Abstract
There is rising concern that several parts of the Earth system may abruptly transition to alternative stable states in response to anthropogenic climate and land-use change. Key candidates of such tipping elements include the Greenland Ice Sheet, the Atlantic Meridional Overturning Circulation, the South American monsoon system and the Amazon rainforest. Owing to the complex dynamics and feedbacks between them via oceanic and atmospheric coupling, the levels of anthropogenic forcing at which transitions to alternative states can be expected remain uncertain. Here we demonstrate how such interactions can generate spurious signals and potentially mask genuine signs of destabilization. We further review and present observation-based evidence that the stability of these four tipping elements has declined in recent decades, suggesting that they have moved towards their critical thresholds, which may be crossed within the range of unmitigated anthropogenic warming. Our results call for better monitoring of these tipping elements and for increased efforts to stop greenhouse gas emissions and land-use change.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
Data availability
All data presented in this work are publicly available. The analysis data used to generate the figures are available via GitHub at https://github.com/Tonny-liu/Four_tipping_elements.
Code availability
The Python code used to generate the figures is publicly available via GitHub at https://github.com/Tonny-liu/Four_tipping_elements.
References
Schellnhuber, H. J. Tipping elements in the Earth system. Proc. Natl Acad. Sci. USA 106, 20561–20563 (2009).
Schellnhuber, H. J., Rahmstorf, S. & Winkelmann, R. Why the right climate target was agreed in Paris. Nat. Clim. Change 6, 649–653 (2016).
Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature 575, 592–595 (2019).
Dansgaard, W. et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218–220 (1993).
Bond, G. et al. Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 2130–2136 (2001).
Crucifix, M. in Climate Changes in the Holocene: Impacts and Human Adaptation (ed. Chiotis, E.) 77–106 (CRC Press, 2018).
Peltier, W. R. & Vettoretti, G. Dansgaard–Oeschger oscillations predicted in a comprehensive model of glacial climate: a “kicked” salt oscillator in the Atlantic. Geophys. Res. Lett. 41, 7306–7313 (2014).
Drijfhout, S. et al. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl Acad. Sci. USA 112, E5777–E5786 (2015).
Liu, W., Xie, S.-P., Liu, Z. & Zhu, J. Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate. Sci. Adv. 3, e1601666 (2017).
Hopcroft, P. O. & Valdes, P. J. Paleoclimate-conditioning reveals a North Africa land–atmosphere tipping point. Proc. Natl Acad. Sci. USA 118, e2108783118 (2021).
Wunderling, N. et al. Climate tipping point interactions and cascades: a review. Earth Syst. Dyn. 15, 41–74 (2024).
Liu, T. et al. Teleconnections among tipping elements in the Earth system. Nat. Clim. Change 13, 67–74 (2023).
Dekker, M. M., von der Heydt, A. S. & Dijkstra, H. A. Cascading transitions in the climate system. Earth Syst. Dyn. 9, 1243–1260 (2018).
Klose, A. K., Wunderling, N., Winkelmann, R. & Donges, J. F. What do we mean, ‘tipping cascade’? Environ. Res. Lett. 16, 125011 (2021).
Nian, D. et al. A potential collapse of the Atlantic Meridional Overturning Circulation may stabilise eastern Amazonian rainforests. Commun. Earth Environ. 4, 470 (2023).
Ritchie, P. D. L., Clarke, J. J., Cox, P. M. & Huntingford, C. Overshooting tipping point thresholds in a changing climate. Nature 592, 517–523 (2021).
Wunderling, N. et al. Global warming overshoots increase risks of climate tipping cascades in a network model. Nat. Clim. Change 13, 75–82 (2023).
Cai, Y., Lenton, T. M. & Lontzek, T. S. Risk of multiple interacting tipping points should encourage rapid CO2 emission reduction. Nat. Clim. Change 6, 520–525 (2016).
Klockmann, M., Mikolajewicz, U., Kleppin, H. & Marotzke, J. Coupling of the subpolar gyre and the overturning circulation during abrupt glacial climate transitions. Geophys. Res. Lett. 47, e2020GL090361 (2020).
Meehl, G. A. et al. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci. Adv. 6, eaba1981 (2020).
Zelinka, M. D. et al. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 47, e2019GL085782 (2020).
Valdes, P. Built for stability. Nat. Geosci. 4, 414–416 (2011).
Liu, W., Liu, Z. & Brady, E. C. Why is the AMOC monostable in coupled general circulation models? J. Clim. 27, 2427–2443 (2014).
Mecking, J. V., Drijfhout, S. S., Jackson, L. C. & Andrews, M. B. The effect of model bias on Atlantic freshwater transport and implications for AMOC bi-stability. Tellus A 69, 1299910 (2017).
Weijer, W. et al. Stability of the Atlantic Meridional Overturning Circulation: a review and synthesis. J. Geophys. Res. Oceans 124, 5336–5375 (2019).
McCarthy, G. D. & Caesar, L. Can we trust projections of AMOC weakening based on climate models that cannot reproduce the past? Philos. Trans. R. Soc. A 381, 20220193 (2023).
Thornalley, D. J. R. et al. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature 556, 227–230 (2018).
Caesar, L., McCarthy, G. D., Thornalley, D. J. R., Cahill, N. & Rahmstorf, S. Current Atlantic Meridional Overturning Circulation weakest in last millennium. Nat. Geosci. 14, 118–120 (2021).
Kjeldsen, K. K. et al. Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since ad 1900. Nature 528, 396–400 (2015).
Smith, B. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368, 1239–1242 (2020).
Held, H. & Kleinen, T. Detection of climate system bifurcations by degenerate fingerprinting. Geophys. Res. Lett. https://doi.org/10.1029/2004GL020972 (2004).
Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).
Lenton, T. M. Early warning of climate tipping points. Nat. Clim. Change 1, 201–209 (2011).
Armstrong McKay, D. I. & Lenton, T. M. Reduced carbon cycle resilience across the Palaeocene–Eocene Thermal Maximum. Clim. Past 14, 1515–1527 (2018).
Setty, S. et al. Loss of Earth system resilience during early Eocene transient global warming events. Sci. Adv. 9, eade5466 (2023).
Boettner, C., Klinghammer, G., Boers, N., Westerhold, T. & Marwan, N. Early-warning signals for Cenozoic climate transitions. Quat. Sci. Rev. 270, 107177 (2021).
Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).
Praetorius, S. K. & Mix, A. C. Synchronization of North Pacific and Greenland climates preceded abrupt deglacial warming. Science 345, 444–448 (2014).
Rypdal, M. Early-warning signals for the onsets of Greenland interstadials and the Younger Dryas–Preboreal transition. J. Clim. 29, 4047–4056 (2016).
Boers, N. Early-warning signals for Dansgaard–Oeschger events in a high-resolution ice core record. Nat. Commun. 9, 2556 (2018).
Mitsui, T. & Boers, N. Statistical precursor signals for Dansgaard–Oeschger cooling transitions. Clim. Past 20, 683–699 (2024).
Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079–1082 (2011).
Veraart, A. J. et al. Recovery rates reflect distance to a tipping point in a living system. Nature 481, 357–359 (2012).
Wang, R. et al. Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature 492, 419–422 (2012).
Boulton, C. A., Good, P. & Lenton, T. M. Early warning signals of simulated Amazon rainforest dieback. Theor. Ecol. 6, 373–384 (2013).
Trauth, M. H. et al. Early warning signals of the termination of the African Humid Period(s). Nat. Commun. 15, 3697 (2024).
Morr, A. & Boers, N. Detection of approaching critical transitions in natural systems driven by red noise. Phys. Rev. X 14, 021037 (2024).
Lenton, T. M. et al. Using GENIE to study a tipping point in the climate system. Philos. Trans. R. Soc. A 367, 871–884 (2009).
Boulton, C. A., Allison, L. C. & Lenton, T. M. Early warning signals of Atlantic Meridional Overturning Circulation collapse in a fully coupled climate model. Nat. Commun. 5, 5752 (2014).
Klus, A., Prange, M., Varma, V. & Schulz, M. Spatial analysis of early-warning signals for a North Atlantic climate transition in a coupled GCM. Clim. Dyn. 53, 97–113 (2019).
Rosier, S. H. R. et al. The tipping points and early warning indicators for Pine Island Glacier, West Antarctica. Cryosphere 15, 1501–1516 (2021).
van Westen, R. M., Kliphuis, M. & Dijkstra, H. A. Physics-based early warning signal shows that AMOC is on tipping course. Sci. Adv. 10, eadk1189 (2024).
Boulton, C. A. & Lenton, T. M. Slowing down of North Pacific climate variability and its implications for abrupt ecosystem change. Proc. Natl Acad. Sci. USA 112, 11496–11501 (2015).
Boers, N. & Rypdal, M. Critical slowing down suggests that the western Greenland Ice Sheet is close to a tipping point. Proc. Natl Acad. Sci. USA 118, e2024192118 (2021).
Boers, N. Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation. Nat. Clim. Change 11, 680–688 (2021).
Boulton, C. A., Lenton, T. M. & Boers, N. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Change 12, 271–278 (2022).
Bochow, N. & Boers, N. The South American monsoon approaches a critical transition in response to deforestation. Sci. Adv. 9, eadd9973 (2023).
Smith, T., Traxl, D. & Boers, N. Empirical evidence for recent global shifts in vegetation resilience. Nat. Clim. Change 12, 477–484 (2022).
Abrupt Impacts of Climate Change: Anticipating Surprises (National Academies Press, 2013).
Lenton, T. M. et al. Remotely sensing potential climate change tipping points across scales. Nat. Commun. 15, 343 (2024).
Rietkerk, M., Skiba, V., Weinans, E., Hébert, R. & Laepple, T. Ambiguity of early warning signals for climate tipping points. Nat. Clim. Change 15, 479–488 (2025).
Ritchie, P. & Sieber, J. Early-warning indicators for rate-induced tipping. Chaos 26, 093116 (2016).
Boettner, C. & Boers, N. Critical slowing down in dynamical systems driven by nonstationary correlated noise. Phys. Rev. Res. 4, 013230 (2022).
Clarke, J. J., Huntingford, C., Ritchie, P. D. L. & Cox, P. M. Seeking more robust early warning signals for climate tipping points: the ratio of spectra method (ROSA). Environ. Res. Lett. 18, 035006 (2023).
Rubin, K. J., Pruessner, G. & Pavliotis, G. A. Mapping multiplicative to additive noise. J. Phys. A Math. Theor. 47, 195001 (2014).
Morr, A., Riechers, K., Gorjão, L. R. & Boers, N. Anticipating critical transitions in multidimensional systems driven by time- and state-dependent noise. Phys. Rev. Res. 6, 033251 (2024).
Bathiany, S. et al. Beyond bifurcation: using complex models to understand and predict abrupt climate change. Dyn. Stat. Clim. Syst. 1, dzw004 (2016).
Lucarini, V., Faranda, D. & Willeit, M. Bistable systems with stochastic noise: virtues and limits of effective one-dimensional Langevin equations. Nonlinear Process. Geophys. 19, 9–22 (2012).
Trefois, C., Antony, P. M. A., Goncalves, J., Skupin, A. & Balling, R. Critical transitions in chronic disease: transferring concepts from ecology to systems medicine. Curr. Opin. Biotechnol. 34, 48–55 (2015).
Gao, J., Barzel, B. & Barabási, A.-L. Universal resilience patterns in complex networks. Nature 530, 307–312 (2016).
Thibeault, V., Allard, A. & Desrosiers, P. The low-rank hypothesis of complex systems. Nat. Phys. 20, 294–302 (2024).
Kéfi, S., Dakos, V., Scheffer, M., Van Nes, E. H. & Rietkerk, M. Early warning signals also precede non-catastrophic transitions. Oikos 122, 641–648 (2013).
Zimmerman, C. C., Wagner, T. J. W., Maroon, E. A. & McNamara, D. E. Slowed response of Atlantic Meridional Overturning Circulation not a robust signal of collapse. Geophys. Res. Lett. 52, e2024GL112415 (2025).
Smith, T. et al. Reliability of resilience estimation based on multi-instrument time series. Earth Syst. Dyn. 14, 173–183 (2023).
Boettiger, C. & Hastings, A. Early warning signals and the prosecutor’s fallacy. Proc. R. Soc. B 279, 4734–4739 (2012).
Ben-Yami, M., Skiba, V., Bathiany, S. & Boers, N. Uncertainties in critical slowing down indicators of observation-based fingerprints of the Atlantic Overturning Circulation. Nat. Commun. 14, 8344 (2023).
Smith, T. & Boers, N. Reliability of vegetation resilience estimates depends on biomass density. Nat. Ecol. Evol. 7, 1799–1808 (2023).
Wagner, T. J. W. & Eisenman, I. False alarms: how early warning signals falsely predict abrupt sea ice loss. Geophys. Res. Lett. 42, 10,333–10,341 (2015).
Bathiany, S. et al. Statistical indicators of Arctic sea-ice stability – prospects and limitations. Cryosphere 10, 1631–1645 (2016).
Brovkin, V. et al. Past abrupt changes, tipping points and cascading impacts in the Earth system. Nat. Geosci. 14, 550–558 (2021).
Robinson, A., Calov, R. & Ganopolski, A. Multistability and critical thresholds of the Greenland ice sheet. Nat. Clim. Change 2, 429–432 (2012).
Levermann, A. & Winkelmann, R. A simple equation for the melt elevation feedback of ice sheets. Cryosphere 10, 1799–1807 (2016).
Aschwanden, A. et al. Contribution of the Greenland Ice Sheet to sea level over the next millennium. Sci. Adv. 5, eaav9396 (2019).
Pattyn, F. et al. The Greenland and Antarctic ice sheets under 1.5 °C global warming. Nat. Clim. Change 8, 1053–1061 (2018).
Bochow, N. et al. Overshooting the critical threshold for the Greenland ice sheet. Nature 622, 528–536 (2023).
Petrini, M. et al. A topographically controlled tipping point for complete Greenland ice sheet melt. Cryosphere 19, 63–81 (2025).
Hakuba, M. Z., Folini, D., Wild, M. & Schär, C. Impact of Greenland’s topographic height on precipitation and snow accumulation in idealized simulations. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD017052 (2012).
Bochow, N., Poltronieri, A. & Boers, N. Projections of precipitation and temperatures in Greenland and the impact of spatially uniform anomalies on the evolution of the ice sheet. Cryosphere 18, 5825–5863 (2024).
Gregory, J. M., George, S. E. & Smith, R. S. Large and irreversible future decline of the Greenland ice sheet. Cryosphere 14, 4299–4322 (2020).
NEEM community memebers. Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493, 489–494 (2013).
Colville, E. J. et al. Sr-Nd-Pb isotope evidence for ice-sheet presence on southern Greenland during the Last Interglacial. Science 333, 620–623 (2011).
Zeitz, M., Haacker, J. M., Donges, J. F., Albrecht, T. & Winkelmann, R. Dynamic regimes of the Greenland Ice Sheet emerging from interacting melt–elevation and glacial isostatic adjustment feedbacks. Earth Syst. Dyn. 13, 1077–1096 (2022).
Stommel, H. Thermohaline convection with two stable regimes of flow. Tellus 13, 224–230 (1961).
Henry, L. G. et al. North Atlantic ocean circulation and abrupt climate change during the last glaciation. Science 353, 470–474 (2016).
van Westen, R. M., Vanderborght, E. & Dijkstra, H. A. A saddle-node bifurcation is causing the AMOC collapse in the Community Earth System Model. Preprint at https://doi.org/10.5194/egusphere-2025-14 (2025).
Jackson, L. C. et al. Understanding AMOC stability: the North Atlantic hosing model intercomparison project. Geosci. Model Dev. 16, 1975–1995 (2023).
Trusel, L. D. et al. Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature 564, 104–108 (2018).
Jackson, L. C. & Wood, R. A. Hysteresis and resilience of the AMOC in an eddy-permitting GCM. Geophys. Res. Lett. 45, 8547–8556 (2018).
Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 419, 207–214 (2002).
Jackson, L. C. et al. Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Clim. Dyn. 45, 3299–3316 (2015).
Frajka-Williams, E. et al. Atlantic Meridional Overturning Circulation: observed transport and variability. Front. Mar. Sci. 6, 260 (2019).
Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).
Jackson, L. C. & Wood, R. A. Fingerprints for early detection of changes in the AMOC. J. Clim. 33, 7027–7044 (2020).
Zhu, C., Liu, Z., Zhang, S. & Wu, L. Likely accelerated weakening of Atlantic overturning circulation emerges in optimal salinity fingerprint. Nat. Commun. 14, 1245 (2023).
Little, C. M., Zhao, M. & Buckley, M. W. Do surface temperature indices reflect centennial-timescale trends in Atlantic Meridional Overturning Circulation strength? Geophys. Res. Lett. 47, e2020GL090888 (2020).
Michel, S. L. L. et al. Early warning signal for a tipping point suggested by a millennial Atlantic Multidecadal Variability reconstruction. Nat. Commun. 13, 5176 (2022).
Ditlevsen, P. & Ditlevsen, S. Warning of a forthcoming collapse of the Atlantic meridional overturning circulation. Nat. Commun. 14, 4254 (2023).
Ben-Yami, M., Morr, A., Bathiany, S. & Boers, N. Uncertainties too large to predict tipping times of major Earth system components from historical data. Sci. Adv. 10, eadl4841 (2024).
Lovejoy, T. E. & Nobre, C. Amazon tipping point. Sci. Adv. 4, eaat2340 (2018).
Flores, B. M. et al. Critical transitions in the Amazon forest system. Nature 626, 555–564 (2024).
Cox, P. M. et al. Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor. Appl. Climatol. 78, 137–156 (2004).
Good, P., Jones, C., Lowe, J., Betts, R. & Gedney, N. Comparing tropical forest projections from two generations of Hadley Centre Earth System models, HadGEM2-ES and HadCM3LC. J. Clim. 26, 495–511 (2013).
Parry, I. M., Ritchie, P. D. L. & Cox, P. M. Evidence of localised Amazon rainforest dieback in CMIP6 models. Earth Syst. Dyn. 13, 1667–1675 (2022).
Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).
Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).
Wuyts, B., Champneys, A. R. & House, J. I. Amazonian forest–savanna bistability and human impact. Nat. Commun. 8, 15519 (2017).
Ciemer, C. et al. Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall. Nat. Geosci. 12, 174–179 (2019).
Verbesselt, J. et al. Remotely sensed resilience of tropical forests. Nat. Clim. Change 6, 1028–1031 (2016).
Smith, T. & Boers, N. Global vegetation resilience linked to water availability and variability. Nat. Commun. 14, 498 (2023).
Blaschke, L. L. et al. Spatial correlation increase in single-sensor satellite data reveals loss of Amazon rainforest resilience. Earths Future 12, e2023EF004040 (2024).
Boers, N., Marwan, N., Barbosa, H. M. & Kurths, J. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 7, 41489 (2017).
Fu, R. et al. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc. Natl Acad. Sci. USA 110, 18110–18115 (2013).
Leite-Filho, A. T., de Sousa Pontes, V. Y. & Costa, M. H. Effects of deforestation on the onset of the rainy season and the duration of dry spells in southern Amazonia. J. Geophys. Res. Atmos. 124, 5268–5281 (2019).
Armstrong McKay, D. I. et al. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 377, eabn7950 (2022).
Boers, N., Ghil, M. & Stocker, T. F. Theoretical and paleoclimatic evidence for abrupt transitions in the Earth system. Environ. Res. Lett. 17, 093006 (2022).
Wunderling, N., Donges, J. F., Kurths, J. & Winkelmann, R. Interacting tipping elements increase risk of climate domino effects under global warming. Earth Syst. Dyn. 12, 601–619 (2021).
Kriegler, E., Hall, J. W., Held, H., Dawson, R. & Schellnhuber, H. J. Imprecise probability assessment of tipping points in the climate system. Proc. Natl Acad. Sci. USA 106, 5041–5046 (2009).
Tantet, A., van der Burgt, F. R. & Dijkstra, H. A. An early warning indicator for atmospheric blocking events using transfer operators. Chaos 25, 036406 (2015).
Bury, T. M. et al. Deep learning for early warning signals of tipping points. Proc. Natl Acad. Sci. USA 118, e2106140118 (2021).
Bury, T. M. et al. Predicting discrete-time bifurcations with deep learning. Nat. Commun. 14, 6331 (2023).
Huang, Y., Bathiany, S., Ashwin, P. & Boers, N. Deep learning for predicting rate-induced tipping. Nat. Mach. Intell. 6, 1556–1565 (2024).
Ben-Yami, M., Blaschke, L., Bathiany, S. & Boers, N. No critical slowing down in the Atlantic Overturning Circulation in historical CMIP6 simulations. Preprint at https://doi.org/10.5194/egusphere-2024-1106 (2024).
Lee, J.-Y. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 553–672 (Cambridge Univ. Press, 2021).
Ashwin, P., Wieczorek, S., Vitolo, R. & Cox, P. Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system. Philos. Trans. R. Soc. A 370, 1166–1184 (2012).
Ritchie, P. D. L., Alkhayuon, H., Cox, P. M. & Wieczorek, S. Rate-induced tipping in natural and human systems. Earth Syst. Dyn. 14, 669–683 (2023).
van Nes, E. H. et al. What do you mean, ‘tipping point’? Trends Ecol. Evol. 31, 902–904 (2016).
Kubo, R. The fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255 (1966).
Bakker, P. et al. Fate of the Atlantic Meridional Overturning Circulation: strong decline under continued warming and Greenland melting. Geophys. Res. Lett. 43, 12,252–12,260 (2016).
Liu, W., Fedorov, A. V., Xie, S.-P. & Hu, S. Climate impacts of a weakened Atlantic Meridional Overturning Circulation in a warming climate. Sci. Adv. 6, eaaz4876 (2020).
Zhang, R. & Delworth, T. L. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Clim. 18, 1853–1860 (2005).
Ben-Yami, M. et al. Impacts of AMOC collapse on monsoon rainfall: a multi-model comparison. Earths Future 12, e2023EF003959 (2024).
Akabane, T. K. et al. Weaker Atlantic overturning circulation increases the vulnerability of northern Amazon forests. Nat. Geosci. 17, 1284–1290 (2024).
Yoon, J.-H. Multi-model analysis of the Atlantic influence on Southern Amazon rainfall. Atmos. Sci. Lett. 17, 122–127 (2016).
Marengo, J. A., Tomasella, J., Alves, L. M., Soares, W. R. & Rodriguez, D. A. The drought of 2010 in the context of historical droughts in the Amazon region. Geophys. Res. Lett. https://doi.org/10.1029/2011GL047436 (2011).
Ciemer, C. et al. An early-warning indicator for Amazon droughts exclusively based on tropical Atlantic sea surface temperatures. Environ. Res. Lett. 15, 094087 (2020).
Orihuela-Pinto, B., England, M. H. & Taschetto, A. S. Interbasin and interhemispheric impacts of a collapsed Atlantic Overturning Circulation. Nat. Clim. Change 12, 558–565 (2022).
Stouffer, R. J. et al. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Clim. 19, 1365–1387 (2006).
Parsons, L. A., Yin, J., Overpeck, J. T., Stouffer, R. J. & Malyshev, S. Influence of the Atlantic Meridional Overturning Circulation on the monsoon rainfall and carbon balance of the American tropics. Geophys. Res. Lett. 41, 146–151 (2014).
Ciemer, C., Winkelmann, R., Kurths, J. & Boers, N. Impact of an AMOC weakening on the stability of the southern Amazon rainforest. Eur. Phys. J. Spec. Top. 230, 3065–3073 (2021).
Good, P., Boers, N., Boulton, C. A., Lowe, J. A. & Richter, I. How might a collapse in the Atlantic Meridional Overturning Circulation affect rainfall over tropical South America? Clim. Resil. Sustain. 1, e26 (2022).
Mosblech, N. A. S. et al. North Atlantic forcing of Amazonian precipitation during the last ice age. Nat. Geosci. 5, 817–820 (2012).
Bathiany, S., Claussen, M. & Fraedrich, K. Detecting hotspots of atmosphere–vegetation interaction via slowing down – part 1: a stochastic approach. Earth Syst. Dyn. 4, 63–78 (2013).
Moesinger, L. et al. The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA). Earth Syst. Sci. Data 12, 177–196 (2020).
Acknowledgements
N. Boers and S.B. acknowledge funding by the Volkswagen Foundation. This is ClimTip contribution no. 12; the ClimTip project has received funding from the European Union’s Horizon Europe research and innovation programme under grant agreement no. 101137601. This study received support from the European Space Agency Climate Change Initiative (ESA-CCI) Tipping Elements SIRENE project (contract no. 4000146954/24/I-LR). M.B.-Y. and N. Boers acknowledge funding by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 956170. T.L. acknowledges funding from the National Key R&D Program of China, no. 2023YFE0109000. The work was supported by the UiT Aurora Centre Program, UiT The Arctic University of Norway (2020) and the Research Council of Norway (project number 314570). C.A.B. and T.M.L. acknowledge funding from OptimESM, which has received funding from the European Union’s Horizon Europe research and innovation programme under grant agreement no. 101081193. T.S. acknowledges support from the DFG STRIVE project (SM 710/2-1).
Author information
Authors and Affiliations
Contributions
N. Boers conceived and designed the study. N. Boers and T.L. carried out the analyses with input from S.B., M.B.-Y., L.L.B., N. Bochow and A.M. All authors discussed and interpreted the results. N. Boers and T.L. wrote the paper with input from all authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Geoscience thanks Victor Brovkin and Sebastian Rosier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Tamara Goldin and Tom Richardson, in collaboration with the Nature Geoscience team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Fig. 1.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Boers, N., Liu, T., Bathiany, S. et al. Destabilization of Earth system tipping elements. Nat. Geosci. 18, 949–960 (2025). https://doi.org/10.1038/s41561-025-01787-0
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41561-025-01787-0