Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strange metal from a frustration-driven charge order instability

Abstract

Interparticle interactions are self-conflicting rather than cooperative on particular lattices. When such geometrical frustration occurs, charge ordering (CO) can be destabilized into non-trivial charge states such as the recently observed charge glass (CG). A more extreme case is the frustration-induced quantum melting of the CO that has been theoretically proposed. Here, we report d.c. charge transport and noise spectroscopy measurements for a triangular-lattice organic conductor situated close to the CO or CG. Our experiments demonstrate that these materials can host a strange metal with unusual charge dynamics, which we attribute to frustration-induced fluctuations of the CO or CG. Our results also show that the anomalous charge fluctuations can freeze into an insulating state when uniaxial stress is applied, which reduces the geometrical frustration. The present observations suggest the existence of the frustration-induced quantum melting of charges analogous to spin liquids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structure of θ-(BEDT-TTF)2I3.
Fig. 2: Temperature dependence of in-plane resistivity for the series of materials with different strengths of charge frustration.
Fig. 3: Resistance noise profiles for θ-I3 and θ-CsZn.
Fig. 4: Nuclear spin-lattice relaxation rate, 1/T1.
Fig. 5: Temperature dependence of in-plane resistivity of θ-(BEDT-TTF)2I3 before and after applying the c-axis strain by a uniaxial pressure of 2 kbar.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on request.

References

  1. Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).

    Article  Google Scholar 

  2. Anderson, P. W. Ordering and antiferromagnetism in ferrites. Phys. Rev. 102, 1008–1013 (1956).

    Article  CAS  Google Scholar 

  3. Seo, H., Tsutsui, K., Ogata, M. & Merino, J. Charge fluctuations in geometrically frustrated charge ordering system. J. Phys. Soc. Jpn 75, 114707 (2006).

    Article  Google Scholar 

  4. Mahmoudian, S., Rademaker, L., Ralko, A., Fratini, S. & Dobrosavljević, V. Glassy dynamics in geometrically frustrated Coulomb liquids without disorder. Phys. Rev. Lett. 115, 025701 (2015).

    Article  Google Scholar 

  5. Yoshimi, K. & Maebashi, H. Coulomb frustrated phase separation in quasi-two-dimensional organic conductors on the verge of charge ordering. J. Phys. Soc. Jpn 81, 063003 (2012).

    Article  Google Scholar 

  6. Kagawa, F. et al. Charge-cluster glass in an organic conductor. Nat. Phys. 9, 419–422 (2013).

    Article  CAS  Google Scholar 

  7. Sato, T. et al. Emergence of nonequilibrium charge dynamics in a charge-cluster glass. Phys. Rev. B 89, 121102 (2014).

    Article  Google Scholar 

  8. Sato, T. et al. Systematic variations in the charge-glass-forming ability of geometrically frustrated θ-(BEDT-TTF)2X organic conductors. J. Phys. Soc. Jpn 83, 083602 (2014).

    Article  Google Scholar 

  9. Sato, T., Miyagawa, K. & Kanoda, K. Fluctuation spectroscopy analysis based on the Dutta–Dimon–Horn model for the charge-glass system θ-(BEDT-TTF)2CsZn(SCN)4. J. Phys. Soc. Jpn 85, 123702 (2016).

    Article  Google Scholar 

  10. Sato, T., Miyagawa, K. & Kanoda, K. Electronic crystal growth. Science 357, 1378–1381 (2017).

    Article  CAS  Google Scholar 

  11. Sasaki, S. et al. Crystallization and vitrification of electrons in a glass-forming charge liquid. Science 357, 1381–1385 (2017).

    Article  CAS  Google Scholar 

  12. Hotta, C. & Furukawa, N. Strong coupling theory of the spinless charges on triangular lattices: possible formation of a gapless charge-ordered liquid. Phys. Rev. B 74, 193107 (2006).

    Article  Google Scholar 

  13. Cano-Cortés, L., Ralko, A., Février, C., Merino, J. & Fratini, S. Geometrical frustration effects on charge-driven quantum phase transitions. Phys. Rev. B 84, 155115 (2011).

    Article  Google Scholar 

  14. Kaneko, M. & Ogata, M. Mean-field study of charge order with long periodicity in θ-(BEDT-TTF)2X. J. Phys. Soc. Jpn 75, 14710 (2006).

    Article  Google Scholar 

  15. Merino, J., Seo, H. & Ogata, M. Quantum melting of charge order due to frustration in two-dimensional quarter-filled systems. Phys. Rev. B 71, 125111 (2005).

    Article  Google Scholar 

  16. Mori, H., Tanaka, S. & Mori, T. Systematic study of the electronic state in θ-type BEDT-TTF organic conductors by changing the electronic correlation. Phys. Rev. B 57, 12023–12029 (1998).

    Article  CAS  Google Scholar 

  17. Mori, T. Non-stripe charge order in the θ-phase organic conductors. J. Phys. Soc. Jpn 72, 1469–1475 (2003).

    Article  CAS  Google Scholar 

  18. Kondo, R. et al. Electrical and structural properties of θ-type BEDT-TTF organic conductors under uniaxial strain. J. Phys. Soc. Jpn 75, 044716 (2006).

    Article  Google Scholar 

  19. Kobayashi, H. et al. A new molecular superconductor, (BEDT-TTF)2(I3)1-x(AuI2)x (x < 0.02). Chem. Lett. 15, 789–792 (1986).

    Article  Google Scholar 

  20. Kobayashi, A. et al. Anion arrangement in a new molecular superconductor, θ-(BEDT-TTF)2(I3)1-x(AuI2)x,(x < 0.02). Chem. Lett. 15, 2017–2020 (1986).

    Article  Google Scholar 

  21. Tamura, M. et al. Analysis of de Haas–van alphen oscillations and band structure of an organic superconductor, θ-(BEDT-TTF)2I3. J. Phys. Soc. Jpn 63, 615–622 (1994).

    Article  CAS  Google Scholar 

  22. Takenaka, K. et al. Collapse of coherent quasiparticle states in θ-(BEDT-TTF)2I3 observed by optical spectroscopy. Phys. Rev. Lett. 95, 227801 (2005).

    Article  CAS  Google Scholar 

  23. Hussey, N. E., Takenaka, K. & Takagi, H. Universality of the Mott–Ioffe–Regel limit in metals. Philos. Mag. 84, 2847–2864 (2004).

    Article  CAS  Google Scholar 

  24. Dutta, P., Dimon, P. & Horn, P. M. Energy scales for noise processes in metals. Phys. Rev. Lett. 43, 646–649 (1979).

    Article  CAS  Google Scholar 

  25. Dutta, P. & Horn, P. M. Low-frequency fluctuations in solids: 1/f noise. Rev. Mod. Phys. 53, 497–516 (1981).

    Article  CAS  Google Scholar 

  26. Weissman, M. B. What is a spin glass? A glimpse via mesoscopic noise. Rev. Mod. Phys. 65, 829–839 (1993).

    Article  CAS  Google Scholar 

  27. Müller, J., Brandenburg, J. & Schlueter, J. A. 1/f noise in the quasi-two-dimensional organic conductor κ-(BEDT-TTF)2Cu[N(CN)2]Cl. Phys. Rev. B 79, 214521 (2009).

    Article  Google Scholar 

  28. Hirata, M., Miyagawa, K., Kanoda, K. & Tamura, M. Electron correlations in the quasi-two-dimensional organic conductor θ-(BEDT-TTF)2I3 investigated by 13C NMR. Phys. Rev. B 85, 195146 (2012).

    Article  Google Scholar 

  29. Scofield, J. H., Mantese, J. V. & Webb, W. W. Temperature dependence of noise processes in metals. Phys. Rev. B 34, 723–731 (1986).

    Article  CAS  Google Scholar 

  30. Weissman, M. B. 1/f noise and other slow, nonexponential kinetics in condensed matter. Rev. Mod. Phys. 60, 537–571 (1988).

    Article  CAS  Google Scholar 

  31. Raquet, B., Coey, J. M. D., Wirth, S. & von Molnár, S. 1/f noise in the half-metallic oxides CrO2, Fe3O4, and La2/3Sr1/3MnO3. Phys. Rev. B 59, 12435–12443 (1999).

    Article  CAS  Google Scholar 

  32. Müller, J. Fluctuation spectroscopy: a new approach for studying low-dimensional molecular metals. ChemPhysChem 12, 1222–1245 (2011).

    Article  Google Scholar 

  33. Bloembergen, N., Purcell, E. M. & Pound, R. V. Relaxation effects in nuclear magnetic resonance absorption. Phys. Rev. 73, 679–712 (1948).

    Article  CAS  Google Scholar 

  34. Joubaud, S., Petrosyan, A., Ciliberto, S. & Garnier, N. B. Experimental evidence of non-Gaussian fluctuations near a critical point. Phys. Rev. Lett. 100, 180601 (2008).

    Article  CAS  Google Scholar 

  35. Hartmann, B., Zielke, D., Polzin, J., Sasaki, T. & Müller, J. Critical slowing down of the charge carrier dynamics at the Mott metal-insulator transition. Phys. Rev. Lett. 114, 216403 (2015).

    Article  Google Scholar 

  36. Cano-Cortés, L., Merino, J. & Fratini, S. Quantum critical behavior of electrons at the edge of charge order. Phys. Rev. Lett. 105, 036405 (2010).

    Article  Google Scholar 

  37. Tamura, M., Matsuzaki, F., Tajima, N., Nishio, Y. & Kajita, K. Transport study of an organic conductor, θ-(BEDT-TTF)2I3. Synth. Met. 86, 2007–2008 (1997).

    Article  CAS  Google Scholar 

  38. Tajima, N. et al. Pressure control of transport property of organic conductors; α-, θ-(BEDT-TTF)2I3 and θ-(DIETS)2[Au(CN)4]. J. Phys. IV 114, 263–267 (2004).

    CAS  Google Scholar 

  39. Kajita, K. et al. New organic superconductors κ- and θ-(BEDT-TTF)2I3: transport property. Solid State Commun. 64, 1279–1284 (1987).

    Article  CAS  Google Scholar 

  40. Mori, H., Tanaka, S., Mori, T., Kobayashi, A. & Kobayashi, H. Crystal structure and physical properties of M = Rb and Tl salts of (BEDT-TTF)2MM’(SCN)4 (M’ = Co, Zn). Bull. Chem. Soc. Jpn 71, 797–806 (1998).

    Article  CAS  Google Scholar 

  41. Maesato, M., Kaga, Y., Kondo, R. & Kagoshima, S. Uniaxial strain method for soft crystals: application to the control of the electronic properties of organic conductors. Rev. Sci. Instrum. 71, 176–181 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Japan Society for the Promotion of Science (JSPS) KAKENHI under grant no. 25220709 and Grants-in-Aid for Scientific Research (nos 15H00988, 16K05744, 17K05532, 24340074, 16H04010 and 18H05225) from the JSPS, Japan, and the Canon Foundation. T.S. was supported as a JSPS Research Fellow (no. 14J07870).

Author information

Authors and Affiliations

Contributions

T.S. performed the d.c. transport measurements. T.S. and K. Kitai performed the noise measurements. T.S. and K.M performed 1H NMR measurements. K.M., M.T., A.U. and H.M. grew the single crystals used for the study. K. Kanoda planned the project. T.S. and K. Kanoda wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to T. Sato or K. Kanoda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10, Supplementary References 1–7

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, T., Kitai, K., Miyagawa, K. et al. Strange metal from a frustration-driven charge order instability. Nature Mater 18, 229–233 (2019). https://doi.org/10.1038/s41563-019-0284-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-019-0284-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing