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Major excursions in sulfur isotopes linked  
to permafrost change in Eurasia during the 
last 50,000 years
 

Rhiannon E. Stevens    1  , Hazel Reade    1, Kerry L. Sayle    2, 
Jennifer A. Tripp    3, Delphine Frémondeau1, Adrian Lister4, Ian Barnes    4, 
Mietje Germonpré    5, Martin Street6, Julian B. Murton    7, Simon H. Bottrell    8, 
Daniel H. James    1 & Thomas F. G. Higham    9,10

We identify a major sulfur isotope excursion in Eurasian faunal bone 
collagen from the last 50,000 years, here termed the Late Pleniglacial Sulfur 
Excursion. Our analysis suggests this is linked to changing permafrost 
conditions, presenting the utility of faunal collagen δ34S as a proxy for 
permafrost dynamics, a critical component of the global carbon cycle. Our 
findings complicate the use of archaeological faunal sulfur isotopes for 
mobility and palaeodietary studies.

Over the past two decades, sulfur isotope ratios (δ34S) in plant, ani-
mal and human tissues have been increasingly used to explore food 
provenance, present and past diets and human and animal mobility. 
Most studies use sulfur isotopes as a geolocator, leveraging the spatial 
variability observed in plant sulfur isotope values, reflecting those of 
bioavailable sulfur. This variability arises because soil sulfur is primarily 
derived from mineral weathering of parent bedrock, the δ34S of which 
varies by rock type1. Additionally, the atmosphere contributes sulfur 
to soils (via dry deposition, SO4

2− aerosols or wet deposition of SO4
2−), 

although pre-industrial atmospheric inputs contributed <10% of total 
soil S, excepting narrow zones of strong coastal seawater sulfate spray 
influence1,2. Recent studies suggest that waterlogged soil conditions 
may result in distinct bioavailable δ34S values3,4. Minimal fractionation 
is seen in organic-bound sulfur as it is passed along the food chain 
(Δ34S tissue-diet ≈ 0 ‰ (refs. 5,6)), so animal δ34S values closely reflect 
those of the bioavailable δ34S at the base of their food chain7,8. Thus, 
animal δ34S values have been used to determine origin or mobility/
migratory behaviours. Others use sulfur isotopes as a (palaeo)dietary 
indicator, as marine resources have high and relatively homogeneous 
δ34S values (about 20‰), whereas terrestrial δ34S tends to be lower and 

more variable8. Overall, animal and human δ34S values are commonly 
interpreted as reflecting one or more stable sources, uninfluenced by 
environmental change, whereas a few studies argue that archaeological 
δ34S values reflect locally variable hydrological dynamics9–11.

Here we report results of 796 δ34S isotope and 691 accelerator 
mass spectrometry (AMS) radiocarbon analyses from Late Pleisto-
cene and Holocene fauna from Eurasia (Figs. 1 and 2, Supplementary 
Discussion 1.1 and Supplementary Data 1). One hundred and five sam-
ples come from contexts previously AMS dated. Our results show 
a high-magnitude excursion in faunal δ34S isotope values between 
approximately 30 and 15 thousand years (kyr) before present (bp) in 
some regions of Eurasia (Fig. 2 and Supplementary Fig. 1). This period 
corresponds to the latter part of the last ice age across much of Marine 
Isotope Stage 2 (about 29–11.7 kyr bp), including the Last Glacial Maxi-
mum (LGM, about 26.5–19 kyr bp). This excursion, which we name the 
Late Pleniglacial Sulfur Excursion (LPSE), is particularly pronounced 
in regions where we have good temporal coverage within a discrete 
geographic area, such as in Britain and Belgium, and is also evident 
in other regions, such as central Europe north of the Alps (Fig. 3 and 
Supplementary Fig. 2). However, the temporal and spatial coverage 
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Our Eurasian samples span the last 50 kyr (Fig. 1). The climate 
between about 50 and 28 kyr bp (Middle Pleniglacial) featured 
millennial-scale oscillations between cold stadial and mild intersta-
dial states and fluctuating sea levels, superimposed on a long-term 
trend towards colder conditions and lower sea levels13,14. The Middle 
Pleniglacial environment across northwest and central Europe was wet 
and densely vegetated, with long periods of seasonal frost, and some 
discontinuous permafrost15,16. The onset of the Late Pleniglacial (about 
28–14.7 kyr bp) saw the major expansion of European ice sheets17,18. 
Maximum ice-sheet extent occurred during the LGM, when sea levels 
were about 130 m lower than today19. Continuous permafrost (ground 
that remains ≤0 °C for at least two consecutive years) was widespread 
across northern Eurasia at this time20. Between about 25 and 22 kyr bp, 
increasing aridity in northern Europe induced widespread fluvio–aeo-
lian deposition in river valleys21, with maximum aridity between about 
17 and 15 kyr bp (ref. 21). During continental deglaciation, sea levels 
rose slowly from about 19 kyr bp, then more rapidly from about 16 to 
12.5 kyr bp (ref. 14). Widespread thaw of permafrost in NW Europe was 
instigated by slight warming at about 17–15 kyr bp then rapid warming 
at the start of the Late Glacial Interstadial about 14.7–12.9 kyr bp (ref. 21). 
There was a brief return to colder conditions (Younger Dryas/Greenland 
Stadial 1, about 12.9–11.7 kyr bp) before the present interglacial, the 
Holocene. After the Younger Dryas, sea-level rise was rapid, approach-
ing present-day levels around 7 kyr bp (ref. 14).

Variations in herbivore collagen δ34S are typically interpreted as 
reflecting differences in animal spatial ecology, driven by differences 
in the δ34S of consumed plants with varying underlying geology and/or  
distance from coast. However, our data analysis shows that animal 

prevent us from determining whether the LPSE is time transgressive 
across this region. The LPSE occurs across multiple species with differ-
ing dietary niches and mobility behaviours (Fig. 2). The LPSE magnitude 
is substantial (up to 35‰), more than double that typically considered 
to indicate location-based differences12. This suggests that underlying 
continental-scale processes substantially impacted the terrestrial 
sulfur cycle during the Late Pleistocene.
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Fig. 1 | Geographical distribution of the faunal samples. Pale blue area indicates 
approximate zone of continuous permafrost at the LGM20. White area indicates 
LGM extent of ice sheets and glaciers40. Dark blue area indicates zone of present-day 
continuous and discontinuous permafrost distribution41. Pink squares: samples 
collected from regions where no permafrost was present during the last 50,000 
years. Green circles: samples collected from areas that either had permafrost 
present or were under ice sheets/alpine glaciers at the LGM but where permafrost/
ice sheets/alpine glaciers are absent today. Yellow triangles: samples collected from 
regions in which permafrost has been present throughout the past 50,000 years.
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Fig. 2 | Faunal collagen δ34S values from Eurasia through the Late Pleistocene 
and Holocene. Each data point represents a single animal specimen, which has 
been directly radiocarbon dated. a, The North Greenland Ice Core Project (NGRIP) 
oxygen isotope record42, a proxy for global temperature. b, Faunal collagen δ34S 
values. Shaded blue area indicates approximate duration of the LGM. The dashed 
purple lines indicate approximate timing of continuous permafrost development 

(about 30 kyr bp) and thaw (about 15 kyr bp) in western Eurasia. Pink squares: 
samples collected from regions where no permafrost was present during the 
last 50,000 years. Green circles: samples collected from areas that either had 
permafrost present at the LGM or were under ice sheets/glaciers at the LGM but 
where permafrost/ice is absent today. Yellow triangles: samples collected from 
regions in which permafrost has been present throughout the past 50,000 years.
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spatial ecology is not the primary driver of the LPSE. There are many 
potential influences such as changes in atmospheric sulfur source 
(particularly loess and sea-spray) linked to sea-level variations, sulfur 
emissions from volcanic activity, changes in bedrock weathering rates 
linked to glaciation, temperature and precipitation changes (Supple-
mentary Discussion 1.2 provides detailed discussion). However, our 
multivariate analysis concludes that changing near-surface permafrost 
conditions are the most plausible driver of the observed excursion 
(Supplementary Discussion 1.4).

Permafrost currently underlies substantial areas of Alaska, 
Canada, Siberia and Greenland and was present throughout the Late 
Pleistocene. During the LGM, permafrost expanded across northern 
Eurasia20. Its maximum extent has been established via mapping of 
permafrost-related geomorphological features22. Notably, our faunal 
δ34S values differ substantially between regions with different perma-
frost histories (Supplementary Discussion 1.4, Supplementary Tables 6 
and 7 and Supplementary Fig. 11). The LPSE is observed exclusively in 
regions where permafrost (or ice sheets/alpine glaciers) was present 
during the LGM but are now permafrost free (Fig. 2) and coincides with 
the timing of regional permafrost development and thaw inferred 
from local geomorphological evidence22,23 and Greenland ice cores24 
(Supplementary Fig. 1). The LPSE is not observed in regions where per-
mafrost is present today and persisted throughout the Late Pleistocene 
(Figs. 1 and 2), nor in regions where permafrost was not present over 
the last 50 kyr (Supplementary Fig. 1).

We highlight two processes associated with permafrost thaw that 
may have driven the shift to lighter δ34S during the LPSE, both of which 
would have impacted plant (and therefore animal) δ34S: inputs from 
newly thawed substrate generated by active-layer deepening and the 
development of anoxic wetlands due to impeded drainage.

Permafrost growth impedes weathering of underlying bedrock 
and sediments. Active-layer deepening and thawing therefore increase 
the input of sedimentary sulfides and enhance sulfide oxidation25, 
transferring the negative sulfide δ34S signature to soils. Permafrost 
development also substantially influences hydrology, impeding drain-
age and confining soil water to the active layer, which can induce peri-
odic waterlogged, anoxic soil conditions. Such conditions alter soil 
redox status, enhancing sulfide production via dissimilatory sulfate 
reduction (DSR) in bacteria and archaea26, a process that can produce 
large (–46 to –40‰) isotopic fractionation27. These low-sulfide δ34S 
values are inherited by plants after re-oxidation to sulfate28,29. Micro-
bial DSR readily occurs in cold regions30–33, including areas of modern 
permafrost thaw34,35. Sufficiently cold temperatures, however, sup-
press the extent of DSR36 and inhibit weathering, potentially explain-
ing the lack of LPSE in regions with stable permafrost across the last 
50,000 years (Supplementary Fig. 1 and Supplementary Data 1). It fol-
lows, therefore, that the LPSE is only observed in those lower-latitude 
regions subject to extensive climatic, environmental and permafrost 
perturbations. Intermediate temperatures (Supplementary Fig. 1 and 
Supplementary Data 1) and young, epigenetic permafrost37 would have 
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Fig. 3 | δ34S values of radiocarbon-dated herbivores from central and 
northwest Europe for the five most abundant taxa in both regions, Cervus 
elaphus, Coelodonta antiquitatis, Equus sp., Mammuthus primigenius and 
Rangifer tarandus. a, The Greenland ice-core oxygen isotope record, a proxy 
for global temperature42. b,c, δ34S values of radiocarbon-dated herbivores from 

central and northwest Europe (46.5° N to 54° N, 6° E to 21° E) (b) and northwest 
Europe (50° N to 60° N, 10° E to 6° W) (c). Shaded blue area indicates approximate 
duration of the LGM. The dashed purple lines indicate approximate timing of 
continuous permafrost development (about 30 kyr bp) and widespread thaw 
(about 15 kyr bp) in western Eurasia.
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enhanced weathering rates, sulfur availability and DSR throughout the 
Late Pleistocene, followed by extensive thaw after the LGM, producing 
the lowest δ34S values.

Further investigation into the spatio-temporal extent and continu-
ity of these processes, including whether the LPSE is observed in other 
regions such as North America, is needed to assess the degree to which 
permafrost change drives the LPSE.

Modern permafrost is a major reservoir of organic carbon, which 
is being released to the atmosphere as CO2 and methane as the Arctic 
warms at twice the global average rate38, accelerating warming39. We 
can investigate permafrost sensitivity to climate shifts by studying 
the relationship between past permafrost conditions and palaeocli-
mate change. However, this is hindered by limited data on the tim-
ing of permafrost growth and thaw. The geomorphological features 
used to assess past permafrost extent are often difficult to date18. Our 
results show that sulfur isotope analysis of faunal samples could pro-
vide high-resolution records of past permafrost change because the 
preserved isotopic signature of bone collagen represents only a few 
years to decades of the animal’s life, restricted to its home range, and 
bone collagen from the last about 50,000 years is directly dateable 
through radiocarbon methods with good preservation potential. The 
spatio-temporal patterns of these data allow insights into permafrost 
development and degradation at local to continental scales. More 
broadly, our findings indicate animal δ34S values can reflect changes in 
local hydrology and loess deposition, complicating the use of δ34S as a 
provenancing tool for food origin, animal migration and archaeological 
research. This issue will not arise in faunal datasets of similar age, with 
stable permafrost, hydrology and loess deposition. Furthermore, these 
findings support the utility of sulfur isotopes to examine wetland habi-
tat use by people and animals in modern and archaeological contexts.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
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Methods
Our dataset comprises 796 δ34S isotope analyses (510 new and 286 previ-
ously published δ34S values (Supplementary Data 1). New δ34S analyses 
were undertaken on collagen extracted from 395 bones and 115 teeth 
sourced from 68 archaeological/palaeontological sites (n = 1 to 56 sam-
ples per site). Of our 510 new δ34S analyses, 221 were carried out on 
collagen previously extracted at Oxford Radiocarbon Accelerator Unit 
(ORAU) for radiocarbon dating; 221 were carried out on collagen previ-
ously extracted for our previous studies43–50 and 68 on collagen extracted 
for this study. The method of collagen extraction for each sample is 
given in Supplementary Data 1 and fully described in our recent study44. 
Only data with C/S and N/S ratios indicative of well-preserved collagen 
were compiled from the literature51,52. Genus/species represented in 
our dataset include Bos/Bison sp., Capreolus capreolus, Cervus elaphus, 
Alces alces, Coelodonta antiquitatis, Equus sp., Mammuthus primigenius, 
Megaloceros giganteus, Ovibos moschatus, Ovis aries, Rangifer tarandus, 
Rupicapra, Saiga tatarica and Sus (Supplementary Data 1). New AMS 
determinations were undertaken at ORAU for 25 samples, and 666 of the 
samples had previously been radiocarbon dated by AMS. Sample details 
and preparation methods are given in Supplementary Data 1 and Sup-
plementary Discussion 1. Sulfur isotope ratios were determined on the 
extracted collagen using a Delta V Advantage continuous-flow isotope 
ratio mass spectrometer coupled via a ConfloIV to an IsoLink elemental 
analyser (Thermo Scientific) at the Scottish Universities Environmental 
Research Centre. Samples were weighed into tin capsules (~1.2–1.5 mg) 
and combusted in the presence of oxygen in a single reactor containing 
tungstic oxide and copper wires at 1,020 °C to produce SO2. A magne-
sium perchlorate trap was used to eliminate water produced during the 
combustion process, and the gas was separated in a gas chromatography 
column heated between 70 °C and 240 °C. Helium was used as a carrier 
gas throughout the procedure. SO2 entered the mass spectrometer 
via an open split arrangement within the ConfloIV and was analysed 
against a reference gas. Samples were analysed in duplicate, with the 
exception of 16 samples for which there was only sufficient collagen for 
a single analysis. For every ten unknown archaeological samples, either 
three gelatine-based in-house standards (SAG: δ34SVCTD = −10.1 ± 0.1‰, 
MAG: δ34SVCTD = 1.4 ± 0.1‰ and MSAG: δ34SVCTD = 11.1 ± 0.1‰) or two 
gelatine-based in-house standards (SAG2B: δ34SVCTD = −9.5 ± 0.1‰ and 
MSAG2: δ34SVCTD = 11.5 ± 0.1‰), which were calibrated to the International 
Atomic Energy Agency (IAEA) reference materials IAEA-S-1 (silver sulfide, 
δ34SVCTD = −0.3 ± 0.2‰), IAEA-S-2 (silver sulfide, δ34SVCTD = 22.7 ± 0.2‰), 
IAEA-SO-5 (barium sulfate, δ34SVCTD = 0.5 ± 0.2‰) and IAEA-SO-6 (barium 
sulfate, δ34SVCTD = −34.1 ± 0.2‰) were used to normalize the δ34SVCTD val-
ues. Results are reported as per mille (‰) relative to the internationally 
accepted standard Vienna Canyon Diablo Troilite (VCDT). Normaliza-
tion was checked using United States Geological Survey (USGS) refer-
ence material USGS43 (Indian human hair: δ34SVCTD = 10.5 ± 0.2‰) or 
the well-characterized Elemental Microanalysis Isotope Ratio Mass 
Spectrometry fish gelatin standard B2215 (δ34SVCTD = 1.2 ± 0.2‰), and 
long-term precision was determined to ±0.4‰ for δ34S based on repeated 
measurements of an Iron Age in-house horse bone collagen standard 
(DHB2019: δ34SVCTD = 9.5 ± 0.2‰, n = 1,246). All our samples had C/S and 
N/S ratios (306–898 and 100–284) within the quality range indicative of 
well-preserved collagen for sulfur isotope analysis51. Statistical analyses 
were undertaken in R version 4.3.0 to explore potential drivers of the 
LPSE. Parameters considered include underlying geology, proximity to 
loessic deposits, proximity to palaeocoastlines, proximity to palaeo-ice 
sheets, modelled mean annual temperature and precipitation, proxim-
ity to present-day and LGM permafrost. Data were investigated using 
Kruskal–Wallis tests and factor analysis of mixed data, which considers 
continuous and categorical variables within the same model (full details 
of statistical analyses are given in Supplementary Data 1). A hierarchical 
cluster analysis of the three most important components from the factor 
analysis of mixed data analysis was conducted (Supplementary Fig. 13), 
identifying subgroups in the data that share similar characteristics, 

exploring variables contributing to the δ34S trends. The identified clus-
ters were then considered in relation to the temporal trend observed 
in the δ34S data.

Data availability
All data are available at https://doi.org/10.5522/04/28677713 (ref. 52) 
and in the Supplementary Information accompanying this article.
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