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The existence of amapping between emotions and speech prosody is
commonly assumed. We propose a Bayesian modelling framework to
analyse this mapping. Our models are fitted to alarge collection of intended

emotional prosody, yielding more than 3,000 minutes of recordings. Our
descriptive study reveals that the mapping within corporais relatively
constant, whereas the mapping varies across corpora. To account for

this heterogeneity, we fit a series of increasingly complex models. Model
comparison reveals that models taking into account mapping differences
across countries, languages, sexes and individuals outperform models
that only assume a global mapping. Further analysis shows that differences
across individuals, cultures and sexes contribute more to the model
prediction than a shared global mapping. Our models, which canbe
exploredinanonlineinteractive visualization, offer a description of the
mapping between acoustic features and emotions in prosody.

Early studies in emotion science focused on showing similarities of
emotions across cultures'. More recently, renewed efforts have been
made by estimating variability in emotional language?, facial expres-
sions’®, physiological measurements* and non-verbal vocalizations®
across individuals and cultural groups. Here we build on this new wave
of research by estimating and examining sources of variability in emo-
tional prosody at scale.

There are three influential families of emotion theories that pre-
dict different degrees of variability: affect program, psychological con-
structivist® and appraisal theories’. Affect program theories, including
the influential basic emotion theory®, assume the existence of neural
signatures for specific emotions. While the framework accommodates
variability (such as the in-group effect’ predicting that emotions are
better understood by a member of the same community®), these
theories seldom predict systematic sources of variability in emotion
expression and recognition. Constructionist theories, in contrast,
which deny the existence of any hard-wired links dedicated to specific
emotions”, predict thatemotion should vary widely across situations,
individuals and cultural groups. Finally, variability is inherently pre-
dicted by appraisal theories’, which assume that each emotion is caused

by its appraisal pattern'>. Small changes in the appraisal pattern may
lead to adifferentaction tendency—atendency to flee mightbecome a
tendency to fight. The exact appraisal pattern depends on the internal
state of the listener and thus predicts variability.

In the present study, we describe the mapping between speech
prosody and emotion by using Bayesian multilevel multinomial logis-
tic regression models (Fig. 1a). Speech prosody is characterized by
variations in pitch, loudness, timing and voice quality (Supplementary
Discussion2). Here we use acommon feature set” that spans most pro-
sodic dimensions'°. To obtain interpretable regression coefficients,
wereduced the dimensionality to seven uncorrelated acoustic factors
(Fig. 1b). Additional analyses described in Supplementary Methods 3
show that the factor solutionisrelatively robust across the most com-
mon languages and countries.

We collected an array of emotional speech recordings by adopt-
ing standards” to query, filter and annotate the possible datasets
(Supplementary Methods 1). For a corpus to be included, emotion
annotations must be present, and the corpus must contain record-
ings of sentences (that is, no syllables, non-verbal vocalizations or
single-word sentences). In the analyses presented in this manuscript,
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Fig.1| Conceptualizing the relationship between acoustic features

and emotional speech as amapping problem. a, Emotion recognitionis
conceptualized as a mapping problem. The mapping describes how the source
(acoustic features) can be related to the target (intended emotions). b, Factor
analysis reveals seven acoustic dimensions that relate to perceptual qualities of
speech prosody. To ease the visualization of the data, weak loadings (<0.45) are
notshownin the loading plot. The full loading plot can be found in Supplementary
Fig.4.MFCC, mel-frequency cepstral coefficient; HNR, harmonics-to-noise ratio.
¢, The six basic emotions and ‘neutral’ are used as mapping targets. d, The model
learns amultilevel mapping, consisting of amapping that exists in all corpora

R Interactive version available

as well as mapping deviations on the basis of certain grouping variables, such

as culture or speaker. In this particular example, the mapping for ‘anger’ for a
male Kenyan English speaker (speaker CK) is depicted. e, To obtaina prediction
for aspecificemotion, we take the mapping (d) and multiply it by the respective
acoustic factor values of some input stimulus, sum the values and add the
intercepts. f, Predictions for all six emotions (as in e). ‘Neutral’ always obtains

the prediction O, asitis the pivot category. The seven values are converted into
probabilities (softmax), and the emotion category with the highest probability is
the category prediction for some input stimulus. For aninteractive version of d-f,
see http://mapping-emotions.pol.works.

weinclude corporathat only contain healthy adult speakers, for which
the intended expression is known and that we were granted access to
(see Supplementary Discussion 1, Supplementary Table 1 and Sup-
plementary Methods 2 for more details). While some researchers
explore extended sets of emotion categories'® ?°, the majority of emo-
tion research has centred on the limited set of basic emotions. We
therefore focused on these emotions (Fig. 1c). The full list of corpora
accompanies the release of this publication, and new corpora can be
proposed via an online form and will be published upon review: emo-
tional.speechcorpora.com.

The mapping between acoustic features and intended emotional
speech can be studied either by modelling the relationship between
acoustic features and emotional expression® (studying production),
aswe do, or by analysing human recognition rates (perception)”. The
second approachmostly relies on meta-studies; however, this approach
is fundamentally limited since it relies on effect sizes and standard
errors, discarding relevantinformation about individual samples and
differences within the tested population. We overcame this limitation
by using Bayesian inference models to estimate the mapping at dif-
ferent levels—enabling the quantification of cultural, speaker and sex
differences. We pursued this goal by studying a collection of intended
emotional prosody productions, including 432 individuals from around
the world, speaking 2,963 different sentences. Altogether, this repre-
sents 3,252 minutes of intended emotional speech. This collection of
emotional prosody together with Bayesian inference models allows
us to study the mapping at scale and provide answers to the following

questions: how variable is the mapping within and across datasets,
and what effect do moderators (such as speakers or cultures) have on
the mapping?

When studying the relationship between acoustic features and
intended emotions, one can study four aspects: reliability, specificity,
generalizability and validity of the mapping®’. High reliability means
that the same emotionis expressed by acommon set of features. Our
firstresearch question addresses the reliability of the mapping within
and across corpora of speech prosody. Specificity means thata pattern
ofacoustic features refers to one and only one emotion. In other words,
high specificity impliesagood classification performance. By contrast-
ing models allowing for different sources of variability, we address a
conceptsimilar to specificity. Generalizability means that differences
across different populations have sufficiently been accounted for. In
our final analysis, we identified which levels of analysis—for example,
cultural, individual or sex differences—have the largest contribution
tothe model prediction. High validity signals that the person express-
ingthe utteranceisactually inthe expected emotional state. However,
as we elaborate in Supplementary Discussion 3, estimating validity is
not so straightforward. Consequently, in this Article, we evaluate the
reliability, specificity and generalizability of the mapping from basic
emotionsto speech prosody in productions.

To provide answers to our research questions, we used Bayes-
ian multilevel multinomial logistic regression models. Internally, the
model computesalinear predictor for eachemotion. The emotion with
the highest valueis theemotion predicted by the model. Each predictor
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consists of anintercept—accounting for possibleimbalances in the base
rate of emotion labels—and a series of coefficients for each of the seven
acoustic features describing the mapping between speech prosody and
emotions. Inadditionto this ‘global mapping’, we compute adeviation
for different levels of analysis. One challenge in modelling this devia-
tion is that for some groups there are fewer data points (for example,
there are more Indian than Dutch samples), which would make the
estimates for the smallgroups less reliable. A solution to this problem
is partial pooling, which adjusts estimates for groups with small sample
sizes or with extreme values more towards the grand mean of the data.
This mechanism—often referred to as shrinkage—makes the predictions
more realistic and the model less likely to overfit?,

Here we are primarily interested in the acoustic coefficients, as
they are estimates of the mapping. This yields a multilevel mapping of
acousticfactors (Fig.1d). To obtain a prediction for a specificemotion,
we multiply the multilevel mapping by aninput sample that we want
to obtaina prediction for. The values of the multiplication are added
together along with the intercepts (Fig. 1e). This is performed for all
six emotions. ‘Neutral’ always obtains the prediction O, because it is
the pivot category. The predictions for the six emotions and ‘neutral’
are converted to probabilities, and the model selects the emotion
with the largest probability (Fig. 1f). For all models reported in the
paper, we provide an online, interactive version of the model similar to
Fig. 1d-f, which enables the visualization of model predictions for
existing samples or obtaininginsightsinto what the model haslearned.
All interactive models can be found at http://mapping-emotions.
pol.works.

Our model design overcomes several pitfalls of traditional
meta-analysis. First, it estimates mapping differences at granular levels
of analysis—for example, on a speaker level. It also avoids false confi-
dence based on removed variation by averaging, and it accounts for
imbalances in sampling (such as different numbers of stimuli per cul-
ture). Finally, since all recordings are processed with the same pipeline,
the extracted features are computed identically and are thus compara-
ble across corpora, which is not necessarily the case for meta-studies™.

Results

Overview

Guided by our modelling framework, our data analysis proceeded as
follows. First, to describe the reliability of the mapping, we examined
the variability in the mapping estimates withinand across different cor-
pora. Then, to address the specificity of the mapping, we performed a
contrastive model comparison exploring whichmodel best fits the data,
while punishing overly complex models. Finally, we uncovered which
levels of analysis contribute the most to the prediction of the model
and supported the findings with a correlation and variability analysis.

Verifying the Bayesian inference models

Prior to the main analysis, we showed that our Bayesian multinomial
logistic regression models perform equally well in the classification
task as do support vector machines (SVMs), which have been exten-
sively used in emotion classification from audio® (see the Methods
for the hyperparameters used). Emotion classification performance
is often expressed as unweighted average recall (UAR)*®, which is the
average recall across all emotion categories while accounting for
slight imbalances in the base rate of the categories. Using fourfold
leave-speaker-out cross-validation, we showed that the SVM obtains
asimilarly high UAR score as the Bayesian regression model (25.5%
and 22.7% UAR, respectively; Bayesian estimation of the mean paired
difference, -4%; 89% credible interval, —12%to 4%), indicating that the
Bayesian multinomial logistic regression performs comparably toa
common baseline. Here we evaluated model prediction; however, in
the main analysis we use the Bayesian logistic regressions as inferen-
tial models. Thus, the objective is not to optimize model prediction
for unseen data but rather to explore what the models have learned.

High reliability within corporaand poor reliability across
corpora

We next fit a model that estimates a coefficient for each of the seven
acoustic factors across the sixemotions (Fig. 2a). On top of this ‘global
mapping’, we computed a corpus-specific deviation from this coeffi-
cient (Fig. 2b).In doing so, we measured the variability of the mapping
withinacorpusandacrosscorpora. The estimates are depictedinFig. 2c.
The variability within a corpus is characterized by the spread of the
distribution of estimates. Wide distributions indicate more variability
for the given estimate in a corpus (smaller dots indicate greater vari-
ability in Fig. 2b,c). Variability across corpora can be described by the
overlapinthe estimated distributions across corpora. Ifthereisapoor
overlap of the distributions, then there is a great deal of variability
across corpora.

While the estimated emotion coefficients across corpora mostly
match with empirical predictions from two reviews onemotion-specific
acoustic profiles'®” (Fig. 2a), there are some disagreements—for exam-
ple, happiness is predicted to have a higher speech rate and sadness
tohavealower pitch. Such differences are to be expected because the
factor scores donotrelate one-to-one to the raw acoustic features, and
thereisalarge spreadin the coefficients estimated for the different cor-
pora (Fig. 2c). This variability across corpora is even more striking, as
shrinkage in multilevel models pulls observations from small corpora
or extreme observations closer to the grand mean.

InFig.2d, wezoomin onasingle factor (RC2, loudness, for anger)
and can see that the estimates for the coefficients are rather tight
(that is, the distribution of estimates is narrow). This implies that the
mapping of a certain acoustic factor to an emotion label is consistent
within a corpus. However, across corpora, we can observe that the
credible intervals of the distributions are only partially overlapping,
which means that the estimates from one corpus to another often dif-
fer.If the mapping between acoustic features and emotion labels were
identicalacross corpora, we would expect agreater degree of overlap.
Note that high variability does notimply low emotion recognition but
is merely a justification to use moderators in the analysis. Given the
observed variability in the estimates across corpora, the next step is
toinvestigate the origin of the variability.

The objective here is to show the convergence of evidence (or
thelack thereof) across studies. In meta-studies, each study is treated
as an individual sample with its effect size and standard error. Some
degree of variation across studies is expected due to minor sampling
differencesinthe population, whichshould be smaller forlarger sample
sizes. Measuring the amount of heterogeneity among studiesiskey to
the question of convergence, as large variability might indicate that
studies measure distinct concepts, or moderators need to beincluded.
Weborrow the /> metric from meta-analysis, which describes the pro-
portion of total variation in study estimates due to heterogeneity®
(see the Methods for the details). Here we compute / separately for
each factor and emotion and treat the estimates from single corpora
asseparate studies. The P values are shown on the right of each subplot
inFig. 2c. The analysis confirms that there is a great deal of variability
in estimates across corpora and that this variance is larger than what
would be expected on the basis of sampling variance alone.

Models only assuming a global mapping are outperformed
Giventhat estimates across corpora are heterogeneous, we ran aseries
of modelsaccounting for different moderators. Every model estimates
aseparateintercept for each corpusto accountfor possibleimbalances
in the base rate of emotions across corpora. Models are compared to
each other using the widely applicable information criterion (WAIC),
which provides an approximation of the out-of-sample deviance while
penalizing overly complex models, which tend to overfit the data (Sup-
plementary Methods 4). Thus, the relative WAIC difference between
contrasting models is of importance, where lower WAIC values indicate
abetter modelfit.
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Fig. 2| Variability across datasets as shown by model coefficients for each
acoustic factor across all corpora (population-level effect) and deviations per
corpus (group-level effect). a, The model estimates a coefficient for each of the
seven acoustic factors (RCs) and agroup-level deviation per corpus. The black line
isthe average coefficient across corpora, and the grey area around the lineis an
89% credible interval. To put our model estimates in some context, we include the
empirical findings from two reviews on acoustic profiles of emotions'*?’. Juslin and
Laukka'® only distinguish between positive and negative; Scherer” distinguishes
betweenalittle and very negative or positive. b, The modelinternally combines the
population- and group-level effects. In this particular example, the estimates for
‘anger’ inthe corpus ‘SAV’ for RC1-7 are depicted. The black line is the combined

mapping, which s plotted in the following subplots. The larger the size of the
dots, the smaller the credible interval. ¢, Each coloured dot represents acombined
estimate for a specific corpus (average across corpora + corpus-specific estimate)
of anacoustic factor (RC1-7) for all emotions. Large dots indicate small credible
intervals (thatis, narrow distributions). The black line is the average coefficient,
andthe areaaround the line is an 89% credible interval. The vertical grey line
indicates 0. The percentage on the right of each subplot is the  value.d, Zoomed-
inversion of factor RC2, ‘loudness’. The combined estimates per corpus (n =4,000)
rarely overlap. The black line below the distribution indicates an 89% credible
interval. The vertical black line is the average coefficient (population-level effect),
andthe grey line is positioned at the origin.
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Fig.3|Model comparison and sensitivity. a, Model comparison using the

WAIC. The models are arranged by their WAIC score, where lower WAIC values
indicate abetter model fit. The following models are shown, from right to left:

the null model containing only intercepts; the base model estimating the global
mapping; the in-group model estimating the interaction between country and
language (we call this interaction ‘culture’); the corpus model from Fig. 2b; and
the bigmodel, which s the in-group model additionally modelling speaker and
sex differences. The error bars are standard errors of the WAIC. b, Zoomed-in
version of the black box in a, showing the WAIC of the in-group models modelling
the group-level effect of countries, languages or the interaction of both. The

icons areintroduced in detail in Supplementary Methods 2. c, UPGMA-generated
language tree from Beaufils and Tomin®.d, UPGMA-generated culture tree

from Euclidian distances among the Hofstede’® dimensions. e, Confusion
matrices predicting the dataset for the base, in-group and big models. Overall
performance is expressed in UAR. Each cell contains arecall value. The recall
values for each row are normalized and sum to 1. SUR, surprise; SAD, sadness;
HAP, happiness; FER, fear; DIS, disgust; ANG, anger; NEU, neutral. Allmodels
ina,b canbe explored using an interactive visualization; see http://mapping-
emotions.pol.works.

Asalowerboundary, wefitanintercept-only model estimating an
intercept for each emotion and corpus. The ‘base’ model additionally
estimates a coefficient for each acoustic factor. AsshowninFig.3a, the
base modelis much better than the intercept-only model.

We then fit a series of models inspired by the emotion dialect
theory', on the basis of the ‘in-group’ effect. One way to model this
membershipistoadd agroup-level effect for languages and countries.
AsshowninFig.3b, the language model and the country model perform
similarly well (the country modelis slightly better). However, this initial
approach was limited in that we treated languages and countries as
discrete categories and ignored the proximity of different languages
and countries to one another—for example, Dutch being linguistically
closer to English than to Hindi. To model this proximity, we computed
the Euclidean distances among languages and countries. Language

distance is modelled as lexical distance?, and differences across coun-
triesare captured on the Hofstede cultural dimensions®. As depicted
in Fig. 3¢,d, the language and country trees reconstructed from the

distances contain meaningful associations. For example, in the lan-
guage tree, Brazilian Portuguese is closer to European Portuguese
than it is to Spanish, and Romance languages are grouped together;
for the country model, the Anglo-Saxon countries (the United States,
Canada, Australia and New Zealand) are grouped together. However,
models incorporating this complex hierarchical relationship did not
converge. As a pragmatic solution, we therefore modelled ‘culture’
as the combination of the categories ‘language’ and ‘country’, as this
enables useful distinctions (such as between American and Canadian
English). As depicted in Fig. 3b, this model is better than the language
or country model.

AsshowninFig.3a, the culture modelis outperformed by the cor-
pus model from the reliability analysis (see the lower, non-overlapping
WAIC value for the corpus model), as the grouping variable ‘corpus’
contains the same grouping information as in ‘culture’—each corpus
is usually assigned to one country and one language—and addition-
ally consists of more specific information potentially relevant for the
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Fig. 4 | Differences in the mapping across cultures, sexes and individuals. a,
Contributions of different levels of analysis to the model prediction. Each panel
shows the mean contributions of different levels of analysis in all cases in which
the emotion was predicted. The error bars are standard deviations across single
posterior draws (n=4,000). The colour of each bar indicates the level of analysis.
The darker section of each bar represents the contribution of the intercept. The
lighter section represents the contribution of the acoustic coefficients. The pie
chartinthe upper right of each panel is the contribution of the global mapping
to the full prediction. b, Variability in the coefficients for different levels of

Emotion

analysis. For each group level, emotion and acoustic factor, a standard deviation
was computed on all coefficients. In both panels, the average standard deviation
is plotted by the acoustic factor (left, n = 6) and the intended emotion (right,
n=7).Theerrorbarsareinstandard deviations. The subplots collapse over the
different levels of analysis. ¢, Correlation across mappings. The upper left panel
shows the mappings of allemotions correlated with each other. The diagonals
are always 1. The remaining three panels show correlations between the global
mapping and sex, cultural or speaker difference. The fill colour is the average
correlation (Pearson).

communication of emotion. For example, speakers are often recruited
fromthe same area or institution (for example, the same city or univer-
sity), targeting a more specific social group’. However, the grouping
variable ‘corpus’is—in contrast to ‘language’ or ‘country’—an artificial
construct thatis transcended by a series of more realistic constructs,
such as cultural proximity and social belonging. We therefore extend
the culture in-group model (and not the corpus model) by adding sex
andindividual speaker differences. As shownin Fig. 3a, this ‘big’ model
outperforms all other models.

The confusionmatricesin Fig. 3e reveal that with increasing model
complexity, the misclassifications by the model are reduced (darker
diagonals), and hence the overall UAR per model increases (40.8% for
base, 48.6% for the best in-group model and 69.8% for the final model).

For example, in the base model, ‘happiness’ is often misclassified as
‘anger’ and ‘neutral’as ‘sad’. In contrast to the WAIC, confusion matrices
do not penalize overfitting models. And one would expect that with
increasing model complexity, models will better fit (or even overfit)
the data. However, group-level effects can have a regularizing effect
due to shrinkage and hence reduce the risk of overfitting. The confu-
sion matrices show that the models capture the trend in the data and
arebetter atit with increasing model complexity.

Relevance of culture, sex and individual differences

To examine how individual levels of the mapping contribute to the
prediction of the model, we computed the contribution of each level
of analysisto the prediction of the model. We first obtained the model
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prediction on the data that the model was fitted on (as in Fig. 3e), and
we then measured how much each group level contributes to the value
forthe predicted emotion (Fig.4a).Inall emotions (except ‘surprise’),
individual differences have the greatest impact on the model predic-
tion. The second most important level of analysis is culture for most
emotions, followed by the global mapping or sex differences. Remark-
ably, only 20-25% of the model prediction originates from the global
mapping, as depicted by the pie charts in the upper right corner of
each panelin Fig. 4a.

As depicted in Fig. 4a, the intercepts (marked by the darker col-
ours) play asubordinateroleinthe prediction of the emotion. In addi-
tion, the intercept of the corpus has the smallest contribution to the
final prediction in all emotions except for ‘disgust’.

Variability in coefficientsis the largest for speakers and cultures
While in the previous analysis the contributions of different levels of
analysis were estimated in the original data, the current variability
analysis was performed on the model estimates regardless of the data.
We extracted the posterior estimates for each acoustic factor, each
emotion and each group level and computed the average standard
deviation as a metric of the variability of the estimates. As depicted in
Fig.4b, most variability can be found in the ‘speaker’ and ‘culture’ esti-
mates. Overall, the first three acoustic factors (voice quality, loudness,
and pitch and formants) show the most variability (see the subplotin
the left panel of Fig. 4b). The remaining factors (except RC7, MFCC 3)
have decreased variability corresponding to their component num-
bers. The variability results per emotion also show that the estimates
for ‘speaker’ and ‘culture’ are the most variable. All estimates for the
emotionsare variable, although ‘surprise’, ‘anger’ and ‘sadness’ appear
to be slightly more variable than the other three emotions (see the
subplotinthe right panel of Fig. 4b).

Confusion between the production of emotions across
cultures, sexes and individuals

Inthe next correlation analysis, we again used the coefficient estimates.
We started by correlating the global mapping across emotions. As
depictedinthe upper left panel of Fig. 4c, ‘sadness’is the only emotion
withadistinct profile, asit has only a strong correlation withitselfand
low correlations with all other emotions. Interestingly, the profiles of
the other emotions correlate more strongly with each other, especially
the correlations amongthe profiles for ‘fear’,‘happiness’ and ‘surprise’.

Inthree further analyses, we described the relationship between
emotions across sexes, cultures and individuals. A first analysis showed
that the mapping for a specific emotion correlates the most strongly
with the mapping for the same emotion of the other sex (right panel of
Fig.4c).Forinstance, female angeris, on average, closer to male anger
thanto any other emotion. When compared with the global mapping,
addingsex furtherincreases the correlation among the profiles of ‘fear’,
‘happiness’and ‘surprise’.

The addition of ‘culture’ or ‘speaker’ to the global mapping leads to
astrongdecreaseinthe overall correlations across emotions, indicating
that the mapping forindividual cultures and speakersis relatively dis-
tinct. The overalldropin correlationis greater for speakers than for cul-
tures, confirming the pattern of resultsin the previous analyses (Fig. 4a).
Nonetheless, the diagonals are mildly preserved, indicating that the
mapping for agiven emotion is more similar across speakers and cul-
tures than to another emotion.

Discussion

Studies have shown that there is substantial variability in the mapping
of emotions to facial expressions?, physiological measurements* and
non-verbal vocalizations®** indicating that expressions of emotions
vary widely between contexts and cultures. In the present study, we
investigated the relationship between speech prosody and emotions

by modelling the relation as a mapping problem.

Using a Bayesian modelling framework, we examined the map-
ping between acoustic features and emotionsin speech recordings at
multiple levels of analysis. Our focus was to describe the mapping by
investigating three requirements to assume the existence of amapping:
reliability, specificity and generalizability.

Guided by this conceptual framework, we collected a set of
intended emotional speech samples. To encourage future research
to use larger and more diverse emotional speech corpora, we made
available a continuously updated list of corpora of emotional prosody,
including access information and rich annotations, which simplifies
the process of preprocessing and obtaining access to the corpora.

Concerning the reliability of the mapping, we showed that the
mapping within a corpus is relatively reliable, whereas the mapping
across corporais highly variable. The large variability across corpora
implies that findings from single corpora do not necessarily transfer to
other corpora of emotional prosody and thus that results from single
corporaneed to be taken with caution. The low reliability across cor-
pora fits well with the large amount of disagreement in the reported
acoustic profiles for asingle emotion. For example, ‘sadness’ hasbeen
associated with alow®, moderate®* and increased standard deviation
of fundamental frequency™.

Here we showed that models computing a multilevel mapping
based on the corpus instead of the culture yield better results. We
argue that the grouping variable ‘corpus’ is unlikely to be a concept
relevant for the communication of emotionbutinsteadis transcended
by aseries of more plausible concepts, such as cultural proximity and
social belonging.

We also examined the specificity of the mapping. Asindicated by
theinitial verification analysis, the Bayesian regression models obtain
22.7%UAR (fourfold cross-validation), whichis above the 14.3% chance
level and shows that at least a part of the mapping is shared. Thisis also
supported by the analysis shown in Fig. 4a indicating that the global
mapping contributes -20-25% to the final prediction of the model.
However, with a series of increasingly complex models, we showed
that models accounting for individual, cultural and sex differences
outperform models assuming only a global mapping, indicating that
there are many cultural and individual differences in the mapping.

Lastly, we examined the generalization of the mapping between
emotions and speech prosody. We showed that the model predic-
tions are mainly driven by individual and cultural differences, which
fits our finding that most variability is found in estimates for cultures
and speakers, and correlations for the mappings between individual
cultures and speakers are generally low.

Itisimportant to note that the pattern of results observed in this
investigation was potentially influenced by the fact that we studied
recordings in which the intended emotion was known. These kinds of
recordings ofteninclude acted databases. Abody of research indicates
that there are differences betweenacted and spontaneous utterances
of emotional prosody®*. One key concern when working with acted
material is that the produced emotional stimuli are stereotypical and
thus are not necessarily expressions of emotion used in daily life**.
Given this consideration, one might hypothesize that there should
be alarge overlap in the mapping across corpora, as stereotypes may
be culturally shared. However, our results show that global mapping
contributed roughly a quarter of the model prediction. Furthermore,
the boundary between spontaneous and acted corpora might not be
soclear, asboth types of corporaheavily rely onactors, as we argue in
Supplementary Discussion 1.

We note that the selection of seven acoustic factors is not entirely
justifiable—a larger number of factors could also be plausible. Ide-
ally, one would like to contrast models that rely on different acoustic
representations; but when another feature is added to the model, the
number of parameters that the model would need to estimate substan-
tially increases. We therefore used areduced set of factors thatload on
perceptually meaningful dimensions™* (Fig. 1b), which makes it easier
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tointerpretmodel predictions and learned parameters. Furthermore,
the models developed in this paper are only rough approximations of
the mapping between intended emotions and speech prosody pro-
ductions. Preferably, one would use more group-level effects and
moderators of a higher quality. However, by adding extra group lev-
els—especially if there are many levels (for example, 2,963 different
sentences)—one easily hits the limits of computational tractability. In
addition, more precise moderators are often not available and are not
reconstructable a posteriori. Forexample, the country the corpus was
recorded in does not necessarily reflect the country the speaker was
borninandislikely to be less informative than the country of birth or
even finer cultural subgroups, but suchinformationis often not avail-
able. Given these considerations, we constructed the models with the
best moderators available, which are theoretically motivated and of
sufficient quality. Granting these limitations and caveats, the meth-
ods developed here could be fruitfully applied to any other mapping
problem, such as the mapping of emotions to non-verbal vocalizations.
Moreover, areparameterization of the model (for example, replacing
the multinomial logistic regression witha plain logistic regression) can
drastically bring down the model complexity.

In the present investigation, we have shown that there is con-
siderable variability in the mapping between emotions and speech
prosody and that the global mapping contributes roughly a quarter
to the model predictions. The observed variability is compatible with
all three theories of emotion. Constructivist theories predict that
emotions are perceptually variable instances interpreted by a per-
ceiver that are grouped together by their function or purpose rather
than by similar features®®. Appraisal theories predict that the same
stimulus might lead to different appraisal patterns. Affect program
theories have historically been interested in finding similarities in
how emotions are produced across cultures; however, the notion of
emotion families® is an in-theory explanation for large variability.
Emotion families imply that occurrences of the same emotion might
refer to different granularities of the same emotion (for example, ‘hot
anger’ as asubtype of ‘anger’). This problem becomes apparent when
meta-studies summarize over emotion labels. Forexample,Juslinand
Laukka' count the emotions ‘afraid’, ‘anxiety’, ‘frightened’, ‘scared’,
‘panic’, ‘terror’ and ‘worry’ all to ‘fear’, but it is disputable whether
these all refer to the same concept. This problem is further amplified
once emotional concepts are translated. Unfortunately, this issue is
often neglected. For instance, Cowen et al.*” merely rely on the trans-
lation of the emotion categories by asingle co-author. Recent studies
comparing word meanings across many languages found emotional
terms to be highly culture-dependent compared with object terms
such as ‘mountain’>*°. This might have contributed to the overall low
correlation found across cultures. This poses a problem of construct
validity when doing cross-cultural research®. In the present study, we
considered the emotion to be identical only if the English translation
given by the author of the corpus is identical—for example, we consid-
ered ‘fear’ and ‘anxiety’ to be different emotions. While this pragmatic
approachclearly hasits limitations, the correlation analysis presented
inFig.4cshowsthat the correlationbetween mappings across cultures
is the highest for the same emotion compared with other emotions.
This indicates that the emotion labels in the corpora refer to closely
related or identical concepts. Our findings are thus compatible with
all three families of emotion theories.

Emotion theories are often discussed in light of findings of high
variability and low specificity***>. However, the differences in predicted
outcomes between the three theories are at most those of emphasis
rather than of opposition. This makes it hard to specify how much
evidence of variation or of specificity would be needed to support
each view. Meta-analytic investigations cannot directly tackle these
questions. This discussion also highlights another core problem in
emotionscience*: emotion theories often make vague predictions, and
theline of argumentationis frequently indirect. For example, given the

previously introduced concept of ‘refinement’, itis unclear how much
variability one would predict to measure distinct acoustic patterns
across languages attributed to differences caused by the translation.
A more efficient method to address these key questions would be to
experimentally address them*. This has been made possible by the
development of modern algorithms that allow sampling from human
prototypes** and rapid improvements in speech synthesis®.

In this manuscript, we explored the mapping between acoustic
features and emotionsinalarge sample ofintended emotional speech
recordings. Not only are our findings of individual, cultural and sex
differences compatible with results from other modalities***, but we
also quantify themin the domain of speech prosody.

Methods

Corpora

For acomprehensive overview of available corpora of emotional pros-
ody, we used three search strategies querying literature databases and
datarepositories as well as scanning existing review papers. The corpus
candidates were hand-filtered using a predefined annotation scheme.
We requested access to 200 corpora but obtained access to only 42. In
total, 24 corpora passed our requirements and wereincluded inthe analy-
sig!®193446766 See Supplementary Table 2 for more information. The full
list of corpora has beenreleased in conjunction with this publicationand
will be continuously updated as new corporaare published: emotional.
speechcorpora.com. For each of the remaining 24 corpora, we made
sure that the following annotations are present: speaker, sex, country,
language, emotion intensity, emotion induction procedure, recording
modality, normal or pseudo-speech, number of repetitions, speaker
type, corpus, whether the corpus was fully crossed, the year the corpus
was published in, and whether the corpus was validated or not. See
Supplementary Materials 2 for adescription of each of the annotations.

Preprocessing

Toidentically processall the corpora, weran the following preprocess-
ing steps. First, we made sure that there were no sounds other than
speech that could disturb the acoustic feature extraction, such as
background music. For one corpus®, we had to segment the speech
fromlonger fragmentsinto sentences. This was done with an adaptive
algorithm changing aloudness threshold and aminimal silence dura-
tionin Praat® using Parselmouth®. Ifthere were only video recordings
of the spoken sentence, audio was extracted from the video signal.
Finally, all recordings were converted to mono and downsampled
to 16,000 Hz. For each file, we encoded the following information
into the filename: corpus, intended emotion, sentence code, speaker,
repetition and emotional intensity (if this was explicitly requested by
the experimenter).

Acoustic analysis

Here we use the eGeMAPS standard feature set”, as it has been exten-
sively used for the classification of emotion. While other performative
handcrafted® orlearned’ feature representations are available, they
are less applicable to factor analysis due to their dimensionality. A
description of the features contained in eGeMAPS can be found in
Supplementary Table 2.

Factor analysis
Of the 88 features, 74 are correlated at least 0.3 with at least one other
feature, suggesting reasonable factorability. The Kaiser-Meyer-Olkin
measure of sampling adequacy is 0.87, and Bartlett’s test of sphericity
is significant (y*(3,828) = 9,429,598, P < 0.01). Principal components
analysis with Varimax (orthogonal) rotation was conducted using
the R package psych” because the primary purpose was to reduce the
dimensionality of the features while reducing their correlation.

We selected aseven-factor solution (see Supplementary Methods
3forajustification). The factors explain 12%, 11%,10%,10%, 6%, 4% and
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4% of the variance (57% in total). Factor 1, ‘voice quality’, mainly loads
on alpha ratio, Hammarberg index, and MFCC 1, 2 and 4 (see Supple-
mentary Fig. 4d for theloading plot). Factor 2, ‘loudness’, loads mainly
on loudness and spectral flux. Factor 3, ‘pitch and formants’, loads on
fundamental frequency, on the formants (F,_;) and mildly on HNR. Fac-
tor 4, ‘rhythmand tempo’, mainly loads on durational features. Factor
5, ‘shimmer’, loads on shimmer and mildly on HNR. Factor 6, ‘pitch
variation’, loads on pitch variation and jitter. Factor 7,‘'MFCC 3’, loads
on MFCC 3. In Supplementary Methods 3, we show the robustness of
the factor solution across the largest countries and languages.

Multilevel models

Allmultilevel models were fitted using the R package brms’, whichisa
high-levelinterface to Stan’>. The models use the categorical response
distribution andlogit link function. Where possible, standard normal
priors are used (that is, a normal distribution withamean of 0 and a
standard deviation of 1). The target distribution is explored using
Hamiltonian Monte Carlo. The target acceptance rate is set to 99%
to avoid divergent transitions after warmup. To avoid exceeding the
maximum tree depth, we set the hyperparameter to12. For reproduc-
ibility, all models use the same seed. To speed up sampling, we used
cmdstan as abackend. All models use eight chains, and we collected
4,000 posterior samples. The models reported in the paper were
defined as follows:

« Corpus model: emotion ~1+RC1+RC2+RC3 +RC4 + RC5 +
RC6 +RC7 +(1+RC1+RC2+RC3+RC4 +RC5+RC6 +RC7 | corpus)

«  Null model: emotion -1+ (1| corpus)

+ Basemodel: emotion~1+RC1+RC2+RC3+RC4+RC5+RC6 +
RC7 + (1| corpus)

e Country model: emotion ~1+RC1+RC2+RC3+RC4 +RC5 +
RC6 +RC7 +(1+RC1+RC2+RC3+RC4+RC5+RC6 +RC7 |
country) + (1| corpus)

« Language model: emotion -1+ RC1+RC2 +RC3 +RC4 +
RC5+RC6 +RC7 + (1+RC1+RC2+RC3+RC4+RC5+
RC6 + RC7 | language) + (1| corpus)

*  Culture model: emotion ~1+RC1+RC2 +RC3 + RC4 + RCS5
+RC6 +RC7 +(1+RC1+RC2+RC3+RC4+RC5+RC6 +
RC7 | country:language) + (1| corpus)

+ Bigmodel: emotion~1+RC1+RC2+RC3 +RC4 +RC5 +
RC6 +RC7 +(1+RC1+RC2+RC3+RC4+RC5+RC6 +
RC7 | sex + country:language + speaker) + (1| corpus)

SVMs

All SVM analyses reported in this paper were performed in Python
and used the implementation from scikit-learn”. Following an INTER-
SPEECH challenge convention”, all SVMs use a linear kernel with the
following complexities:1x1075,1x10™,1x1072,1x10%1x10"and 1.

Heterogeneity index

Tocompute the Pmetric, we treated the model estimates for all corpora
for the same emotion and acoustic factor as separate studies. First, we
computed Conchran’s Q statistic, which is defined as:

Q=2 wy -a’

where iis the index of the current corpus, w;is the inverse variance of
estimates of the current corpus, y; is the mean estimate of the global
mapping on top of the mapping of the current corpus and s the
weighted average over all corpora, defined as:

2wy,
Y w;

where y,is the average estimate for the corpus alone.

Higgins and Thompson’s /* is the percentage of variability in the
effect sizes that is not caused by sampling error and is computed by:

(Q/k—l)—l)

max (O, k-1

where kisthe number of corporaincluded in the analysis.

Generalization analysis

To obtain the contributions of different levels of analysis to the pre-
diction of the model, we first obtained the model prediction. For the
predicted emotion, we summed all absolute values that go into the
prediction for the emotion and divided each of the absolute values
by this sum. This returns a contribution of single model parameters
tothe model prediction, which are each uniquely associated with one
level of the analysis.

Reporting summary
Furtherinformationonresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

The corpora used in this study are listed here: emotional.speechcor-
pora.com.The corporaof Adigwe et al.®®, Burkhardt etal.’?, Cao etal.”,
Gournay et al.*, Haq and Jackson®, Livingstone and Russo®, Martin
et al.’®, and Pichora-Fuller and Dupuis® can be downloaded directly.
For the other corpora, we indicate how to contact the authors of the
corpus onthe website.

Code availability
The codeis stored on https://github.com/polvanrijn/mapping-nhb.
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