Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Towards a personalized happiness approach to capturing change in satisfaction

Abstract

Contemporary approaches examining the determinants of happiness have posited that happiness is determined bidirectionally by both top-down, global life satisfaction and bottom-up, domain satisfaction processes. We propose a personalized happiness perspective, suggesting that the determinants and consequences of happiness are idiographic (that is, specific) to each individual rather than assumed to be the same for all. We showed the utility of a personalized happiness approach by testing associations between life and domain satisfaction at both the population and personalized levels using nationally representative data of 40,074 German, British, Swiss, Dutch and Australian participants tracked for up to 33 years. The majority of participants (41.4–50.8%) showed primarily unidirectional associations between domain satisfactions and life satisfaction, and only 19.3–25.9% of participants showed primarily bidirectional associations. Moreover, the population models differed from personalized models, suggesting that aggregated, population-level research fails to capture individual differences in personalized happiness, showing the importance of a personalized happiness approach. Patterns of individual differences are robust, yet distinguishing between individual-level patterns and random error is challenging, highlighting the need for future work and innovative approaches to study personalized happiness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Three theoretical, population-level models of happiness and well-being.
Fig. 2: Visual representations of a personalized approach to happiness.
Fig. 3: Example patterns of personalized happiness.
Fig. 4: Scatterplot of participants (N = 40,074) with different patterns of personalized happiness.
Fig. 5: Population-level models of happiness.
Fig. 6: Participants (N = 40,074) show little congruence with population models.

Similar content being viewed by others

Data availability

Each data source was drawn from publicly accessible longitudinal studies. However, data cannot be shared directly due to contractual obligations and agreements necessary to use the data. In the text and online materials, we provide detailed information on how to gain access to raw data sources. All data analysis was conducted on the raw data files provided by the data maintainers, and all the utilized variables are documented in detailed in the study codebook. For GSOEP data, see https://www.diw.de/en/diw_01.c.601584.en/data_access.html; for BHPS, https://www.iser.essex.ac.uk/bhps/about/latest-release-of-bhps-data; for SHP, https://forsbase.unil.ch/project/study-public-overview/15632/0/ for HILDA, https://melbourneinstitute.unimelb.edu.au/hilda/for-data-users; and for LISS, https://liss.statements.centerdata.nl/.

Code availability

All code, results, tables and figures are available on the Open Science Framework (https://osf.io/r7vgq/) and GitHub (https://github.com/emoriebeck/personalised-happiness) and depicted in an interactive R Shiny web app (https://emoriebeck.shinyapps.io/personalised-happiness/). All scripts proceed from raw data that can be attained by downloading data files from the maintainers for each sample.

References

  1. Beck, E. D. & Jackson, J. J. A mega-analysis of personality prediction: robustness and boundary conditions. J. Pers. Soc. Psychol. 122, 523–553 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lyubomirsky, S., King, L. & Diener, E. The benefits of frequent positive affect: does happiness lead to success? Psychol. Bull. 131, 803–855 (2005).

    Article  PubMed  Google Scholar 

  3. Diener, E., Oishi, S. & Lucas, R. E. National accounts of subjective well-being. Am. Psychol. 70, 234–242 (2015).

    Article  PubMed  Google Scholar 

  4. Beck, E. D. & Jackson, J. J. Consistency and change in idiographic personality: a longitudinal ESM network study. J. Pers. Soc. Psychol. 118, 1080–1100 (2020).

    Article  PubMed  Google Scholar 

  5. Beck, E. D. & Jackson, J. J. Idiographic traits: a return to Allportian approaches to personality. Curr. Dir. Psychol. Sci. 29, 301–308 (2020).

    Article  Google Scholar 

  6. Diener, E. Subjective well-being. Psychol. Bull. 95, 542–575 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Feist, G. J., Bodner, T. E., Jacobs, J. F., Miles, M. & Tan, V. Integrating top-down and bottom-up structural models of subjective well-being: a longitudinal investigation. J. Pers. Soc. Psychol. 68, 138–150 (1995).

    Article  Google Scholar 

  8. Heller, D., Watson, D. & Ilies, R. The role of person versus situation in life satisfaction: a critical examination. Psychol. Bull. 130, 574–600 (2004).

    Article  PubMed  Google Scholar 

  9. Kuykendall, L., Tay, L. & Ng, V. Leisure engagement and subjective well-being: a meta-analysis. Psychol. Bull. 141, 364–403 (2015).

    Article  PubMed  Google Scholar 

  10. Jebb, A. T., Tay, L., Diener, E. & Oishi, S. Happiness, income satiation and turning points around the world. Nat. Hum. Behav. 2, 33–38 (2018).

    Article  PubMed  Google Scholar 

  11. Kahneman, D. & Deaton, A. High income improves evaluation of life but not emotional well-being. Proc. Natl Acad. Sci. USA 107, 16489–16493 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Helliwell, J. F., Huang, H., Norton, M., Goff, L. & Wang, S. in World Happiness Report 2023 11th edn (eds Helliwell, J. F. et al.) Ch. 2 (Sustainable Development Solutions Network, 2023).

  13. Andrews, F. M. & Withey, S. B. Social Indicators of Well-Being: Americans’ Perceptions of Life Quality (Springer, 1976).

  14. Campbell, A., Converse, P. E. & Rodgers, W. L. The Quality of American Life: Perceptions, Evaluations, and Satisfactions (Russell Sage Foundation, 1976).

    Google Scholar 

  15. Deaton, A. The financial crisis and the well-being of Americans: 2011 OEP Hicks Lecture. Oxf. Econ. Pap. 64, 1–26 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nakazato, N., Schimmack, U. & Oishi, S. Effect of changes in living conditions on well-being: a prospective top-down bottom-up model. Soc. Indic. Res. 100, 115–135 (2011).

    Article  Google Scholar 

  17. Diener, E. & Lucas, R. E. in Well-Being: The Foundations of Hedonic Psychology (eds Kahneman, D. et al.) 213–229 (Russell Sage Foundation, 1999).

  18. Brickman, P., Coates, D. & Janoff-Bulman, R. Lottery winners and accident victims: is happiness relative? J. Pers. Soc. Psychol. 36, 917–927 (1978).

    Article  CAS  PubMed  Google Scholar 

  19. Brickman, P. & Campbell, D. T. in Adaption-Level Theory (ed. Appley, M. H.) 287–301 (Academic, 1971).

  20. Diener, E., Lucas, R. E. & Scollon, C. N. in The Science of Well-Being: The Collected Works of Ed Diener (ed. Diener, E.) 103–118 (Springer, 2009); https://doi.org/10.1007/978-90-481-2350-6_5

  21. Arvey, R. D., Bouchard, T. J., Segal, N. L. & Abraham, L. M. Job satisfaction: environmental and genetic components. J. Appl. Psychol. 74, 187–192 (1989).

    Article  Google Scholar 

  22. Bartels, M. Genetics of wellbeing and its components satisfaction with life, happiness, and quality of life: a review and meta-analysis of heritability studies. Behav. Genet. 45, 137–156 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ilies, R. & Judge, T. A. On the heritability of job satisfaction: the mediating role of personality. J. Appl. Psychol. 88, 750–759 (2003).

    Article  PubMed  Google Scholar 

  24. Lykken, D. & Tellegen, A. Happiness is a stochastic phenomenon. Psychol. Sci. 7, 186–189 (1996).

    Article  Google Scholar 

  25. Stubbe, J. H., Posthumn, D., Boomsma, D. I. & De Geus, E. J. C. Heritability of life satisfaction in adults: a twin-family study. Psychol. Med. 35, 1581–1588 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Ludwig, J. et al. Neighborhood effects on the long-term well-being of low-income adults. Science 337, 1505–1510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Luechinger, S. Valuing air quality using the life satisfaction approach. Econ. J. 119, 482–515 (2009).

    Article  Google Scholar 

  28. Bolier, L. et al. Positive psychology interventions: a meta-analysis of randomized controlled studies. BMC Public Health 13, 119 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  29. White, C. A., Uttl, B. & Holder, M. D. Meta-analyses of positive psychology interventions: the effects are much smaller than previously reported. PLoS ONE 14, e0216588 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bialowolski, P. & Weziak-Bialowolska, D. Longitudinal evidence for reciprocal effects between life satisfaction and job satisfaction. J. Happiness Stud. 22, 1287–1312 (2021).

    Article  Google Scholar 

  31. Judge, T. A. & Watanabe, S. Another look at the job satisfaction-life satisfaction relationship. J. Appl. Psychol. 78, 939–948 (1993).

    Article  Google Scholar 

  32. Gana, K. et al. Relationship between life satisfaction and physical health in older adults: a longitudinal test of cross-lagged and simultaneous effects. Health Psychol. 32, 896–904 (2013).

    Article  PubMed  Google Scholar 

  33. Lucas, R. E. Top-down and bottom-up models of life satisfaction judgments. In 6th International German Socio-Economic Panel Study User Conference (2004).

  34. Veenhoven, R. Is happiness relative? Soc. Indic. Res. 24, 1–34 (1991).

    Article  Google Scholar 

  35. Erdogan, B., Bauer, T. N., Truxillo, D. M. & Mansfield, L. R. Whistle while you work: a review of the life satisfaction literature. J. Manag. 38, 1038–1083 (2012).

    Google Scholar 

  36. Fisher, A. J., Medaglia, J. D. & Jeronimus, B. F. Lack of group-to-individual generalizability is a threat to human subjects research. Proc. Natl Acad. Sci. USA 115, E6106–E6115 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Molenaar, P. C. M. A manifesto on psychology as idiographic science: bringing the person back into scientific psychology, this time forever. Meas. Interdiscip. Res. Perspect. 2, 201–218 (2004).

    Article  Google Scholar 

  38. Borsboom, D., Mellenbergh, G. J. & van Heerden, J. The theoretical status of latent variables. Psychol. Rev. 110, 203–219 (2003).

    Article  PubMed  Google Scholar 

  39. Wright, A. G. C. & Woods, W. C. Personalized models of psychopathology. Annu. Rev. Clin. Psychol. 16, 49–74 (2020).

    Article  PubMed  Google Scholar 

  40. Beck, E. D. & Jackson, J. J. Personalized prediction of behaviors and experiences: an idiographic person-situation test. Psychol. Sci. 33, 1767–1782 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Beckmann, J. S. & Lew, D. Reconciling evidence-based medicine and precision medicine in the era of big data: challenges and opportunities. Genome Med. 8, 134 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Khoury, M. J. & Galea, S. Will precision medicine improve population health? JAMA 316, 1357–1358 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Epskamp, S., Waldorp, L. J., Mõttus, R. & Borsboom, D. The Gaussian graphical model in cross-sectional and time-series data. Multivar. Behav. Res. 53, 453–480 (2018).

    Article  Google Scholar 

  44. Wild, B. et al. A graphical vector autoregressive modelling approach to the analysis of electronic diary data. BMC Med. Res. Methodol. 10, 28 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Freeman, L. C. Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1978).

    Article  Google Scholar 

  46. Barrat, A., Barthélemy, M., Pastor-Satorras, R. & Vespignani, A. The architecture of complex weighted networks. Proc. Natl Acad. Sci. USA 101, 3747–3752 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bringmann, L. F. et al. Assessing temporal emotion dynamics using networks. Assessment 23, 425–435 (2016).

    Article  PubMed  Google Scholar 

  48. Headey, B. & Wearing, A. in Subjective Well-Being: An Interdisciplinary Perspective (eds Strack, F. et al.) 49–73 (Pergamon, 1991).

  49. Funder, D. C. & Ozer, D. J. Evaluating effect size in psychological research: sense and nonsense. Adv. Methods Pract. Psychol. Sci. 2, 156–168 (2019).

    Article  Google Scholar 

  50. Wang, L. P. & Maxwell, S. E. On disaggregating between-person and within-person effects with longitudinal data using multilevel models. Psychol. Methods 20, 63–83 (2015).

    Article  PubMed  Google Scholar 

  51. Snijders, T. A. B. & Bosker, R. J. Multilevel Analysis: An Introduction to Basic and Advanced Multilevel Modeling (SAGE, 2011).

  52. van Agteren, J. et al. A systematic review and meta-analysis of psychological interventions to improve mental wellbeing. Nat. Hum. Behav. 5, 631–652 (2021).

    Article  PubMed  Google Scholar 

  53. Easterlin, R. A. in Economics and Happiness: Framing the Analysis (eds Bruni, L. & Porta, P. L.) 29–64 (Oxford University Press, 2005); https://doi.org/10.1093/0199286280.003.0002

  54. Haar, J. M., Russo, M., Suñe, A. & Ollier-Malaterre, A. Outcomes of work–life balance on job satisfaction, life satisfaction and mental health: a study across seven cultures. J. Vocat. Behav. 85, 361–373 (2014).

    Article  Google Scholar 

  55. Hanley, A., Warner, A. & Garland, E. L. Associations between mindfulness, psychological well-being, and subjective well-being with respect to contemplative practice. J. Happiness Stud. 16, 1423–1436 (2015).

    Article  Google Scholar 

  56. Bache, I. How does evidence matter? understanding ‘what works’ for wellbeing. Soc. Indic. Res. 142, 1153–1173 (2019).

    Article  Google Scholar 

  57. Rohrer, J., Seifert, I. S., Arslan, R. C., Sun, J. & Schmukle, S. C. The effects of satisfaction with different domains of life on general life satisfaction vary between individuals (but we cannot tell you why). Collabra Psychol. 10, 121238 (2024).

    Article  Google Scholar 

  58. Nissen, A. T. & Beck, E. D. The joy is mine: re-centering the person in the study of well-being. Preprint at OSF https://doi.org/10.31219/osf.io/3xvfw_v2 (2024).

  59. Beck, E. D. & Jackson, J. J. in The Handbook of Personality Dynamics and Processes (ed. Rauthmann, J. F.) 75–100 (Academic, 2021); https://doi.org/10.1016/B978-0-12-813995-0.00004-2

  60. Beck, E. D. & Jackson, J. J. in Measuring and Modeling Persons and Situations (eds Wood, D. et al.) 465–497 (Academic, 2021); https://doi.org/10.1016/B978-0-12-819200-9.00003-X

  61. Emmons, R. A. Personal strivings: an approach to personality and subjective well-being. J. Pers. Soc. Psychol. 51, 1058–1068 (1986).

    Article  Google Scholar 

  62. Sonnentag, S. Dynamics of well-being. Annu. Rev. Organ. Psychol. Organ. Behav. 2, 261–293 (2015).

    Article  Google Scholar 

  63. Beck, E. et al. A taxonomy of data synthesis: a tutorial. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/m3ywe (2024).

  64. Ram, N., Brinberg, M., Pincus, A. L. & Conroy, D. E. The questionable ecological validity of ecological momentary assessment: considerations for design and analysis. Res. Hum. Dev. 14, 253–270 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Park, J. J., Chow, S.-M., Fisher, Z. F. & Molenaar, P. C. M. Affect and personality: ramifications of modeling (non-)directionality in dynamic network models. Eur. J. Psychol. Assess. 36, 1009–1023 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Batra, R., Johal, S. K., Chen, M. & Ferrer, E. Consequences of sampling frequency on the estimated dynamics of AR processes using continuous-time models. Psychol. Methods https://doi.org/10.1037/met0000595 (2023).

  67. Saef, R. M., Beck, E. D. & Jackson, J. J. in Examining and Exploring the Shifting Nature of Occupational Stress and Well-Being Vol. 19 (eds Harms, P. D. et al.) 179–200 (Emerald, 2021).

  68. Schaefer, B., Haehner, P. & Luhmann, M. Network dynamics in subjective well-being and their differences across age groups. J. Pers. Soc. Psychol. 128, 700–721 (2025).

    Article  PubMed  Google Scholar 

  69. Goebel, J. et al. The German Socio-Economic Panel (SOEP). Jahrb. Für Natl Stat. 239, 345–360 (2019).

    Google Scholar 

  70. Fumagalli, L., Knies, G. & Buck, N. Understanding Society, The UK Household Longitudinal Study, Harmonised British Household Panel Survey (BHPS) User Guide (Institute for Social and Economic Research, University of Essex and ESRC, 2017); https://repository.essex.ac.uk/21094/1/bhps-harmonised-user-guide.pdf

  71. Platt, L., Knies, G., Luthra, R., Nandi, A. & Benzeval, M. Understanding Society at 10 years. Eur. Sociol. Rev. 36, 976–988 (2020).

    Article  Google Scholar 

  72. Tillmann, R. et al. The Swiss household panel study: observing social change since 1999. Longitud. Life Course Stud. 7, 64–78 (2016).

    Article  Google Scholar 

  73. Wilkins, R., Laß, I., Butterworth, P. & Vera-Toscano, E. The Household, Income and Labour Dynamics in Australia Survey: Selected Findings from Waves 1 to 16 (Melbourne Institute: Applied Economic & Social Research, University of Melbourne, 2018); https://melbourneinstitute.unimelb.edu.au/__data/assets/pdf_file/0009/2874177/HILDA-report_Low-Res_10.10.18.pdf

  74. Scherpenzeel, A. & Das, M. in Social and Behavioral Research and the Internet: Advances in Applied Methods and Research Strategies (eds Das, M. et al.) 77–103 (Taylor & Francis, 2010).

  75. Cohen, P., Cohen, J., Aiken, L. S. & West, S. G. The problem of units and the circumstance for POMP. Multivar. Behav. Res. 34, 315–346 (1999).

    Article  Google Scholar 

  76. Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D. & Borsboom, D. qgraph: network visualizations of relationships in psychometric data. J. Stat. Softw. 48, 1–18 (2012).

    Article  Google Scholar 

  77. Fruchterman, T. M. J. & Reingold, E. M. Graph drawing by force-directed placement. Softw. Pract. Exp. 21, 1129–1164 (1991).

    Article  Google Scholar 

  78. Borkenau, P. & Ostendorf, F. The big five as states: how useful is the five-factor model to describe intraindividual variations over time? J. Res. Personal. 32, 202–221 (1998).

    Article  Google Scholar 

  79. Rohrer, J. M. & Murayama, K. These are not the effects you are looking for: causality and the within-/between-persons distinction in longitudinal data analysis. Adv. Methods Pract. Psychol. Sci. 6, 25152459221140842 (2023).

    Article  Google Scholar 

  80. Haslbeck, J. M. B. & Waldorp, L. J. mgm: estimating time-varying mixed graphical models in high-dimensional data. J. Stat. Softw. 93, 1–46 (2020).

    Article  Google Scholar 

  81. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013); http://www.R-project.org/

  82. Hamaker, E. L. & Grasman, R. P. To center or not to center? Investigating inertia with a multilevel autoregressive model. Front. Psychol. 5, 1492 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  84. Skinner, H. A. Differentiating the contribution of elevation, scatter and shape in profile similarity. Educ. Psychol. Meas. 38, 297–308 (1978).

    Article  Google Scholar 

  85. Rohrer, J. M. Thinking clearly about correlations and causation: graphical causal models for observational data. Adv. Methods Pract. Psychol. Sci. 1, 27–42 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

E.D.B.’s time was supported by National Institute on Aging grants T32 AG00030-3, R01-AG067622 and R01-AG018436.

Author information

Authors and Affiliations

Authors

Contributions

E.D.B.: conceptualization, data curation, formal analysis, investigation, methodology, visualization, writing—original draft, writing—review and editing. F.C.: conceptualization, data curation, investigation, writing—original draft. S.T.: conceptualization, writing—original draft, writing—review and editing. J.J.J.: conceptualization, investigation, visualization, writing—original draft, writing—review and editing.

Corresponding author

Correspondence to Emorie D. Beck.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Human Behaviour thanks Todd Kashdan, Julia Rohrer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3 and Figs. 1–5.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beck, E.D., Cheung, F., Thapa, S. et al. Towards a personalized happiness approach to capturing change in satisfaction. Nat Hum Behav 9, 1391–1404 (2025). https://doi.org/10.1038/s41562-025-02171-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41562-025-02171-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing