Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Destabilization of Earth system tipping elements

Abstract

There is rising concern that several parts of the Earth system may abruptly transition to alternative stable states in response to anthropogenic climate and land-use change. Key candidates of such tipping elements include the Greenland Ice Sheet, the Atlantic Meridional Overturning Circulation, the South American monsoon system and the Amazon rainforest. Owing to the complex dynamics and feedbacks between them via oceanic and atmospheric coupling, the levels of anthropogenic forcing at which transitions to alternative states can be expected remain uncertain. Here we demonstrate how such interactions can generate spurious signals and potentially mask genuine signs of destabilization. We further review and present observation-based evidence that the stability of these four tipping elements has declined in recent decades, suggesting that they have moved towards their critical thresholds, which may be crossed within the range of unmitigated anthropogenic warming. Our results call for better monitoring of these tipping elements and for increased efforts to stop greenhouse gas emissions and land-use change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the four coupled tipping elements and comparison between coupled and independent tipping elements.
Fig. 2: Schematic illustrating false-positive EWS and how to reduce their probability.
Fig. 3: EWS for the central-western GrIS, AMOC, Amazon rainforest and SAMS.

Similar content being viewed by others

Data availability

All data presented in this work are publicly available. The analysis data used to generate the figures are available via GitHub at https://github.com/Tonny-liu/Four_tipping_elements.

Code availability

The Python code used to generate the figures is publicly available via GitHub at https://github.com/Tonny-liu/Four_tipping_elements.

References

  1. Schellnhuber, H. J. Tipping elements in the Earth system. Proc. Natl Acad. Sci. USA 106, 20561–20563 (2009).

    Article  CAS  Google Scholar 

  2. Schellnhuber, H. J., Rahmstorf, S. & Winkelmann, R. Why the right climate target was agreed in Paris. Nat. Clim. Change 6, 649–653 (2016).

    Article  Google Scholar 

  3. Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature 575, 592–595 (2019).

    Article  CAS  Google Scholar 

  4. Dansgaard, W. et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218–220 (1993).

    Article  Google Scholar 

  5. Bond, G. et al. Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 2130–2136 (2001).

    Article  CAS  Google Scholar 

  6. Crucifix, M. in Climate Changes in the Holocene: Impacts and Human Adaptation (ed. Chiotis, E.) 77–106 (CRC Press, 2018).

  7. Peltier, W. R. & Vettoretti, G. Dansgaard–Oeschger oscillations predicted in a comprehensive model of glacial climate: a “kicked” salt oscillator in the Atlantic. Geophys. Res. Lett. 41, 7306–7313 (2014).

    Article  Google Scholar 

  8. Drijfhout, S. et al. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl Acad. Sci. USA 112, E5777–E5786 (2015).

    Article  CAS  Google Scholar 

  9. Liu, W., Xie, S.-P., Liu, Z. & Zhu, J. Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate. Sci. Adv. 3, e1601666 (2017).

    Article  Google Scholar 

  10. Hopcroft, P. O. & Valdes, P. J. Paleoclimate-conditioning reveals a North Africa land–atmosphere tipping point. Proc. Natl Acad. Sci. USA 118, e2108783118 (2021).

    Article  CAS  Google Scholar 

  11. Wunderling, N. et al. Climate tipping point interactions and cascades: a review. Earth Syst. Dyn. 15, 41–74 (2024).

    Article  Google Scholar 

  12. Liu, T. et al. Teleconnections among tipping elements in the Earth system. Nat. Clim. Change 13, 67–74 (2023).

    Article  CAS  Google Scholar 

  13. Dekker, M. M., von der Heydt, A. S. & Dijkstra, H. A. Cascading transitions in the climate system. Earth Syst. Dyn. 9, 1243–1260 (2018).

    Article  Google Scholar 

  14. Klose, A. K., Wunderling, N., Winkelmann, R. & Donges, J. F. What do we mean, ‘tipping cascade’? Environ. Res. Lett. 16, 125011 (2021).

    Article  CAS  Google Scholar 

  15. Nian, D. et al. A potential collapse of the Atlantic Meridional Overturning Circulation may stabilise eastern Amazonian rainforests. Commun. Earth Environ. 4, 470 (2023).

    Article  Google Scholar 

  16. Ritchie, P. D. L., Clarke, J. J., Cox, P. M. & Huntingford, C. Overshooting tipping point thresholds in a changing climate. Nature 592, 517–523 (2021).

    Article  CAS  Google Scholar 

  17. Wunderling, N. et al. Global warming overshoots increase risks of climate tipping cascades in a network model. Nat. Clim. Change 13, 75–82 (2023).

    Article  Google Scholar 

  18. Cai, Y., Lenton, T. M. & Lontzek, T. S. Risk of multiple interacting tipping points should encourage rapid CO2 emission reduction. Nat. Clim. Change 6, 520–525 (2016).

    Article  Google Scholar 

  19. Klockmann, M., Mikolajewicz, U., Kleppin, H. & Marotzke, J. Coupling of the subpolar gyre and the overturning circulation during abrupt glacial climate transitions. Geophys. Res. Lett. 47, e2020GL090361 (2020).

    Article  Google Scholar 

  20. Meehl, G. A. et al. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci. Adv. 6, eaba1981 (2020).

    Article  Google Scholar 

  21. Zelinka, M. D. et al. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 47, e2019GL085782 (2020).

    Article  Google Scholar 

  22. Valdes, P. Built for stability. Nat. Geosci. 4, 414–416 (2011).

    Article  CAS  Google Scholar 

  23. Liu, W., Liu, Z. & Brady, E. C. Why is the AMOC monostable in coupled general circulation models? J. Clim. 27, 2427–2443 (2014).

    Article  Google Scholar 

  24. Mecking, J. V., Drijfhout, S. S., Jackson, L. C. & Andrews, M. B. The effect of model bias on Atlantic freshwater transport and implications for AMOC bi-stability. Tellus A 69, 1299910 (2017).

    Article  Google Scholar 

  25. Weijer, W. et al. Stability of the Atlantic Meridional Overturning Circulation: a review and synthesis. J. Geophys. Res. Oceans 124, 5336–5375 (2019).

    Article  Google Scholar 

  26. McCarthy, G. D. & Caesar, L. Can we trust projections of AMOC weakening based on climate models that cannot reproduce the past? Philos. Trans. R. Soc. A 381, 20220193 (2023).

    Article  Google Scholar 

  27. Thornalley, D. J. R. et al. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature 556, 227–230 (2018).

    Article  CAS  Google Scholar 

  28. Caesar, L., McCarthy, G. D., Thornalley, D. J. R., Cahill, N. & Rahmstorf, S. Current Atlantic Meridional Overturning Circulation weakest in last millennium. Nat. Geosci. 14, 118–120 (2021).

    Article  CAS  Google Scholar 

  29. Kjeldsen, K. K. et al. Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since ad 1900. Nature 528, 396–400 (2015).

    Article  CAS  Google Scholar 

  30. Smith, B. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368, 1239–1242 (2020).

    Article  CAS  Google Scholar 

  31. Held, H. & Kleinen, T. Detection of climate system bifurcations by degenerate fingerprinting. Geophys. Res. Lett. https://doi.org/10.1029/2004GL020972 (2004).

  32. Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    Article  CAS  Google Scholar 

  33. Lenton, T. M. Early warning of climate tipping points. Nat. Clim. Change 1, 201–209 (2011).

    Article  Google Scholar 

  34. Armstrong McKay, D. I. & Lenton, T. M. Reduced carbon cycle resilience across the Palaeocene–Eocene Thermal Maximum. Clim. Past 14, 1515–1527 (2018).

    Article  Google Scholar 

  35. Setty, S. et al. Loss of Earth system resilience during early Eocene transient global warming events. Sci. Adv. 9, eade5466 (2023).

    Article  CAS  Google Scholar 

  36. Boettner, C., Klinghammer, G., Boers, N., Westerhold, T. & Marwan, N. Early-warning signals for Cenozoic climate transitions. Quat. Sci. Rev. 270, 107177 (2021).

    Article  Google Scholar 

  37. Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).

    Article  CAS  Google Scholar 

  38. Praetorius, S. K. & Mix, A. C. Synchronization of North Pacific and Greenland climates preceded abrupt deglacial warming. Science 345, 444–448 (2014).

    Article  CAS  Google Scholar 

  39. Rypdal, M. Early-warning signals for the onsets of Greenland interstadials and the Younger Dryas–Preboreal transition. J. Clim. 29, 4047–4056 (2016).

    Article  Google Scholar 

  40. Boers, N. Early-warning signals for Dansgaard–Oeschger events in a high-resolution ice core record. Nat. Commun. 9, 2556 (2018).

    Article  Google Scholar 

  41. Mitsui, T. & Boers, N. Statistical precursor signals for Dansgaard–Oeschger cooling transitions. Clim. Past 20, 683–699 (2024).

    Article  Google Scholar 

  42. Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079–1082 (2011).

    Article  CAS  Google Scholar 

  43. Veraart, A. J. et al. Recovery rates reflect distance to a tipping point in a living system. Nature 481, 357–359 (2012).

    Article  CAS  Google Scholar 

  44. Wang, R. et al. Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature 492, 419–422 (2012).

    Article  Google Scholar 

  45. Boulton, C. A., Good, P. & Lenton, T. M. Early warning signals of simulated Amazon rainforest dieback. Theor. Ecol. 6, 373–384 (2013).

    Article  Google Scholar 

  46. Trauth, M. H. et al. Early warning signals of the termination of the African Humid Period(s). Nat. Commun. 15, 3697 (2024).

    Article  CAS  Google Scholar 

  47. Morr, A. & Boers, N. Detection of approaching critical transitions in natural systems driven by red noise. Phys. Rev. X 14, 021037 (2024).

    CAS  Google Scholar 

  48. Lenton, T. M. et al. Using GENIE to study a tipping point in the climate system. Philos. Trans. R. Soc. A 367, 871–884 (2009).

    Article  Google Scholar 

  49. Boulton, C. A., Allison, L. C. & Lenton, T. M. Early warning signals of Atlantic Meridional Overturning Circulation collapse in a fully coupled climate model. Nat. Commun. 5, 5752 (2014).

    Article  CAS  Google Scholar 

  50. Klus, A., Prange, M., Varma, V. & Schulz, M. Spatial analysis of early-warning signals for a North Atlantic climate transition in a coupled GCM. Clim. Dyn. 53, 97–113 (2019).

    Article  Google Scholar 

  51. Rosier, S. H. R. et al. The tipping points and early warning indicators for Pine Island Glacier, West Antarctica. Cryosphere 15, 1501–1516 (2021).

    Article  Google Scholar 

  52. van Westen, R. M., Kliphuis, M. & Dijkstra, H. A. Physics-based early warning signal shows that AMOC is on tipping course. Sci. Adv. 10, eadk1189 (2024).

    Article  Google Scholar 

  53. Boulton, C. A. & Lenton, T. M. Slowing down of North Pacific climate variability and its implications for abrupt ecosystem change. Proc. Natl Acad. Sci. USA 112, 11496–11501 (2015).

    Article  CAS  Google Scholar 

  54. Boers, N. & Rypdal, M. Critical slowing down suggests that the western Greenland Ice Sheet is close to a tipping point. Proc. Natl Acad. Sci. USA 118, e2024192118 (2021).

    Article  CAS  Google Scholar 

  55. Boers, N. Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation. Nat. Clim. Change 11, 680–688 (2021).

    Article  Google Scholar 

  56. Boulton, C. A., Lenton, T. M. & Boers, N. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Change 12, 271–278 (2022).

    Article  Google Scholar 

  57. Bochow, N. & Boers, N. The South American monsoon approaches a critical transition in response to deforestation. Sci. Adv. 9, eadd9973 (2023).

    Article  Google Scholar 

  58. Smith, T., Traxl, D. & Boers, N. Empirical evidence for recent global shifts in vegetation resilience. Nat. Clim. Change 12, 477–484 (2022).

    Article  Google Scholar 

  59. Abrupt Impacts of Climate Change: Anticipating Surprises (National Academies Press, 2013).

  60. Lenton, T. M. et al. Remotely sensing potential climate change tipping points across scales. Nat. Commun. 15, 343 (2024).

    Article  CAS  Google Scholar 

  61. Rietkerk, M., Skiba, V., Weinans, E., Hébert, R. & Laepple, T. Ambiguity of early warning signals for climate tipping points. Nat. Clim. Change 15, 479–488 (2025).

    Article  Google Scholar 

  62. Ritchie, P. & Sieber, J. Early-warning indicators for rate-induced tipping. Chaos 26, 093116 (2016).

    Article  Google Scholar 

  63. Boettner, C. & Boers, N. Critical slowing down in dynamical systems driven by nonstationary correlated noise. Phys. Rev. Res. 4, 013230 (2022).

    Article  CAS  Google Scholar 

  64. Clarke, J. J., Huntingford, C., Ritchie, P. D. L. & Cox, P. M. Seeking more robust early warning signals for climate tipping points: the ratio of spectra method (ROSA). Environ. Res. Lett. 18, 035006 (2023).

    Google Scholar 

  65. Rubin, K. J., Pruessner, G. & Pavliotis, G. A. Mapping multiplicative to additive noise. J. Phys. A Math. Theor. 47, 195001 (2014).

    Article  Google Scholar 

  66. Morr, A., Riechers, K., Gorjão, L. R. & Boers, N. Anticipating critical transitions in multidimensional systems driven by time- and state-dependent noise. Phys. Rev. Res. 6, 033251 (2024).

    Article  CAS  Google Scholar 

  67. Bathiany, S. et al. Beyond bifurcation: using complex models to understand and predict abrupt climate change. Dyn. Stat. Clim. Syst. 1, dzw004 (2016).

    Google Scholar 

  68. Lucarini, V., Faranda, D. & Willeit, M. Bistable systems with stochastic noise: virtues and limits of effective one-dimensional Langevin equations. Nonlinear Process. Geophys. 19, 9–22 (2012).

    Article  Google Scholar 

  69. Trefois, C., Antony, P. M. A., Goncalves, J., Skupin, A. & Balling, R. Critical transitions in chronic disease: transferring concepts from ecology to systems medicine. Curr. Opin. Biotechnol. 34, 48–55 (2015).

    Article  CAS  Google Scholar 

  70. Gao, J., Barzel, B. & Barabási, A.-L. Universal resilience patterns in complex networks. Nature 530, 307–312 (2016).

    Article  CAS  Google Scholar 

  71. Thibeault, V., Allard, A. & Desrosiers, P. The low-rank hypothesis of complex systems. Nat. Phys. 20, 294–302 (2024).

    Article  CAS  Google Scholar 

  72. Kéfi, S., Dakos, V., Scheffer, M., Van Nes, E. H. & Rietkerk, M. Early warning signals also precede non-catastrophic transitions. Oikos 122, 641–648 (2013).

    Article  Google Scholar 

  73. Zimmerman, C. C., Wagner, T. J. W., Maroon, E. A. & McNamara, D. E. Slowed response of Atlantic Meridional Overturning Circulation not a robust signal of collapse. Geophys. Res. Lett. 52, e2024GL112415 (2025).

    Article  Google Scholar 

  74. Smith, T. et al. Reliability of resilience estimation based on multi-instrument time series. Earth Syst. Dyn. 14, 173–183 (2023).

    Article  Google Scholar 

  75. Boettiger, C. & Hastings, A. Early warning signals and the prosecutor’s fallacy. Proc. R. Soc. B 279, 4734–4739 (2012).

    Article  Google Scholar 

  76. Ben-Yami, M., Skiba, V., Bathiany, S. & Boers, N. Uncertainties in critical slowing down indicators of observation-based fingerprints of the Atlantic Overturning Circulation. Nat. Commun. 14, 8344 (2023).

    Article  CAS  Google Scholar 

  77. Smith, T. & Boers, N. Reliability of vegetation resilience estimates depends on biomass density. Nat. Ecol. Evol. 7, 1799–1808 (2023).

    Article  Google Scholar 

  78. Wagner, T. J. W. & Eisenman, I. False alarms: how early warning signals falsely predict abrupt sea ice loss. Geophys. Res. Lett. 42, 10,333–10,341 (2015).

    Article  Google Scholar 

  79. Bathiany, S. et al. Statistical indicators of Arctic sea-ice stability – prospects and limitations. Cryosphere 10, 1631–1645 (2016).

    Article  Google Scholar 

  80. Brovkin, V. et al. Past abrupt changes, tipping points and cascading impacts in the Earth system. Nat. Geosci. 14, 550–558 (2021).

    Article  CAS  Google Scholar 

  81. Robinson, A., Calov, R. & Ganopolski, A. Multistability and critical thresholds of the Greenland ice sheet. Nat. Clim. Change 2, 429–432 (2012).

    Article  Google Scholar 

  82. Levermann, A. & Winkelmann, R. A simple equation for the melt elevation feedback of ice sheets. Cryosphere 10, 1799–1807 (2016).

    Article  Google Scholar 

  83. Aschwanden, A. et al. Contribution of the Greenland Ice Sheet to sea level over the next millennium. Sci. Adv. 5, eaav9396 (2019).

    Article  Google Scholar 

  84. Pattyn, F. et al. The Greenland and Antarctic ice sheets under 1.5 °C global warming. Nat. Clim. Change 8, 1053–1061 (2018).

    Article  Google Scholar 

  85. Bochow, N. et al. Overshooting the critical threshold for the Greenland ice sheet. Nature 622, 528–536 (2023).

    Article  CAS  Google Scholar 

  86. Petrini, M. et al. A topographically controlled tipping point for complete Greenland ice sheet melt. Cryosphere 19, 63–81 (2025).

    Article  Google Scholar 

  87. Hakuba, M. Z., Folini, D., Wild, M. & Schär, C. Impact of Greenland’s topographic height on precipitation and snow accumulation in idealized simulations. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD017052 (2012).

  88. Bochow, N., Poltronieri, A. & Boers, N. Projections of precipitation and temperatures in Greenland and the impact of spatially uniform anomalies on the evolution of the ice sheet. Cryosphere 18, 5825–5863 (2024).

    Article  Google Scholar 

  89. Gregory, J. M., George, S. E. & Smith, R. S. Large and irreversible future decline of the Greenland ice sheet. Cryosphere 14, 4299–4322 (2020).

    Article  Google Scholar 

  90. NEEM community memebers. Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493, 489–494 (2013).

    Article  Google Scholar 

  91. Colville, E. J. et al. Sr-Nd-Pb isotope evidence for ice-sheet presence on southern Greenland during the Last Interglacial. Science 333, 620–623 (2011).

    Article  CAS  Google Scholar 

  92. Zeitz, M., Haacker, J. M., Donges, J. F., Albrecht, T. & Winkelmann, R. Dynamic regimes of the Greenland Ice Sheet emerging from interacting melt–elevation and glacial isostatic adjustment feedbacks. Earth Syst. Dyn. 13, 1077–1096 (2022).

    Article  Google Scholar 

  93. Stommel, H. Thermohaline convection with two stable regimes of flow. Tellus 13, 224–230 (1961).

    Article  Google Scholar 

  94. Henry, L. G. et al. North Atlantic ocean circulation and abrupt climate change during the last glaciation. Science 353, 470–474 (2016).

    Article  CAS  Google Scholar 

  95. van Westen, R. M., Vanderborght, E. & Dijkstra, H. A. A saddle-node bifurcation is causing the AMOC collapse in the Community Earth System Model. Preprint at https://doi.org/10.5194/egusphere-2025-14 (2025).

  96. Jackson, L. C. et al. Understanding AMOC stability: the North Atlantic hosing model intercomparison project. Geosci. Model Dev. 16, 1975–1995 (2023).

    Article  Google Scholar 

  97. Trusel, L. D. et al. Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature 564, 104–108 (2018).

    Article  CAS  Google Scholar 

  98. Jackson, L. C. & Wood, R. A. Hysteresis and resilience of the AMOC in an eddy-permitting GCM. Geophys. Res. Lett. 45, 8547–8556 (2018).

    Article  Google Scholar 

  99. Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 419, 207–214 (2002).

    Article  CAS  Google Scholar 

  100. Jackson, L. C. et al. Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Clim. Dyn. 45, 3299–3316 (2015).

    Article  Google Scholar 

  101. Frajka-Williams, E. et al. Atlantic Meridional Overturning Circulation: observed transport and variability. Front. Mar. Sci. 6, 260 (2019).

    Article  Google Scholar 

  102. Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).

    Article  CAS  Google Scholar 

  103. Jackson, L. C. & Wood, R. A. Fingerprints for early detection of changes in the AMOC. J. Clim. 33, 7027–7044 (2020).

    Article  Google Scholar 

  104. Zhu, C., Liu, Z., Zhang, S. & Wu, L. Likely accelerated weakening of Atlantic overturning circulation emerges in optimal salinity fingerprint. Nat. Commun. 14, 1245 (2023).

    Article  CAS  Google Scholar 

  105. Little, C. M., Zhao, M. & Buckley, M. W. Do surface temperature indices reflect centennial-timescale trends in Atlantic Meridional Overturning Circulation strength? Geophys. Res. Lett. 47, e2020GL090888 (2020).

    Article  CAS  Google Scholar 

  106. Michel, S. L. L. et al. Early warning signal for a tipping point suggested by a millennial Atlantic Multidecadal Variability reconstruction. Nat. Commun. 13, 5176 (2022).

    Article  CAS  Google Scholar 

  107. Ditlevsen, P. & Ditlevsen, S. Warning of a forthcoming collapse of the Atlantic meridional overturning circulation. Nat. Commun. 14, 4254 (2023).

    Article  CAS  Google Scholar 

  108. Ben-Yami, M., Morr, A., Bathiany, S. & Boers, N. Uncertainties too large to predict tipping times of major Earth system components from historical data. Sci. Adv. 10, eadl4841 (2024).

    Article  Google Scholar 

  109. Lovejoy, T. E. & Nobre, C. Amazon tipping point. Sci. Adv. 4, eaat2340 (2018).

    Article  Google Scholar 

  110. Flores, B. M. et al. Critical transitions in the Amazon forest system. Nature 626, 555–564 (2024).

    Article  CAS  Google Scholar 

  111. Cox, P. M. et al. Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor. Appl. Climatol. 78, 137–156 (2004).

    Article  Google Scholar 

  112. Good, P., Jones, C., Lowe, J., Betts, R. & Gedney, N. Comparing tropical forest projections from two generations of Hadley Centre Earth System models, HadGEM2-ES and HadCM3LC. J. Clim. 26, 495–511 (2013).

    Article  Google Scholar 

  113. Parry, I. M., Ritchie, P. D. L. & Cox, P. M. Evidence of localised Amazon rainforest dieback in CMIP6 models. Earth Syst. Dyn. 13, 1667–1675 (2022).

    Article  Google Scholar 

  114. Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).

    Article  Google Scholar 

  115. Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).

    Article  CAS  Google Scholar 

  116. Wuyts, B., Champneys, A. R. & House, J. I. Amazonian forest–savanna bistability and human impact. Nat. Commun. 8, 15519 (2017).

    Article  CAS  Google Scholar 

  117. Ciemer, C. et al. Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall. Nat. Geosci. 12, 174–179 (2019).

    Article  CAS  Google Scholar 

  118. Verbesselt, J. et al. Remotely sensed resilience of tropical forests. Nat. Clim. Change 6, 1028–1031 (2016).

    Article  Google Scholar 

  119. Smith, T. & Boers, N. Global vegetation resilience linked to water availability and variability. Nat. Commun. 14, 498 (2023).

    Article  CAS  Google Scholar 

  120. Blaschke, L. L. et al. Spatial correlation increase in single-sensor satellite data reveals loss of Amazon rainforest resilience. Earths Future 12, e2023EF004040 (2024).

    Article  Google Scholar 

  121. Boers, N., Marwan, N., Barbosa, H. M. & Kurths, J. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 7, 41489 (2017).

    Article  CAS  Google Scholar 

  122. Fu, R. et al. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc. Natl Acad. Sci. USA 110, 18110–18115 (2013).

    Article  CAS  Google Scholar 

  123. Leite-Filho, A. T., de Sousa Pontes, V. Y. & Costa, M. H. Effects of deforestation on the onset of the rainy season and the duration of dry spells in southern Amazonia. J. Geophys. Res. Atmos. 124, 5268–5281 (2019).

    Article  Google Scholar 

  124. Armstrong McKay, D. I. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022).

    Article  Google Scholar 

  125. Boers, N., Ghil, M. & Stocker, T. F. Theoretical and paleoclimatic evidence for abrupt transitions in the Earth system. Environ. Res. Lett. 17, 093006 (2022).

    Article  Google Scholar 

  126. Wunderling, N., Donges, J. F., Kurths, J. & Winkelmann, R. Interacting tipping elements increase risk of climate domino effects under global warming. Earth Syst. Dyn. 12, 601–619 (2021).

    Article  Google Scholar 

  127. Kriegler, E., Hall, J. W., Held, H., Dawson, R. & Schellnhuber, H. J. Imprecise probability assessment of tipping points in the climate system. Proc. Natl Acad. Sci. USA 106, 5041–5046 (2009).

    Article  CAS  Google Scholar 

  128. Tantet, A., van der Burgt, F. R. & Dijkstra, H. A. An early warning indicator for atmospheric blocking events using transfer operators. Chaos 25, 036406 (2015).

    Article  Google Scholar 

  129. Bury, T. M. et al. Deep learning for early warning signals of tipping points. Proc. Natl Acad. Sci. USA 118, e2106140118 (2021).

    Article  CAS  Google Scholar 

  130. Bury, T. M. et al. Predicting discrete-time bifurcations with deep learning. Nat. Commun. 14, 6331 (2023).

    Article  CAS  Google Scholar 

  131. Huang, Y., Bathiany, S., Ashwin, P. & Boers, N. Deep learning for predicting rate-induced tipping. Nat. Mach. Intell. 6, 1556–1565 (2024).

    Article  Google Scholar 

  132. Ben-Yami, M., Blaschke, L., Bathiany, S. & Boers, N. No critical slowing down in the Atlantic Overturning Circulation in historical CMIP6 simulations. Preprint at https://doi.org/10.5194/egusphere-2024-1106 (2024).

  133. Lee, J.-Y. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 553–672 (Cambridge Univ. Press, 2021).

  134. Ashwin, P., Wieczorek, S., Vitolo, R. & Cox, P. Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system. Philos. Trans. R. Soc. A 370, 1166–1184 (2012).

    Article  Google Scholar 

  135. Ritchie, P. D. L., Alkhayuon, H., Cox, P. M. & Wieczorek, S. Rate-induced tipping in natural and human systems. Earth Syst. Dyn. 14, 669–683 (2023).

    Article  Google Scholar 

  136. van Nes, E. H. et al. What do you mean, ‘tipping point’? Trends Ecol. Evol. 31, 902–904 (2016).

    Article  Google Scholar 

  137. Kubo, R. The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255 (1966).

    Article  CAS  Google Scholar 

  138. Bakker, P. et al. Fate of the Atlantic Meridional Overturning Circulation: strong decline under continued warming and Greenland melting. Geophys. Res. Lett. 43, 12,252–12,260 (2016).

    Article  Google Scholar 

  139. Liu, W., Fedorov, A. V., Xie, S.-P. & Hu, S. Climate impacts of a weakened Atlantic Meridional Overturning Circulation in a warming climate. Sci. Adv. 6, eaaz4876 (2020).

    Article  Google Scholar 

  140. Zhang, R. & Delworth, T. L. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Clim. 18, 1853–1860 (2005).

    Article  Google Scholar 

  141. Ben-Yami, M. et al. Impacts of AMOC collapse on monsoon rainfall: a multi-model comparison. Earths Future 12, e2023EF003959 (2024).

    Article  Google Scholar 

  142. Akabane, T. K. et al. Weaker Atlantic overturning circulation increases the vulnerability of northern Amazon forests. Nat. Geosci. 17, 1284–1290 (2024).

    Article  CAS  Google Scholar 

  143. Yoon, J.-H. Multi-model analysis of the Atlantic influence on Southern Amazon rainfall. Atmos. Sci. Lett. 17, 122–127 (2016).

    Article  Google Scholar 

  144. Marengo, J. A., Tomasella, J., Alves, L. M., Soares, W. R. & Rodriguez, D. A. The drought of 2010 in the context of historical droughts in the Amazon region. Geophys. Res. Lett. https://doi.org/10.1029/2011GL047436 (2011).

  145. Ciemer, C. et al. An early-warning indicator for Amazon droughts exclusively based on tropical Atlantic sea surface temperatures. Environ. Res. Lett. 15, 094087 (2020).

    Article  Google Scholar 

  146. Orihuela-Pinto, B., England, M. H. & Taschetto, A. S. Interbasin and interhemispheric impacts of a collapsed Atlantic Overturning Circulation. Nat. Clim. Change 12, 558–565 (2022).

    Article  Google Scholar 

  147. Stouffer, R. J. et al. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Clim. 19, 1365–1387 (2006).

    Article  Google Scholar 

  148. Parsons, L. A., Yin, J., Overpeck, J. T., Stouffer, R. J. & Malyshev, S. Influence of the Atlantic Meridional Overturning Circulation on the monsoon rainfall and carbon balance of the American tropics. Geophys. Res. Lett. 41, 146–151 (2014).

    Article  Google Scholar 

  149. Ciemer, C., Winkelmann, R., Kurths, J. & Boers, N. Impact of an AMOC weakening on the stability of the southern Amazon rainforest. Eur. Phys. J. Spec. Top. 230, 3065–3073 (2021).

    Article  Google Scholar 

  150. Good, P., Boers, N., Boulton, C. A., Lowe, J. A. & Richter, I. How might a collapse in the Atlantic Meridional Overturning Circulation affect rainfall over tropical South America? Clim. Resil. Sustain. 1, e26 (2022).

    Google Scholar 

  151. Mosblech, N. A. S. et al. North Atlantic forcing of Amazonian precipitation during the last ice age. Nat. Geosci. 5, 817–820 (2012).

    Article  CAS  Google Scholar 

  152. Bathiany, S., Claussen, M. & Fraedrich, K. Detecting hotspots of atmosphere–vegetation interaction via slowing down – part 1: a stochastic approach. Earth Syst. Dyn. 4, 63–78 (2013).

    Article  Google Scholar 

  153. Moesinger, L. et al. The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA). Earth Syst. Sci. Data 12, 177–196 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

N. Boers and S.B. acknowledge funding by the Volkswagen Foundation. This is ClimTip contribution no. 12; the ClimTip project has received funding from the European Union’s Horizon Europe research and innovation programme under grant agreement no. 101137601. This study received support from the European Space Agency Climate Change Initiative (ESA-CCI) Tipping Elements SIRENE project (contract no. 4000146954/24/I-LR). M.B.-Y. and N. Boers acknowledge funding by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 956170. T.L. acknowledges funding from the National Key R&D Program of China, no. 2023YFE0109000. The work was supported by the UiT Aurora Centre Program, UiT The Arctic University of Norway (2020) and the Research Council of Norway (project number 314570). C.A.B. and T.M.L. acknowledge funding from OptimESM, which has received funding from the European Union’s Horizon Europe research and innovation programme under grant agreement no. 101081193. T.S. acknowledges support from the DFG STRIVE project (SM 710/2-1).

Author information

Authors and Affiliations

Authors

Contributions

N. Boers conceived and designed the study. N. Boers and T.L. carried out the analyses with input from S.B., M.B.-Y., L.L.B., N. Bochow and A.M. All authors discussed and interpreted the results. N. Boers and T.L. wrote the paper with input from all authors.

Corresponding author

Correspondence to Niklas Boers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Victor Brovkin and Sebastian Rosier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Tamara Goldin and Tom Richardson, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boers, N., Liu, T., Bathiany, S. et al. Destabilization of Earth system tipping elements. Nat. Geosci. 18, 949–960 (2025). https://doi.org/10.1038/s41561-025-01787-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41561-025-01787-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing