. J. Geophys. Res. Solid Earth 121, 8706–8719 (2016).

    Google Scholar 

  113. Todd, E. K. et al. Earthquakes and tremor linked to seamount subduction during shallow slow slip at the Hikurangi margin, New Zealand. J. Geophys. Res. Solid Earth 123, 6769–6783 (2018).

    Google Scholar 

  114. Romanet, P. & Ide, S. Ambient tectonic tremors in manawatu, Cape Turnagain, marlborough, and Puysegur, New Zealand. Earth Planets Space 71, 59 (2019).

    Google Scholar 

  115. Bassett, D. & Watts, A. B. Gravity anomalies, crustal structure, and seismicity at subduction zones: 1. Seafloor roughness and subducting relief. Geochem. Geophys. Geosyst. 16, 1508–1540 (2015).

    Google Scholar 

Download references

Acknowledgements

D.B. was supported by Royal Society of New Zealand Marsden Fund (MFP-GNS1902) and Catalyst: Seeding (CSG-GNS2301) grants, by the New Zealand Ministry of Business Innovation and Employment (MBIE) Endeavour Grant Ngā Ngaru Wakapuke: Building Resilience to Future Earthquake Sequences (RTVU2306) and by public research funding from the Government of New Zealand Strategic Science Investment Fund to GNS Science (contract C05X1702). D.J.S. acknowledges support from NSF award OCE-2026676. L.W. acknowledges funding support from NSF grant EAR-2121666. J.E. was supported by a US Geological Survey IPA and NSF grants EAR-2052558 and EAR- 2152253. We thank P. Henry for helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to planning, data compilation, analysis and writing the manuscript.

Corresponding author

Correspondence to Dan Bassett.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Alireza Bahadori and Stefan Lachowycz, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bassett, D., Shillington, D.J., Wallace, L.M. et al. Variation in slip behaviour along megathrusts controlled by multiple physical properties. Nat. Geosci. 18, 20–31 (2025). https://doi.org/10.1038/s41561-024-01617-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41561-024-01617-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing