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Inequality in infrastructure access and its 
association with health disparities
 

Ying Tu    1,2,3,4, Bin Chen    2,5  , Chuan Liao    3  , Shengbiao Wu    2,5, Jiafu An5,6, 
Chen Lin    5,7, Peng Gong    5,8, Bin Chen    9, Hong Wei1 & Bing Xu    1,4 

Economic, social and environmental infrastructure forms a fundamental 
pillar of societal development. Ensuring equitable access to infrastructure 
for all residents is crucial for achieving the Sustainable Development Goals, 
yet knowledge gaps remain in infrastructure accessibility and inequality 
and their associations with human health. Here we generate gridded maps 
of economic, social and environmental infrastructure distribution and 
apply population-weighted exposure models and mixed-effects regressions 
to investigate differences in population access to infrastructure and their 
health implications across 166 countries. The results reveal contrasting 
inequalities in infrastructure access across regions and infrastructure types. 
Global South countries experience only 50–80% of the infrastructure access 
of Global North countries, whereas their associated inequality levels are 
9–44% higher. Both infrastructure access and inequality are linked to health 
outcomes, with this relationship being especially pronounced in economic 
infrastructure. These findings underscore the necessity of informed 
decision-making to rectify infrastructure disparities for promoting  
human well-being.

Infrastructure systems—comprising various components such as 
transportation networks, energy supply systems, water and sanitation 
facilities—provide essential services that underpin socio-economic 
functioning and human well-being1,2. Understanding the distribution 
of and access to infrastructure, and the inequality therein, is of great 
importance to facilitate sustainable development and public health3–7. 
The United Nations has highlighted the need for “building resilient 
infrastructure, promoting sustainable industrialization, and fostering 
innovation” in its 9th Sustainable Development Goal (SDG 9)8. Notably, 
72% of the 169 SDG targets have a direct association with infrastructure4, 
and various forms of infrastructure can influence human health9. 
This close nexus between infrastructure, sustainability and health 

underscores the need for research on how disparities in infrastructure 
access correlate with health outcomes among populations, which will 
inform targeted strategies for policymakers to improve infrastructure 
equity, optimize resource distribution, and promote sustainable devel-
opment and human well-being.

Despite its importance, considerable knowledge gaps persist in 
the global landscape of infrastructure inequality and its health implica-
tions. One key challenge lies in the accurate and dynamic quantification 
of the amount, coverage and efficacy of infrastructure. Existing assess-
ments of infrastructure investments and supplies primarily depend 
on socio-economic indicators or tangible assets, such as capital flows 
and stocks10,11, urban built-up areas12,13, and road networks14. However, 
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explicit assessment of unequal access to different types of infrastruc-
ture on the global scale, particularly the differences between countries 
in the Global North and Global South.

Infrastructure systems can affect human health and well-being 
through multiple pathways38. For instance, energy supply outages 
after extreme events are associated with increased mortality risk39,40. 
Transportation infrastructure also affects health, with some impacts 
being beneficial (for example, providing physical connectivity) and 
others detrimental (for example, traffic noise and injury risks)41. Social 
infrastructure, such as health-care facilities, is positively linked to 
public health42,43, and environmental infrastructure such as green 
spaces is widely seen as beneficial for physical and mental health44,45. 
Understanding how disparities in infrastructure access translate into 
health inequality is crucial, as infrastructure inequities often reflect and 
reinforce broader health disparities36,46,47. Recent research has demon-
strated that inequities in access to health care and water infrastructure 
can lead to increased health burdens48,49. Nonetheless, most studies 
examining the relationship between infrastructure access and human 
health focus on single infrastructure types, be they economic, social 
or environmental, while research on health disparities across multiple 
infrastructure types often remains confined to regional scales46,50.

To bridge these knowledge gaps, this paper aims to provide a 
comprehensive, multi-dimensional analysis of global inequality in 
infrastructure access and the associated disparity in health outcomes. 
Given the broad interpretation of infrastructure (see discussions on 
its definition and classification in Supplementary Information sec-
tion 1), here we define ‘infrastructure’ as the physical systems and 
facilities essential for the functioning of the economy and society, 
‘infrastructure access’ as individuals’ capacity to reach and use nearby 
infrastructure, and ‘infrastructure access inequality’ as geographical 
disparities in the availability of these systems and facilities. We cat-
egorize infrastructure into three types based on its primary function: 

these methods, which assume uniform exposure across populations 
over time and space, tend to disregard the differences in individuals’ 
access to nearby infrastructure. Consequently, cumulative unit meas-
ures of overall infrastructure supply or per capita supply can lead to 
biased knowledge about individual access when based on aggregated 
data15,16. Additionally, current evaluation methods largely focus on a 
single infrastructure system (for example, coastal built assets) and 
are often conducted at the regional scale17–20, leading to diverging 
results on infrastructure access. Such approaches hinder a holistic 
understanding of infrastructure performance and prevent the iden-
tification of targeted decision-making and interventions to address 
infrastructure deficiencies. For reliable cross-regional comparisons, 
it is crucial to assess infrastructure accessibility across different types 
of infrastructure and at multiple scales, which requires using harmo-
nized data sources derived from global-level mapping endeavours and 
assessment methods.

In recent years, concerns have grown regarding the adverse effects 
of infrastructure development, including ecological complications21, 
heightened inequalities22 and disruptions to sociocultural norms23. For 
example, large-scale infrastructure projects, such as road construc-
tion, can lead to substantial forest loss24. In urban areas, uneven spatial 
distribution of infrastructure and access to amenities can exacerbate 
inequalities among various social groups25. A number of recent studies 
conducted in India26,27, Indonesia28,29, South Africa30,31 and elsewhere32–35 
have demonstrated disparities in infrastructure distribution and  
accessibility—such as electricity and telecommunications—across cities 
and communities, posing potential threats to urban sustainability and 
public health3,6,36,37. However, previous studies of infrastructure ine-
quality have predominantly focused on evaluating a single dimension 
(for example, inequality in water infrastructure), the geographic extent 
of selected cities or the measurement scale of infrastructure-related 
accessibility indices12,26–35, leaving large uncertainties in the spatially 

Economic infrastructure: 
facilities that make business 
activities possible, such as 
communication, energy supply 
systems, and transportation 
and distribution networks

Social infrastructure: 
facilities that support social 
services, including 
educational and medical 
structures such as schools,
hospitals and clinics

Environmental infrastructure: 
quality of living conditions and 
ecosystem services—that is, the 
benefits people enjoy from 
the surrounding environment 
including water and waste 
facilities, green space, clean air 
and thermal comfort
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Fig. 1 | Conceptual framework and research design. a, Definition and classification of economic, social and environmental infrastructure in this study. b, Overview of 
the research design.
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economic, social and environmental (Fig. 1a). Economic infrastruc-
ture encompasses facilities that support business activities, such 
as telecommunication, energy supply systems, and transport and 
distribution networks. Social infrastructure comprises facilities pro-
viding social services, such as schools and hospitals. Environmental 
infrastructure, linked to living conditions and ecosystem services, 
includes resources such as water and waste facilities, green spaces, 
clean air, and thermal comfort. This multi-dimensional conceptual-
ization of infrastructure leads to an enhanced understanding of the 
diverse ways in which individuals meet their needs and communities 
manage public goods across regions.

On the basis of this framework, we generated global maps of eco-
nomic, social and environmental infrastructure for 2020 at 0.1° × 0.1° 

spatial resolution by integrating multi-source geospatial datasets. We 
then employed a population-weighted exposure model to quantify 
human access to infrastructure and evaluated the associated inequality 
levels. Lastly, we examined the relationships between infrastructure 
access, infrastructure access inequality and human health outcomes. 
A detailed flow chart of the research design is presented in Supple-
mentary Fig. 1. Specifically, we address three research questions:  
(1) What are the differences in infrastructure access across different 
types (economic, social and environmental) and scales (country and 
county levels)? (2) How do inequalities in infrastructure access vary 
across infrastructure types and regions? (3) What is the relationship 
between infrastructure access, associated inequality and human health 
outcomes?
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Fig. 2 | Country-level distributions of human access to infrastructure. 
a–c, Global maps showing economic (a), social (b) and environmental (c) 
infrastructure access. Black boundaries delineate countries in the Global South.  
d–f, Box plots illustrating economic (d), social (e) and environmental (f) 
infrastructure access in countries of the Global North (N) and Global South (S).  
The box plots display the distribution of the data, with the median (50th 
percentile) at the centre, the interquartile range (25th to 75th percentiles) as  
the box, and whiskers extending to the maximum and minimum values within  

1.5 times the interquartile range. The sample sizes were 54 countries for  
the Global North and 112 countries for the Global South. No replicates were 
carried out, and no adjustments for multiple comparisons were applied. 
Statistical significance was determined using a two-sided t-test for comparisons 
between the Global North and Global South (economic: t164 = 2.14; P = 0.034; 
Cohen’s d = 0.36; 95% CI, (0.01, 0.17); social: t164 = 5.43; P < 0.001; Cohen’s  
d = 0.84; 95% CI, (0.13, 0.32); environmental: t164 = 2.99; P = 0.003; Cohen’s 
d = 0.50; 95% CI, (0.05, 0.22)).
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Results
We computed the normalized human access to economic, social and 
environmental infrastructures at both country and county levels using 
a spatially population-weighted exposure model (Methods). The results 
revealed significant differences in infrastructure access across regions 
and infrastructure types (Fig. 2 and Table 1). At the country level, the 
mean access value for economic infrastructure was 0.39 ± 0.25, fol-
lowed by environmental (0.35 ± 0.27) and social (0.29 ± 0.27) infra-
structures (F2,163 = 6.08; P = 0.002; Cohen’s f = 0.87; 95% confidence 
interval (CI), (5.71, 6.46)). Regions such as Europe, Asia, North America 
and South America displayed higher access to economic and social 
infrastructures, while countries in Oceania, South America and Europe 
showed higher access to environmental infrastructure (economic: 
F5,160 = 7.89; P < 0.001; Cohen’s f = 0.78; 95% CI, (7.08, 8.71); social: 
F5,160 = 6.40; P < 0.001; Cohen’s f = 0.75; 95% CI, (5.66, 7.13); environ-
mental: F5,160 = 16.11; P < 0.001; Cohen’s f = 0.87; 95% CI, (14.95, 17.27)). 
Africa had the lowest access levels for economic (0.24 ± 0.18) and social 
(0.13 ± 0.11) infrastructures, whereas Asian countries recorded the 
lowest access to environmental infrastructure (0.21 ± 0.21). Generally, 
Global North countries experienced greater levels of infrastructure 
access, with mean values of economic, social and environmental infra-
structure access being 1.25, 2.00 and 1.43 times higher than those in the 
Global South (economic: t164 = 2.14; P = 0.034; Cohen’s d = 0.36; 95% CI, 
(0.01, 0.17); social: t164 = 5.43; P < 0.001; Cohen’s d = 0.84; 95% CI, (0.13, 
0.32); environmental: t164 = 2.99; P = 0.003; Cohen’s d = 0.50; 95% CI, 
(0.05, 0.22)). This contrasting difference in infrastructure access was 
also evident at the county level, where the average values of economic, 
social and environmental infrastructure access were 1.41, 2.63 and 1.22 
times higher in the Global North than in the Global South (Supplemen-
tary Fig. 2 and Supplementary Table 1).

By adopting the 25th and 75th percentile values as thresholds, 
we classified each dimension of economic, social and environmental 
infrastructure access as high (H), medium (M) or low (L), resulting in 27 
distinct categories of combinations (Fig. 3). These categories were then 
grouped into three general classes (Classes I, II and III), representing 

varying levels of infrastructure access and disparities across the three 
dimensions (Methods). For example, ‘H-M-L’ indicates high, medium 
and low levels for economic, social and environmental infrastructure 
access, respectively. The results revealed that the most prevalent cat-
egories were ‘M-M-M’ (26 countries), ‘H-M-M’ (13 countries) and ‘H-H-M’ 
(12 countries). Five countries fell into the ‘H-H-H’ category, including 
Australia, Canada, Chile, Peru and Portugal, while nine African coun-
tries were categorized as ‘L-L-L’, including Burkina Faso, Central African 
Republic, Chad, Djibouti, Guinea, Mauritania, Niger, South Sudan and 
Sierra Leone (Fig. 3a). We also found several countries categorized as 
‘H-H-L’ or ‘H-M-L’, such as China and India, reflecting relatively high 
infrastructure access in the socio-economic dimensions but lower 
access in environmental infrastructure. In general, the majority of 
countries in the Global North (45 out of 54) were categorized as Class I, 
indicating that their infrastructure access levels exceeded the average, 
with relatively small differences among the economic, social and envi-
ronmental dimensions (a win–win scenario). In contrast, Global South 
countries presented a more varied picture. While 38 of them (34%) 
belonged to Class I, a considerable portion fell into Classes II (26%) and 
III (40%), indicating moderate to below-average infrastructure access 
levels and considerable disparities among the three dimensions. Simi-
lar patterns were also observed at the county scale, with infrastructure 
access and equity levels in the Global North generally outperforming 
those in the Global South (Fig. 3b).

We further evaluated the level of inequality in human access to 
infrastructure at the country scale using the Gini coefficient. The results 
revealed notable differences in infrastructure access inequality among 
different types of infrastructure and regions (Fig. 4 and Table 1). Social 
infrastructure exhibited the highest level of access inequality (mean 
Gini of 0.83 ± 0.12), followed by economic (mean Gini of 0.55 ± 0.12) and 
environmental (mean Gini of 0.35 ± 0.14) infrastructures (F2,163 = 581.82; 
P < 0.001; Cohen’s f = 1.00; 95% CI, (578.16, 585.49)). Regarding geo-
graphical disparities, individuals in Europe and Oceania had more 
equitable access to infrastructure (economic: F5,160 = 8.53; P < 0.001; 
Cohen’s f = 0.79; 95% CI, (7.69, 9.38); social: F5,160 = 2.50; P = 0.033; 

Table 1 | Statistics of country-level human access to economic, social and environmental infrastructure and infrastructure 
inequalities (measured by the Gini coefficient) across regions

Region Count Infrastructure access Infrastructure access inequality (Gini)

Economic Social Environmental Economic Social Environmental

Global North 54 0.45 ± 0.23 0.44 ± 0.32 0.43 ± 0.26 0.47 ± 0.11 0.78 ± 0.15 0.27 ± 0.11

Global South 112 0.36 ± 0.26 0.22 ± 0.21 0.30 ± 0.27 0.58 ± 0.11 0.85 ± 0.10 0.39 ± 0.13

Europe 40 0.38 ± 0.15 0.39 ± 0.29 0.47 ± 0.25 0.46 ± 0.09 0.81 ± 0.13 0.25 ± 0.09

Asia 46 0.53 ± 0.30 0.30 ± 0.26 0.21 ± 0.21 0.54 ± 0.13 0.81 ± 0.16 0.43 ± 0.14

North America 16 0.41 ± 0.27 0.35 ± 0.29 0.44 ± 0.23 0.54 ± 0.10 0.80 ± 0.11 0.38 ± 0.10

South America 12 0.48 ± 0.24 0.44 ± 0.33 0.56 ± 0.23 0.59 ± 0.05 0.82 ± 0.06 0.41 ± 0.10

Oceania 4 0.32 ± 0.31 0.34 ± 0.38 0.95 ± 0.11 0.49 ± 0.07 0.73 ± 0.08 0.27 ± 0.10

Africa 48 0.24 ± 0.18 0.13 ± 0.11 0.24 ± 0.22 0.61 ± 0.12 0.87 ± 0.09 0.34 ± 0.12

Global 166 0.39 ± 0.25 0.29 ± 0.27 0.35 ± 0.27 0.55 ± 0.12 0.83 ± 0.12 0.35 ± 0.14

One-way ANOVA across 
infrastructure types

F2,163 = 6.08; P = 0.002; Cohen’s f = 0.87; 95% CI, (5.71, 6.46) F2,163 = 581.82; P < 0.001; Cohen’s f = 1.00; 95% CI, (578.16, 585.49)

One-way ANOVA  
across regions

F5,160 = 7.89; 
P < 0.001; Cohen’s 
f = 0.78; 95% CI, 
(7.08, 8.71)

F5,160 = 6.40; 
P < 0.001; Cohen’s 
f = 0.75; 95% CI, 
(5.66, 7.13)

F5,160 = 16.11; P < 0.001; 
Cohen’s f = 0.87; 95% 
CI, (14.95, 17.27)

F5,160 = 8.53; 
P < 0.001; Cohen’s 
f = 0.79; 95% CI, 
(7.69, 9.38)

F5,160 = 2.50; 
P = 0.033; Cohen’s 
f = 0.58; 95% CI, 
(2.04, 2.96)

F5,160 = 10.92; P < 0.001; 
Cohen’s f = 0.83; 95% 
CI, (9.96, 11.87)

t-test between the Global 
North and Global South

t164 = 2.14; P = 0.034; 
Cohen’s d = 0.36; 
95% CI, (0.01, 0.17)

t164 = 5.43; P < 0.001; 
Cohen’s d = 0.84; 
95% CI, (0.13, 0.32)

t164 = 2.99; P = 0.003; 
Cohen’s d = 0.50; 95% 
CI, (0.05, 0.22)

t164 = −6.23; 
P < 0.001; Cohen’s 
d = −1.05; 95% CI, 
(−0.15, −0.08)

t164 = −3.02; 
P = 0.003; Cohen’s 
d = −0.47; 95% CI, 
(−0.11, −0.02)

t164 = −5.60; P < 0.001; 
Cohen’s d = −0.97; 95% 
CI, (−0.15, −0.08)

Values are presented as mean ± standard deviation. We conducted two-sided one-way analysis of variance (ANOVA) tests to examine differences in infrastructure access or access inequality 
across the three dimensions (economic, social and environmental) and across regions (Europe, Asia, North America, South America, Oceania and Africa), and a two-sided t-test to compare 
infrastructure access or access inequality between the Global North and Global South countries.
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Cohen’s f = 0.58; 95% CI, (2.04, 2.96); environmental: F5,160 = 10.92; 
P < 0.001; Cohen’s f = 0.83; 95% CI, (9.96, 11.87)). Africa experienced 
extreme economic and social infrastructure access inequality, with 
mean Gini of 0.61 ± 0.12 and 0.87 ± 0.09, respectively, whereas Asia dis-
played the highest level of inequality in environmental infrastructure 
access (mean Gini of 0.43 ± 0.14). In addition to infrastructure access, 
we observed a difference in infrastructure access inequality between 
countries of the Global North and Global South (economic: t164 = −6.23; 

P < 0.001; Cohen’s d = −1.05; 95% CI, (−0.15, −0.08); social: t164 = −3.02; 
P = 0.003; Cohen’s d = −0.47; 95% CI, (−0.11, −0.02); environmental: 
t164 = −5.60; P < 0.001; Cohen’s d = −0.97; 95% CI, (−0.15, −0.08)). The 
mean values of economic, social and environmental infrastructure 
access inequality in the Global South were 1.23, 1.09 and 1.44 times 
higher than those in the Global North. Moreover, by using the inequal-
ity index (Inq)26,51 as an auxiliary measure, we identified similar pat-
terns of spatial inequality in infrastructure access across countries 
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Fig. 3 | Composite maps of overall infrastructure access levels. a,b, Access 
levels at the country (a) and county (b) scales. We identified 27 unique categories 
classified into three general classes (I, II and III) representing different levels 
of infrastructure access and disparities across the three dimensions. For 
example, ‘H-M-L’ indicates high, medium and low levels for economic, social 

and environmental infrastructure access, respectively. The bar charts below the 
maps illustrate the count of countries or counties within each general class in 
the Global North (N) and Global South (S). The bar charts on the right show the 
counts of countries and counties for each category. c–e, Zoomed composite 
maps of county-level infrastructure access in North America, Africa and Asia.
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(Supplementary Fig. 3 and Supplementary Table 2). These findings 
highlight substantial disparities in fundamental infrastructure access 
and inequality between the Global North and South.

We examined the relationship between infrastructure access, infra-
structure access inequality and health-adjusted life expectancy (HALE) 
using correlational analyses. Both economic and social infrastructure 
access showed a positive relationship with life expectancy, with Global 
South countries having steeper regression slopes (Fig. 5a,b). How-
ever, increased levels of economic and social infrastructure access 
inequality were associated with reduced HALE (Fig. 5d,e). No significant 
relationship was observed between environmental infrastructure 
access factors and HALE (Fig. 5c). Regarding the association between 

environmental infrastructure access inequality and HALE, we found 
contrasting patterns in countries of the Global North and South, where 
HALE decreased as inequality levels rose in the Global North, a stark 
contrast from the Global South (Fig. 5f).

To delve further into the health outcomes associated with 
socio-economic infrastructure access and inequalities, we employed a 
linear mixed-effects model for countries in the Global North and Global 
South, while accounting for potential confounding factors such as gross 
domestic product (GDP) and population (Methods). The results indi-
cate that increased human access to economic infrastructure (ExpEco) 
was positively associated with higher HALE (Model I in Table 2). In 
contrast, economic infrastructure access inequality (GiniEco) showed 
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Fig. 4 | Country-level infrastructure access inequalities measured by the Gini 
coefficient. a–c, Global maps of economic (a), social (b) and environmental (c) 
infrastructure access inequalities. Black boundaries indicate countries in the 
Global South. d–f, Box plots of economic (d), social (e) and environmental (f) 
infrastructure access inequalities in countries in the Global North (N) and Global 
South (S). The box plots display the distribution of the data, with the median 
(50th percentile) at the centre, the interquartile range (25th to 75th percentiles) 
as the box, and whiskers extending to the maximum and minimum values within 

1.5 times the interquartile range. The sample sizes were 54 countries for the 
Global North and 112 countries for the Global South. No replicates were carried 
out, and no adjustments for multiple comparisons were applied. Statistical 
significance was determined using a two-sided t-test for comparisons between 
the Global North and Global South (economic: t164 = −6.23; P < 0.001; Cohen’s 
d = −1.05; 95% CI, (−0.15, −0.08); social: t164 = −3.02; P = 0.003; Cohen’s d = −0.47; 
95% CI, (−0.11, −0.02); environmental: t164 = −5.60; P < 0.001; Cohen’s d = −0.97; 
95% CI, (−0.15, −0.08)).
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a negative relationship with HALE (Model II in Table 2). When we inte-
grated all variables into a single linear mixed-effects model (Model III), 
GiniEco emerged as one of the strongest predictors, with a regression 
coefficient of −9.95 (z = −2.96; P = 0.003; 95% CI, (−16.54, −3.36)). This 
finding suggests that a 10% increase in economic infrastructure access 
inequality was linked to a one-year reduction in life expectancy. Yet in 
these models, social infrastructure variables (ExpSoc and GiniSoc) 
did not show statistically significant correlations with HALE at the 
P < 0.05 level. Additionally, by taking disability-adjusted life years 
(DALYs) as the response variable in Models I–III, we observed a similar 
relationship between ExpEco/GiniEco and DALYs (see Supplementary 
Table 3 for model summaries); that is, lower access levels and higher 
access inequality levels of economic infrastructure corresponded to 
a higher disease burden.

Discussion
Infrastructure is a cornerstone of societal development and 
well-being, yet the nature of global infrastructure access inequality 
and its association with human health remains unclear. Our findings 
address this gap by exposing contrasting disparities in infrastructure 
access between the Global North and South. Despite hosting 85% of 
the global population, Global South countries have 50–80% of the 
infrastructure access but experience 9–44% higher inequalities com-
pared with Global North countries. In particular, African and Asian 
countries stand out with the lowest levels of infrastructure access 
and equality, which highlights a severe deficiency in local infrastruc-
ture conditions. Although the Global North generally demonstrates 
higher access and lower inequality in infrastructure than the Global 
South, this by no means suggests that infrastructure development 
within these countries is uniform. Even in the developed world, we 

find a considerable number of countries with severe inequalities in 
infrastructure access, particularly in the social dimension, where 42 
of the 54 Global North countries have a Gini value larger than 0.7. Our 
composite maps also highlight distinct regional disparities within 
Global North countries. For example, in Class I countries such as 
Canada and the United States, 16% (541 out of 3,402) of their counties 
are classified under Class II or III (Fig. 3c). Conversely, Class II or III 
countries, such as those in Africa and Asia, can encompass regions 
classified as Class I (Fig. 3d,e).

Another contribution of this study lies in the joint assessment 
of economic–social–environmental infrastructure, which offers an 
enriched understanding of global infrastructure access and inequa
lity. By categorizing infrastructure access into high, medium and low 
for each dimension, we identify 27 unique categories of combination, 
which group into three general classes representing varying levels 
and disparities in economic, social and environmental infrastructure 
access. The advantages of our framework lie in its ability to elucidate 
these levels and disparities across different dimensions, thereby assist-
ing policymakers in more effectively addressing diverse infrastructure 
challenges52,53. For instance, patterns such as ‘H-H-L’, ‘H-M-L’ or ‘M-H-L’ 
demonstrate well-developed socio-economic infrastructure but often 
neglected environmental issues in some countries and regions. Con-
versely, we observe an ‘L-L-H’ pattern in countries such as Fiji, Guyana, 
Honduras, Madagascar, Swaziland, Timor-Leste and Vanuatu. These 
countries benefit from relatively well-developed environmental infra-
structure, primarily due to lower exposure to heat and air pollution 
and greater access to green space (Supplementary Fig. 4); however, 
they face substantial deficits in economic and social infrastructure, 
making the promotion of socio-economic development a primary 
focus for the future. These patterns provide a comprehensive view of 
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economic (a), social (b) and environmental (c) dimensions. d–f, Associations 
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squares linear regression models were conducted with two-sided hypothesis 
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95% CIs from the linear regression models, and the central lines represent 
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global infrastructure access, pinpointing areas where human access 
to specific types of infrastructure is most fragile, inequitable and 
urgently in need of aid.

Moreover, the population-weighted exposure model employed in 
this study takes into account the spatial distribution of both popula-
tion and infrastructure, enabling a more accurate representation of 
human–infrastructure interactions (see Supplementary Information 
section 2 for further illustrations in Australia and Burkina Faso). Tra-
ditional measurements of infrastructure access often assume a static 
population distribution across space and time10,12, which can result 
in biases when assessing realistic human access to infrastructure. 
To illustrate this, we further compute the country-level differences 
between population-weighted access estimates and original values 
for economic, social and environmental infrastructure categories. 
The results suggest that traditional intuitive measurement methods 
could potentially overestimate or underestimate the real situation 
(Supplementary Fig. 5). In most African, Asian and European countries, 
population-weighted access values for economic infrastructure are 
generally below the original values, indicating that a large portion 
of the population resides in areas that are far from business facilities 
(Supplementary Fig. 5a). For social and environmental infrastructure, 
the original values tend to underestimate their actual levels, albeit to a 
lesser extent in Africa and Asia than in other regions (Supplementary 
Fig. 5b,c). Our population-weighted infrastructure access framework 
reinforces the importance of assessing the adequacy of infrastructure 
provisions through the lens of human–infrastructure supply–demand 
relationships.

Our analysis also sheds light on the linkages between infrastruc-
ture and human health, underscoring that equitable access to infra-
structure, particularly in the economic dimension, is fundamental 
for enhancing human health and well-being. At the country scale, we 
find a positive relationship between infrastructure access and HALE 
and a negative relationship between infrastructure access inequality 
and HALE (Fig. 5). In the United States, similar patterns appear at the 
county scale, where greater infrastructure access values correspond 
to higher life expectancy and lower disease mortality rates (Supple-
mentary Fig. 6). These findings are generally consistent with previous 
studies on the relationship between individual types of infrastructure 
and health outcomes across regions39–45. Our mixed-effects regression 
modelling further advances current knowledge by offering a quantita-
tive comparison of health disparities across different infrastructure 
types and between levels of access and inequality. The coefficient for 
economic infrastructure inequality (GiniEco, Table 2) underscores the 
key role of infrastructure inequality—a factor largely underexplored 
in the literature.

In practice, these findings offer policy implications for equitable 
and sustainable infrastructure development to promote human health. 
First, our results emphasize the need for targeted policies and inter-
ventions to bridge infrastructure gaps, especially for countries in the 
Global South. According to the United Nations, the world’s population 
will continue to increase in the coming decades, projected to reach 
9.7 billion by 2050 and 10.4 billion by 210054. Much of this growth will 
occur in the developing world, posing potential threats to many Global 
South countries, as they strive to meet the rising demands for essential 
infrastructure services such as water, sanitation, education and health. 
Our maps and findings serve as a reference for governments and poli-
cymakers to identify regions with low infrastructure access and high 
inequality, which will facilitate more strategic investments that ensure 
equitable access to essential services and opportunities. By prioritizing 
infrastructure development in these identified under-resourced areas, 
policymakers can promote inclusive growth that supports overall 
economic and social advancement.

Second, our findings underline formidable challenges in accom-
plishing SDG 9 and beyond, as infrastructure inequality remains a 
barrier to sustainable and equitable development. While infrastruc-
ture investment is essential, economic growth alone cannot resolve 
infrastructure disparities; in some cases, it may even exacerbate 
regional disparities due to policies or investments that favour specific 
neighbourhoods over others55,56. At the national level, such targeted 
investments and policies can further widen disparities across regions 
and cities57–59, and if population growth outpaces infrastructure 
construction, disparities in infrastructure access may worsen26. To 
effectively address these challenges, policymakers need to prioritize 
equitable infrastructure allocation on the basis of a spatial assessment 
of infrastructure needs across multiple dimensions, regions and 
human–infrastructure interaction settings. This can involve imple-
menting redistributive policies that channel resources to historically 
underserved regions and enforcing guidelines to prevent infrastruc-
ture development projects from favouring particular neighbour-
hoods at the expense of others. Policymakers should also account for 
real-time population dynamics to ensure that infrastructure expan-
sions can accommodate rising demand, especially in regions where 
rapid population increases may otherwise outstrip infrastructure 
improvements.

Lastly, our analysis emphasizes the importance of reducing 
infrastructure disparities to improve health outcomes. While the 
provision of infrastructure services is fundamental to human health, 
addressing disparities in access, especially in regions with low overall 
infrastructure access, is even more vital. Our findings reveal that even 
small increases in inequality, particularly in the economic dimen-
sion, can compromise health outcomes. This necessitates targeted 
efforts to lessen inequalities in key infrastructure components such 

Table 2 | Summary of linear mixed-effects regression 
models with health-adjusted life expectancy (HALE) as the 
response variable

Coefficient s.e. z P > |z| 95% CI (0.025, 0.975)

Model I (R2 = 0.60; Levene’s test: F = 11.86, P < 0.001)

ExpEco 5.85 1.54 3.81 <0.001 2.84 8.86

ExpSoc 1.79 1.31 1.37 0.171 −0.77 4.36

LnPop −2.18 0.27 −8.07 <0.001 −2.71 −1.65

LnGDP 1.89 0.31 6.11 <0.001 1.29 2.50

const 67.06 3.39 19.79 <0.001 60.42 73.71

Model II (R2 = 0.65; Levene’s test: F = 10.98, P < 0.001)

GiniEco −11.69 3.24 −3.61 <0.001 −18.04 −5.33

GiniSoc −0.54 3.04 −0.18 0.859 −6.50 5.42

LnPop −2.14 0.28 −7.75 <0.001 −2.68 −1.60

LnGDP 2.61 0.24 10.75 <0.001 2.14 3.09

const 64.50 3.07 21.04 <0.001 58.50 70.51

Model III (R2 = 0.66; Levene’s test: F = 12.79, P < 0.001)

ExpEco 3.84 1.82 2.11 0.035 0.28 7.41

ExpSoc 2.23 1.32 1.69 0.091 −0.36 4.82

GiniEco −9.95 3.36 −2.96 0.003 −16.54 −3.36

GiniSoc 3.03 3.22 0.94 0.346 −3.28 9.35

LnPop −2.07 0.27 −7.64 <0.001 −2.61 −1.54

LnGDP 2.01 0.32 6.34 <0.001 1.39 2.64

const 66.86 3.21 20.82 <0.001 60.56 73.15

The sample sizes were 51 countries for the Global North and 109 countries for the Global 
South. Normality was tested using the Kolmogorov–Smirnov test (D = 0.096, P = 0.101), 
indicating that log transformation was not necessary for the response variable. Homogeneity 
of variances was assessed using Levene’s test on residuals, and robust standard errors were 
applied using the sandwich estimator when P < 0.05. An asterisk denotes a significance 
level of P < 0.05. All P values are from two-sided tests, with no adjustments for multiple 
comparisons.
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as transportation, telecommunications and housing. By implement-
ing policies that secure universal and inclusive infrastructure access, 
policymakers can foster healthier and more resilient communities, 
further contributing to the global goal of improved well-being and 
quality of life.

We also acknowledge several levels of limitations that suggest 
directions for future investigations. First, while we examine infra-
structure from economic, social and environmental perspectives, we 
note that infrastructure classifications are diverse, with no consistent 
standards in the literature2,60. In some cases, categories may over-
lap; for instance, water and waste infrastructure can be considered 
economic infrastructure61,62. Our focus, however, is on developing 
a flexible comparative framework, which can accommodate a wide 
range of critical infrastructure systems and effectively reveal access 
inequalities across different types. Future research could adapt this 
model to fit various infrastructure classifications based on specific 
application needs. Second, the population-weighted exposure model 
used in this study assumes static population distributions across space 
and time, focusing on physical access to nearby infrastructure rather 
than accounting for spatiotemporal interactions between infrastruc-
ture and mobile individuals. However, as people move throughout 
their daily lives, they may benefit from distant infrastructure (for 
example, hospitals and schools) or experience negative impacts from 
nearby infrastructure (for example, noise and air pollution from high-
ways). Moreover, spatial proximity does not always guarantee higher 
accessibility due to spatial segregation, such as gated communities or 
restricted-access roads and facilities63–66. To capture these dynamics 
more realistically, future studies should consider diverse types of infra-
structure accessibility beyond mere spatial proximity and incorporate 
human mobility data to assess human-centric exposure through a 
spatiotemporally explicit interaction framework. Third, although this 
research reveals health disparities associated with various infrastruc-
ture types, it does not consider the effect of interdependencies among 
these types67. For example, many critical infrastructure sectors cannot 
operate if energy infrastructure is not functioning68. This is further 
supported by our correlation analysis, where access to transporta-
tion, energy and health infrastructure exhibits higher correlations 
than access to other types (Supplementary Fig. 7). In the next stage, 
more work is needed to understand how these interdependencies 
collectively impact human health. Finally, there are data gaps and 
limitations associated with the infrastructure dataset used in this 
study. On the one hand, as the critical infrastructure dataset is derived 
from a voluntary data source, OpenStreetMap (OSM)69, it may contain 
missing data, particularly in less-developed areas, which limits the 
representation of certain countries or regions. On the other hand, 
our inequality analysis is conducted at the national scale, constrained 
by the dataset’s relatively coarse spatial resolution (0.1° × 0.1°). This 
approach does not capture intra-country heterogeneity in inequality 
levels, as disparities in infrastructure provision can exist even within 
developed countries with low overall inequality. Moving forward, we 
plan to integrate multi-source data, such as high-resolution satellite 
imagery and human mobility data, to analyse infrastructure exposure 
inequalities at finer spatial scales and identify vulnerable hotspots 
requiring targeted policy interventions and initiatives.

Methods
Research design and data
Supplementary Fig. 1 provides a detailed flow chart of the study, outlin-
ing the research design. First, we combined multi-source geospatial 
datasets to generate a comprehensive dataset of global infrastructure 
distributions across the economic, social and environmental dimen-
sions. Second, we applied population-weighted assessment to grid-
ded population data and infrastructure mapping results, quantifying 
spatial differences in human access to infrastructure distributions at 
the country and county levels, as well as between Global North and 

Global South countries. Third, we evaluated global inequality in infra-
structure access by comparing the cumulative population and infra-
structure distributions in each administrative region of each country.  
Finally, we performed statistical analysis to explore the relationship 
between infrastructure access/inequality and human health. All the 
data sources used in this study are publicly available (Supplementary 
Table 4). Additional details on data acquisition and processing are 
provided in Supplementary Information section 3.

Infrastructure mapping
On the basis of the conceptual model (Fig. 1), we built three globally har-
monized and consistent maps of economic, social and environmental 
infrastructures for 2020 at 0.1° × 0.1° spatial resolution using a range 
of open data sources, including critical infrastructure, land cover, air 
pollution and re-analysis climate data. To begin with, we reclassified the 
original 39 infrastructure types in the critical infrastructure dataset69 
into economic, social and environmental categories. For economic 
infrastructure, we considered telecommunication, energy and trans-
port systems. For social infrastructure, we considered health and 
education systems. For environmental infrastructure, we incorporated 
water and waste systems.

In the original critical infrastructure dataset, the raster value rep-
resents the total amount of infrastructure (for example, the number 
of power poles) within a given grid cell69. Statistics show that some 
infrastructure types, such as power poles and tertiary roads, have 
significantly higher quantities than others (Supplementary Table 5). 
To enable cross-type comparisons, we normalized each infrastructure 
type layer within each critical infrastructure system to a 0–1 scale by 
dividing by the maximum grid value for that type (Supplementary 
Fig. 8). We then aggregated the normalized infrastructure type layers 
to the initial economic, social and environmental infrastructure layers 
by equal weighting. For economic and social infrastructures, we later 
calibrated the maps with the night-time light (NTL) data (as described 
in the subsequent section).

In terms of environmental infrastructure, we integrated the nor-
malized water and waste infrastructure layer with data on green space, 
air pollution and thermal comfort. Generally, a superior condition of 
environmental infrastructure is indicated by an increased presence 
of water and waste facilities, higher green space coverages, lower 
PM2.5 concentrations and shorter heat durations. The equation for 
the calculation of environmental infrastructure (Env) can therefore 
be expressed as:

Env = 0.5 × CIenv + 0.5 ×
eGreen

ln(eAir × eHeat) (1)

where CIenv represents the initial environmental infrastructure layer, 
reclassified from the critical infrastructure dataset as the mean of the 
normalized water and waste infrastructure layers. Green is the green 
space layer extracted from the WorldCover data, Air is the normalized 
PM2.5 layer calculated on the basis of the Goddard Earth Observing 
System Composition Forecast data and Heat is the normalized heat 
duration layer derived from the ERA5 climate reanalysis data. All green 
space, PM2.5 and heat duration layers were resampled to 0.1° × 0.1° 
before processing.

Socio-economic infrastructure data calibration
The CI dataset used in this study was derived from OSM, a geographic 
database updated and maintained by a community of volunteers via 
open collaboration70. However, concerns have been raised regarding 
the quality of OSM data given its collaborative nature71,72. A recent 
study assessing the accuracy of OSM land-cover/land-use data in 168 
countries worldwide found that data completeness in 129 countries was 
less than 40%73. This suggests that in some regions, particularly in devel-
oping regions, the spatial coverage of OSM data remains incomplete.
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To mitigate potential biases stemming from the limitations of 
OSM data, we integrated VIIRS NTL data as a surrogate to calibrate the 
economic and social infrastructure layers derived from the CI dataset. 
Previous studies have demonstrated the role of night-time lights in 
estimating various socio-economic activities including economic 
growth74,75, electricity consumption76,77 and population distribution78,79. 
In practice, we selected the continental United States as the calibra-
tion site due to its relatively comprehensive coverage of OSM data80. 
Recognizing that most socio-economic activities are concentrated in 
urban areas, we employed buffer areas of global urban boundary (GUB) 
data within the continental United States to exclude pixels located 
outside of urban regions. We conducted linear regression analyses 
between NTL and infrastructure values at a spatial scale of 0.1° × 0.1°, 
using various buffer sizes ranging from 0 to 25 km. The results revealed 
strong positive relationships between logarithmic values of night-time 
lights and economic infrastructure (Supplementary Fig. 9), with the 
most robust linear relationship observed within the 5-km buffer area 
of GUB (r = 0.71, P < 0.001; Supplementary Fig. 9b). Consequently, we 
used coefficients of the 5-km model to estimate the final economic 
and social infrastructure distributions on a global scale, which can be 
expressed as follows:

ln (I) = 1.58 × ln(I′) + 5.03 (2)

where I denotes the calibrated economic (social) infrastructure value 
within each 0.1° × 0.1° grid cell, while I′ is the initially normalized eco-
nomic (social) infrastructure value derived from the CI dataset.

To validate the accuracy and reliability of the calibrated infra-
structure maps, we conducted a comparison between the economic 
and social infrastructure layers and national-level data on GDP and the 
Human Development Index (HDI), respectively. GDP is a widely recog-
nized and dependable indicator for measuring a region’s economic 
performance, while the HDI represents the overall human development 
achievement across various dimensions, including health, education 
and standard of living81. Prior studies have demonstrated the posi-
tive impact of social infrastructure on human development82–84. Our 
analysis supported the existing evidence by revealing a statistically 
significant linear relationship between the sum of social infrastructure 
and HDI across countries (r = 0.89, P < 0.001; Supplementary Fig. 10b). 
We also observed a similar relationship between the sum of economic 
infrastructure and GDP at the country level (r = 0.90, P < 0.001; Sup-
plementary Fig. 10a).

Human access to infrastructure
We employed the population-weighted exposure model—a bottom-up 
assessment to quantify the level of human access to infrastructure. The 
model has been developed to capture the spatial interaction between 
the population and various indicators of the surrounding environment, 
including green space15,16,85, air pollution86,87 and thermal comfort88. 
When applying this model to measure infrastructure access, we pro-
portionately assigned higher weights to infrastructures located in 
areas with larger populations:

IEk =
∑N

i=1 Pi × Iki
∑N

i=1 Pi

(3)

where Pi is the population of the ith grid, Ik
i is the infrastructure value 

of the ith grid for type k (that is, economic, social or environmental), 
N is the total number of grids within the corresponding administrative 
unit and IEk is the corresponding population-weighted infrastructure 
access level for type k (that is, economic, social or environmental). For 
each type k, we normalized IEk by dividing it by the 95th percentile of 
IEk, capping any values exceeding this threshold to 1. This resulted in 
a standardized IE range of 0–1, with higher values indicating greater 
human access to infrastructure.

Comprehensive evaluation of infrastructure access
To assess overall infrastructure accessibility and disparities among 
economic, social and environmental dimensions, we categorized 
the resulting infrastructure access values as ‘high’ (H), ‘medium’ (M) 
and ‘low’ (L) for each dimension using the 25th and 75th quantiles as 
thresholds. Next, we synthesized the three-dimensional classification 
outcomes into composite maps at both county and country scales, 
resulting in 27 distinct categories (Fig. 3). Each uppercase letter denotes 
an infrastructure access level for a specific dimension. For instance, 
‘H-M-L’ denotes high, medium and low levels for economic, social and 
environmental infrastructure access, respectively. Furthermore, we 
grouped the 27 categories into three general classes based on their 
characteristics:

•	 Class I denotes regions where infrastructure access levels sur-
pass the average, with relatively minor disparities among the 
three dimensions (none falling into ‘low’)

•	 Class II represents regions with moderate overall infrastructure 
access but notable disparities across the three dimensions (at 
least one ‘high’ and one ‘low’)

•	 Class III indicates infrastructure access levels below the aver-
age, with relatively minor disparities among the three dimen-
sions (none reaching ‘high’)

Infrastructure access inequality
We used the widely adopted Gini coefficient89 (Gini) to assess the ine-
quality in human access to infrastructure for each of the 166 countries 
in the Global North and Global South. The Gini coefficient is a statistical 
measure of dispersion that compares the cumulative proportions of 
the population against the cumulative proportions of infrastructures 
they have access to90. It provides a numerical value ranging from 0 to 
1, where larger values indicate a higher level of inequality in infrastruc-
ture access, and vice versa. Additionally, we introduced the inequality 
index26,51 (Inq) as a complementary measure of the spatial inequality 
in infrastructure access. The inequality index also ranges from 0 to 
1, with 0 representing absolute equality and 1 representing absolute 
inequality12. More details on the calculation of Gini and Inq are provided 
in Supplementary Information section 4.

Associations between infrastructure factors and human health
We conducted correlation analyses between infrastructure access or 
infrastructure access inequality and health outcomes (that is, HALE 
and DALYs) in 2020 at the country level. Both economic and social 
infrastructure access had a positive relationship with life expectancy 
(Fig. 5a,b), while greater inequality of economic and social infrastruc-
ture access was associated with lower HALE (Fig. 5d,e). Our analyses also 
highlighted the difference in the relationships between countries in 
the Global North and Global South, as outlined by red and blue in Fig. 5. 
However, we found no significant relationship between environmental 
infrastructure access factors and HALE (Fig. 5c).

To further examine the association between infrastructure access, 
inequality and human health, we performed linear mixed-effects 
regression modelling91 between socio-economic infrastructure fac-
tors and health outcomes for countries in the Global North and Global 
South. The first model (Model I) included only infrastructure access 
variables. The second model (Model II) included only infrastructure 
access inequality variables. The third model (Model III) included all 
the variables of infrastructure access and inequality included in Mod-
els I and II. In addition, we added measures of population and GDP to  
control for the unobserved entity characteristics among countries.  
The mathematical expressions for Models I–III are outlined in equa-
tions (4)–(6), respectively:

Healthj,g = β0 + γg + β1LnPopj,g + β2LnGDPj,g
+β3ExpEcoj,g + β4ExpSocj,g + εi,g

(4)

http://www.nature.com/nathumbehav
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Healthj,g = β0 + γg + β1LnPopj,g + β2LnGDPj,g
+β3GiniEcoj,g + β4GiniSocj,g + εi,g

(5)

Healthj,g = β0 + γg + β1LnPopj,g + β2LnGDPj,g + β3ExpEcoj,g
+β4ExpSocj,g + β5GiniEcoj,g + β6GiniSocj,g + εj,g

(6)

where Healthi,g denotes health outcomes for country j in group g (that 
is, Global North or Global South). The covariate variables included 
the logarithmic value of population (LnPop), the logarithmic value of 
GDP (LnGDP), economic infrastructure access (ExpEco), social infra-
structure access (ExpSoc), economic infrastructure access inequal-
ity (GiniEco) and social infrastructure access inequality (GiniSoc). A 
mixed-effects approach was used, with a random intercept term (γg) 
accounting for variations in the baseline health conditions across 
countries in the Global North and Global South. β0 is the average model 
intercept, β1–6 are the regression coefficients for each covariate variable 
and εj,g is the error term. Model significance was tested at the P < 0.05 
level. In Table 2, we report mixed-effects regression results taking 
HALE as the response variable. We also replaced Healthi,g with DALYs 
in Models I–III to examine the relationship between socio-economic 
infrastructure factors and disease burdens (see Supplementary Table 3 
for model summaries).

Moreover, we applied a machine learning algorithm, the random 
forest model92, to build the association between all six covariate vari-
ables in Models I–III and health outcomes. Variable importance was 
quantified by the indicators of the increase in mean square error and the 
increase of node purity93. For each of the response variables HALE and 
DALYs, we constructed a random forest model with 500 trees and itera-
tively executed the model 100 times (Supplementary Figs. 11 and 12).

Sensitivity analyses
We conducted two sensitivity analyses to further validate the robust-
ness of our assessment model. First, we included water and waste 
infrastructure within the economic and social infrastructure categories 
to assess how this inclusion affects country-level access values (Sup-
plementary Fig. 13). Second, we quantified the Pearson correlations 
between various types of infrastructure access (Supplementary Fig. 7) 
and examined how interactions between infrastructure types relate to 
human health outcomes (Supplementary Table 6). Further details can 
be found in Supplementary Information section 5.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The public datasets used in this study can be accessed via the Google 
Earth Engine platform (https://earthengine.google.com), specifi-
cally including the Harmonized Global Critical Infrastructure dataset 
(https://gee-community-catalog.org/projects/cisi/), the WorldCover 
Global Land Cover map for 2020 (https://developers.google.com/
earth-engine/datasets/catalog/ESA_WorldCover_v100), NASA’s God-
dard Earth Observing System Composition Forecast data (https://
developers.google.com/earth-engine/datasets/catalog/NASA_
GEOS-CF_v1_rpl_tavg1hr), the ERA5-Land Daily Aggregated Climate Rea-
nalysis data (https://developers.google.com/earth-engine/datasets/
catalog/ECMWF_ERA5_LAND_DAILY_AGGR) and the WorldPop Global 
Project Population Data (https://developers.google.com/earth-engine/
datasets/catalog/WorldPop_GP_100m_pop). The annual global VIIRS 
NTL V2 product is from the Earth Observation Group (https://eog-
data.mines.edu/products/vnl/#annual_v2). The GUB datasets are 
from Pengcheng Laboratory (https://data-starcloud.pcl.ac.cn/). The 
Global Administrative Unit Layers are from the Food and Agriculture 

Organization of the United Nations (https://data.apps.fao.org/). The 
list of Global South countries was obtained from the Organization for 
Women in Science for the Developing World (https://owsd.net/). Data 
on GDP are from the World Bank (https://data.worldbank.org). Data on 
the HDI are from the United Nations Development Programme (https://
hdr.undp.org/). Health data on HALE and DALYs are from the Institute 
for Health Metrics and Evaluation at the University of Washington 
(https://vizhub.healthdata.org/gbd-results/). The resulting maps of 
economic, social and environmental infrastructure, along with data 
on infrastructure access, infrastructure access inequality and health 
outcomes, are available via figshare at https://figshare.com/projects/
Infrastructure_inequality/237854 (ref. 94).

Code availability
All code used to generate the data and results in this study is available 
via figshare at https://figshare.com/projects/Infrastructure_inequal 
ity/237854 (ref. 94).
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