Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Individuals with depression express more distorted thinking on social media

Abstract

Depression is a leading cause of disability worldwide, but is often underdiagnosed and undertreated. Cognitive behavioural therapy holds that individuals with depression exhibit distorted modes of thinking, that is, cognitive distortions, that can negatively affect their emotions and motivation. Here, we show that the language of individuals with a self-reported diagnosis of depression on social media is characterized by higher levels of distorted thinking compared with a random sample. This effect is specific to the distorted nature of the expression and cannot be explained by the presence of specific topics, sentiment or first-person pronouns. This study identifies online language patterns that are indicative of depression-related distorted thinking. We caution that any future applications of this research should carefully consider ethical and data privacy issues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cohort of individuals with depression.
Fig. 2: Within-individual CDS prevalence and between-cohort PR values.
Fig. 3: CDS and tweet sentiment scores (VADER).

Similar content being viewed by others

Data availability

All data used in this study are available in deidentified form in a dedicated and open GitHub repository (https://github.com/mctenthij/CDS_paper). Any additional information with respect to the data used in this study will be made available from the corresponding author upon reasonable request, provided this information can be made available in deidentified form. Any additional data and information are available from the corresponding author on reasonable request.

Code availability

The code and related data of this study are freely available at GitHub (https://github.com/mctenthij/CDS_paper) enabling reproduction.

References

  1. Greenberg, P. E., Fournier, A.-A., Sisitsky, T., Pike, C. T. & Kessler, R. C. The economic burden of adults with major depressive disorder in the United States (2005 and 2010). J. Clin. Psychiatry 76, 155–162 (2015).

    Article  PubMed  Google Scholar 

  2. World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates (World Health Organization, 2017).

  3. Case, A. & Deaton, A. Rising morbidity and mortality in midlife among white non-Hispanic Americans in the 21st century. Proc. Natl Acad. Sci. USA 112, 15078–15083 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Mojtabai, R., Olfson, M. & Han, B. National trends in the prevalence and treatment of depression in adolescents and young adults. Pediatrics 138, e20161878 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mitchell, A. J., Vaze, A. & Rao, S. Clinical diagnosis of depression in primary care: a meta-analysis. Lancet 374, 609–619 (2009).

    Article  PubMed  Google Scholar 

  6. Wang, P. S. et al. Twelve-month use of mental health services in the United States: results from the National Comorbidity Survey replication. Arch. Gen. Psychiatry 62, 629–640 (2005).

    Article  PubMed  Google Scholar 

  7. Hofmann, S. G., Asnaani, A., Vonk, I. J., Sawyer, A. T. & Fang, A. The efficacy of cognitive behavioral therapy: a review of meta-analyses. Cognit. Ther. Res. 36, 427–440 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cuijpers, P. et al. Does cognitive behaviour therapy have an enduring effect that is superior to keeping patients on continuation pharmacotherapy? A meta-analysis. BMJ Open 3, e002542 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lorenzo-Luaces, L., German, R. E. & DeRubeis, R. J. It’s complicated: the relation between cognitive change procedures, cognitive change, and symptom change in cognitive therapy for depression. Clin. Psychol. Rev. 41, 3–15 (2015).

    Article  PubMed  Google Scholar 

  10. Ozdel, K. et al. Measuring cognitive errors using the cognitive distortions scale (CDS): psychometric properties in clinical and non-clinical samples. PloS ONE 9, e105956 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Beck, A. T. & Haigh, E. A. Advances in cognitive theory and therapy: the generic cognitive model. Annu. Rev. Clin. Psychol. 10, 1–24 (2014).

    Article  PubMed  Google Scholar 

  12. Clark, D. A. & Beck, A. T. Cognitive theory and therapy of anxiety and depression: convergence with neurobiological findings. Trends Cognit. Sci. 14, 418–424 (2010).

    Article  Google Scholar 

  13. Foland-Ross, L. C. & Gotlib, I. H. Cognitive and neural aspects of information processing in major depressive disorder: an integrative perspective. Front. Psychol. 3, 489 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  14. van de Leemput, I. A. et al. Critical slowing down as early warning for the onset and termination of depression. Proc. Natl Acad. Sci. USA 111, 87–92 (2014).

    Article  PubMed  Google Scholar 

  15. Webb, T. L., Miles, E. & Sheeran, P. Dealing with feeling: a meta-analysis of the effectiveness of strategies derived from the process model of emotion regulation. Psychol. Bull. 138, 775–808 (2012).

    Article  PubMed  Google Scholar 

  16. Fan, R. et al. The minute-scale dynamics of online emotions reveal the effects of affect labeling. Nat. Hum. Behav. 3, 92–100 (2019).

    Article  PubMed  Google Scholar 

  17. DeRubeis, R. J., Siegle, G. J. & Hollon, S. D. Cognitive therapy versus medication for depression: treatment outcomes and neural mechanisms. Nat. Rev. Neurosci. 9, 788–796 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Troy, A. S., Wilhelm, F. H., Shallcross, A. J. & Mauss, I. B. Seeing the silver lining: cognitive reappraisal ability moderates the relationship between stress and depressive symptoms. Emotion 10, 783–795 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rude, S., Gortner, E.-M. & Pennebaker, J. Language use of depressed and depression-vulnerable college students. Cogn. Emot. 18, 1121–1133 (2004).

    Article  Google Scholar 

  20. Tackman, A. M. et al. Depression, negative emotionality, and self-referential language: a multi-lab, multi-measure, and multi-language-task research synthesis. J. Pers. Soc. Psychol. 116, 817–834 (2019).

    Article  PubMed  Google Scholar 

  21. Coppersmith, G., Dredze, M., Harman, C. & Hollingshead, K. From ADHD to SAD: analyzing the language of mental health on Twitter through self-reported diagnoses. In Proc. 2nd Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, CLPsych (eds Mitchell, M., Coppersmith, G. & Hollingshead, K.) 1–10 (Association for Computational Linguistics, 2015).

  22. Bernard, J. D., Baddeley, J. L., Rodriguez, B. F. & Burke, P. A. Depression, language, and affect: an examination of the influence of baseline depression and affect induction on language. J. Lang. Soc. Psychol. 35, 317–326 (2016).

    Article  Google Scholar 

  23. Smirnova, D. et al. Language patterns discriminate mild depression from normal sadness and euthymic state. Front. Psychiatry 9, 105 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zimmermann, J., Brockmeyer, T., Hunn, M., Schauenburg, H. & Wolf, M. First-person pronoun use in spoken language as a predictor of future depressive symptoms: preliminary evidence from a clinical sample of depressed patients. Clin. Psychol. Psychother. 24, 384–391 (2017).

    Article  PubMed  Google Scholar 

  25. Cacheda, F., Fernandez, D., Novoa, F. J. & Carneiro, V. Early detection of depression: social network analysis and random forest techniques. J. Med. Internet Res. 21, e12554 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cavazos-Rehg, P. A. et al. A content analysis of depression-related tweets. Comput. Hum. Behav. 54, 351–357 (2016).

    Article  Google Scholar 

  27. Al-Mosaiwi, M. & Johnstone, T. In an absolute state: elevated use of absolutist words is a marker specific to anxiety, depression, and suicidal ideation. Clin. Psychol. Sci. 6, 529–542 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Eichstaedt, J. C. et al. Facebook language predicts depression in medical records. Proc. Natl Acad. Sci. USA 115, 11203–11208 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Choudhury, M. D., Gamon, M., Counts, S. & Horvitz, E. Predicting depression via social media. In Proc. Seventh International AAAI Conference on Weblogs and Social Media, ICWSM (eds Emre Kiciman, E., Ellison, N. B., Hogan, B., Resnick, P. & Soboroff, I.) 128–137 (2013).

  30. Reece, A. G. et al. Forecasting the onset and course of mental illness with Twitter data. Sci. Rep. 7, 13006 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Coppersmith, G., Dredze, M. & Harman, C. Quantifying mental health signals in Twitter. In Proc. Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, CLPsych (eds Resnik, P., Resnik, R. & Mitchell, M.) 51–60 (Association for Computational Linguistics, 2014).

  32. Hasin, D. S. et al. Epidemiology of adult DSM-5 major depressive disorder and its specifiers in the United States. JAMA Psychiatry 75, 336–346 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rnic, K., Dozois, D. J. & Martin, R. A. Cognitive distortions, humor styles, and depression. Eur. J. Psycholol. 12, 348–362 (2016).

    Article  Google Scholar 

  34. Fiske, A., Wetherell, J. L. & Gatz, M. Depression in older adults. Ann. Rev. Clin. Psychol. 5, 363–389 (2009).

    Article  Google Scholar 

  35. Wang, Z. et al. Demographic inference and representative population estimates from multilingual social media data. In Proc. 2019 World Wide Web Conference, WWW (eds Liu, L. & White, R.) 2056–2067 (Association for Computing Machinery, 2019).

  36. Albert, P. R. Why is depression more prevalent in women? J. Psychiatry Neurosci. 40, 219–221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kuehner, C. Why is depression more common among women than among men? Lancet Psychiatry 4, 146–158 (2017).

    Article  PubMed  Google Scholar 

  38. Chancellor, S., Birnbaum, M. L., Caine, E. D., Silenzio, V. M. B. & De Choudhury, M. A taxonomy of ethical tensions in inferring mental health states from social media. In Proc. Conference on Fairness, Accountability, and Transparency, FAT (eds Boyd, D. & Morgenstern, J.) 79–88 (Association for Computing Machinery, 2019).

  39. Benton, A., Coppersmith, G. & Dredze, M. Ethical research protocols for social media health research. In Proc. First ACL Workshop on Ethics in Natural Language Processing, EthNLP (eds Hovy, D. et al) 94–102 (Association for Computational Linguistics, 2017).

  40. Molendijk, M. L. et al. Word use of outpatients with a personality disorder and concurrent or previous major depressive disorder. Behav. Res. Ther. 48, 44–51 (2010).

    Article  PubMed  Google Scholar 

  41. Fast, L. A. & Funder, D. C. Gender differences in the correlates of self-referent word use: authority, entitlement, and depressive symptoms. J. Pers. 78, 313–338 (2010).

    Article  PubMed  Google Scholar 

  42. Al-Mosaiwi, M. & Johnstone, T. In an absolute state: elevated use of absolutist words is a marker specific to anxiety, depression, and suicidal ideation. Clin. Psychol. Sci. 6, 529–542 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Brockmeyer, T. et al. Me, myself, and I: self-referent word use as an indicator of self-focused attention in relation to depression and anxiety. Front. Psychol. 6, 1564 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ingram, R. E. Self-focused attention in clinical disorders: review and a conceptual model. Psychol. Bull. 107, 156–176 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Hutto, C. J. & Gilbert, E. VADER: a parsimonious rule-based model for sentiment analysis of social media text. In Proc. Eighth International AAAI Conference on Weblogs and Social Media, ICWSM (eds Adar, E. & Resnick, P.) (Association for Computing Machinery, 2014).

  46. Ribeiro, F. N., Araújo, M., Gonçalves, P., Gonçalves, M. A. & Benevenuto, F. Sentibench—a benchmark comparison of state-of-the-practice sentiment analysis methods. EPJ Data Sci. 5, 23 (2016).

    Article  Google Scholar 

  47. Dodds, P. S. et al. Human language reveals a universal positivity bias. Proc. Natl Acad. Sci. USA 112, 2389–2394 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Ewbank, M. P. et al. Quantifying the association between psychotherapy content and clinical outcomes using deep learning. JAMA Psychiatry 77, 35–43 (2019).

    Article  PubMed Central  Google Scholar 

  49. Morris, R. R., Schueller, S. M. & Picard, R. W. Efficacy of a web-based, crowdsourced peer-to-peer cognitive reappraisal platform for depression: randomized controlled trial. J. Med. Internet Res. 17, e72 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kazdin, A. E. & Blase, S. L. Rebooting psychotherapy research and practice to reduce the burden of mental illness. Perspect. Psychol. Sci. 6, 21–37 (2011).

    Article  PubMed  Google Scholar 

  51. Lin, L. Y. et al. Association between social media use and depression among U.S. young adults. Depress. Anxiety 33, 323–331 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Keles, B., McCrae, N. & Grealish, A. A systematic review: the influence of social media on depression, anxiety and psychological distress in adolescents. Int. J. Adolesc. Youth 25, 79–93 (2020).

    Article  Google Scholar 

  53. Kelly, Y., Zilanawala, A., Booker, C. & Sacker, A. Social media use and adolescent mental health: findings from the UK Millennium Cohort Study. EClinicalScience 6, 59–68 (2018).

    Article  Google Scholar 

  54. Kalimeri, K., Beiro, M. G., Bonanomi, A., Rosina, A. & Cattuto, C. Traditional versus Facebook-based surveys: evaluation of biases in self-reported demographic and psychometric information. Demogr. Res. 42, 133–148 (2020).

    Article  Google Scholar 

  55. McKee, R. Ethical issues in using social media for health and health care research. Health Pol. 110, 298–301 (2013).

    Article  Google Scholar 

  56. Pratap, A. et al. Contemporary views of research participant willingness to participate and share digital data in biomedical research. JAMA Netw. Open 2, e1915717 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Davis, C. A. et al. OSoMe: the IUNI observatory on social media. PeerJ Comput. Sci. 2, e87 (2016).

    Article  Google Scholar 

  58. Ernala, S. K. et al. Methodological gaps in predicting mental health states from social media: triangulating diagnostic signals. In Proc. 2019 CHI Conference on Human Factors in Computing Systems (eds Brewster, S. & Fitzpatrick, G.) 134 (Association for Computing Machinery, 2019).

  59. Chancellor, S. & Choudhury, M. D. Methods in predictive techniques for mental health status on social media: a critical review. npj Digit. Med. 3, 43 (2020).

  60. Kamphuis, M. H. et al. Does recognition of depression in primary care affect outcome? The PREDICT-NL study. Fam. Pract. 29, 16–23 (2011).

    Article  PubMed  Google Scholar 

  61. Ruscio, A. M. Normal versus pathological mood: implications for diagnosis. Ann. Rev. Clin. Psychol. 15, 179–205 (2019).

    Article  Google Scholar 

  62. Beck, A. T. Thinking and depression: I. Idiosyncratic content and cognitive distortions. Arch. Gen. Psychiatry 9, 324–333 (1963).

    Article  CAS  PubMed  Google Scholar 

  63. Beck, A. T. Thinking and depression: II. Theory and therapy. Arch. Gen. Psychiatry 10, 561–571 (1964).

    Article  CAS  PubMed  Google Scholar 

  64. Burns, D. The Feeling Good Handbook (Harper-Collins Publishers, 1989).

  65. Beck, J. S. & Beck, A. T. Cognitive Therapy: Basics and Beyond (Guilford Press, 1995).

Download references

Acknowledgements

We thank L. M. Rocha for his feedback on the general methodology and terminology, as well as K. Dobson, R. DeRubeis, C. Webb, S. Hoffman, N. Kazantzis, J. Garber and R. Jarrett for their feedback on the content of our list of CDS. J.B. thanks NSF grant SMA/SME1636636, COVID-19 funding from IU’s Office of the Vice President for Research, The Urban Mental Health institute at the University of Amsterdam, Wageningen University and Research, and the ISI Foundation for their support. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.t.T. and J.B. conceptualized the analysis; M.t.T. and J.B. designed the methodology; L.A.R., L.L.-L. and J.B. constructed the CDS lexicon; K.C.B. and M.t.T. constructed the datasets; K.C.B., M.t.T. and J.B. performed data analysis; and K.C.B., M.t.T., L.A.R., L.L.-L. and J.B. wrote the manuscript.

Corresponding author

Correspondence to Johan Bollen.

Ethics declarations

Competing interests

L.L.-L. received an honorarium for consulting from Happify, Inc. in September 2020. Happify, Inc. creates behavioural change technologies (for example, apps) for mental health. Happify had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. The remaining authors declare no competing interests.

Additional information

Peer review information Nature Human Behaviour thanks Glen Coppersmith, Christopher Danforth and David Dozois for their contribution to the peer review of this work. Primary Handling Editor: Jamie Horder.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Supplementary Tables 1–4, and an overview of exact CDS, the time-matched control and the control for the presence of hyperlinks.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bathina, K.C., ten Thij, M., Lorenzo-Luaces, L. et al. Individuals with depression express more distorted thinking on social media. Nat Hum Behav 5, 458–466 (2021). https://doi.org/10.1038/s41562-021-01050-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41562-021-01050-7

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics