Uptake of explainable artificial intelligence (XAI) methods in geoscience is currently limited. We argue that such methods that reveal the decision processes of AI models can foster trust in their results and facilitate the broader adoption of AI.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Q-GGXAI: a Framework for Quality-Aware Explainable AI in Geospatial Analysis
PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science Open Access 25 September 2025
-
Fire weather indices tailored to regional patterns outperform global models
npj Natural Hazards Open Access 25 July 2025
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout

Designed by Freepik www.freepik.com
References
Dramsch, J. S. Adv. Geophys. 61, 1–55 (2020).
Kuglitsch, M. M. et al. Environ. Res. Lett. 18, 093004 (2023).
Mamalakis, A., Ebert-Uphoff, I. & Barnes, E. in xxAI – Beyond Explainable AI Vol. 13200 (eds Holzinger, A. et al.) 315–339 (Springer, 2022).
Fleming, S. W., Watson, J. R., Ellenson, A., Cannon, A. J. & Vesselinov, V. C. Nat. Geosci. 14, 878–880 (2021).
Gevaert, C. M. Int. J. Appl. Earth Obs. Geoinf. 112, 102869 (2022).
Ghaffarian, S., Taghikhah, F. R. & Maier, H. R. Int. J. Disaster Risk Reduct. 98, 104123 (2023).
Toms, B. A., Barnes, E. A. & Ebert-Uphoff, I. J. Adv. Model. Earth Syst. 12, e2019MS002002 (2020).
Rudin, C. Nat. Mach. Intell. 1, 206–215 (2019).
Gunning, D. & Aha, D. W. AI Magazine 40, 44–58 (2019).
Czaja, W., Fendley, N., Pekala, M., Ratto, C., & Wang, I. J. Adversarial examples in remote sensing. In Proc. 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems 408–411 (Association for Computing Machinery, 2018).
Lapuschkin, S. et al. Nat. Commun. 10, 1096 (2019).
Roscher, R., Bohn, B., Duarte, M. F. & Garcke, J. IEEE Access 8, 42200–42216 (2020).
Dahal, A. & Lombardo, L. Comput. Geosci. 176, 105364 (2023).
Dikshit, A. & Pradhan, B. Sci. Total Environ. 801, 149797 (2021).
Cheng, X. et al. in Handbook of Geospatial Artificial Intelligence (eds Gao, S. et al.) Ch. 9 (CRC Press, 2023).
Acknowledgements
We are appreciative of Chelsea Shu’s first investigations of the natural language processing tool for exploring the scientific literature and the collaboration and insight provided by use case proponents of the Focus Group on AI for Natural Disaster Management (https://www.itu.int/en/ITU-T/focusgroups/ai4ndm/Pages/default.aspx).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Dramsch, J.S., Kuglitsch, M.M., Fernández-Torres, MÁ. et al. Explainability can foster trust in artificial intelligence in geoscience. Nat. Geosci. 18, 112–114 (2025). https://doi.org/10.1038/s41561-025-01639-x
Published:
Issue date:
DOI: https://doi.org/10.1038/s41561-025-01639-x
This article is cited by
-
Fire weather indices tailored to regional patterns outperform global models
npj Natural Hazards (2025)
-
Geological Target Recognition Method Based on Multi-mode Adaptive Prediction System: Algorithms and Applications
Natural Resources Research (2025)
-
Q-GGXAI: a Framework for Quality-Aware Explainable AI in Geospatial Analysis
PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science (2025)