Synthetic stimuli-responsive systems have become increasingly sophisticated and elegant at the nanoscale. This Comment discusses how rationally designed molecular systems capable of dynamic motions can be deployed in macroscopically porous metal–organic frameworks and respond to various stimuli.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Pressure-Modulated Host–Guest Interactions Boost Effective Blue-Light Emission of MIL-140A Nanocrystals
Nano-Micro Letters Open Access 15 September 2025
-
Space-confined charge transfer turns on multicolor emission in metal-organic frameworks via pressure treatment
Nature Communications Open Access 05 May 2025
-
Metal–organic framework-based smart stimuli-responsive drug delivery systems for cancer therapy: advances, challenges, and future perspectives
Journal of Nanobiotechnology Open Access 28 February 2025
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




References
Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Nature 402, 276–279 (1999).
Schoedel, A., Li, M., Li, D., O’Keeffe, M. & Yaghi, O. M. Chem. Rev. 116, 12466–12535 (2016).
Eddaoudi, M. et al. Science 295, 469–472 (2002).
Bloch, E. D. et al. Science 335, 1606–1610 (2012).
Lin, R.-B. et al. Nat. Mater. 17, 1128–1133 (2018).
Deng, H., Olson, M. A., Stoddart, J. F. & Yaghi, O. M. Nat. Chem. 2, 439–443 (2010).
Kitaura, R., Seki, K., Akiyama, G. & Kitagawa, S. Angew. Chem. Int. Ed. 42, 428–431 (2003).
Horike, S. et al. Angew. Chem. Int. Ed. 45, 7226–7230 (2006).
Horike, S., Shimomura, S. & Kitagawa, S. Nat. Chem. 1, 695–704 (2009).
Krause, S. & Feringa, B. L. Nat. Rev. Chem. 4, 550–562 (2020).
Berná, J. et al. Nat. Mater. 4, 704–710 (2005).
Martinez-Bulit, P., Stirk, A. J. & Loeb, S. J. Trends Chem. 1, 588–600 (2019).
Vogelsberg, C. S. et al. Proc. Natl Acad. Sci. USA 114, 13613–13618 (2017).
Gould, S. L., Tranchemontagne, D., Yaghi, O. M. & Garcia-Garibay, M. A. J. Am. Chem. Soc. 130, 3246–3247 (2008).
Perego, J. et al. Nat. Chem. 12, 845–851 (2020).
Su, Y. S. et al. Nat. Chem. 13, 278–283 (2021).
Jiang, X., Duan, H.-B., Khan, S. I. & Garcia-Garibay, M. A. ACS Cent. Sci. 2, 608–613 (2016).
Zhang, M. et al. J. Am. Chem. Soc. 136, 7241–7244 (2014).
Danowski, W. et al. Nat. Nanotechnol. 14, 488–494 (2019).
Meng, X., Gui, B., Yuan, D., Zeller, M. & Wang, C. Sci. Adv. 2, e1600480 (2016).
Heinke, L. et al. ACS Nano 8, 1463–1467 (2014).
Kanj, A. B. et al. J. Am. Chem. Soc. 143, 7059–7068 (2021).
Vukotic, V. N., Harris, K. J., Zhu, K., Schurko, R. W. & Loeb, S. J. Nat. Chem. 4, 456–460 (2012).
Zhu, K., O’Keefe, C. A., Vukotic, V. N., Schurko, R. W. & Loeb, S. J. Nat. Chem. 7, 514–519 (2015).
Katsoulidis, A. P. et al. Nature 565, 213–217 (2019).
Martí-Gastaldo, C. et al. Nat. Chem. 6, 343–351 (2014).
Prando, G. et al. Nano Lett. 20, 7613–7618 (2020).
Dong, J. et al. Chem. Mater. 32, 6706–6720 (2020).
Lu, K. et al. J. Am. Chem. Soc. 138, 12502–12510 (2016).
Krause, S., Hosono, N. & Kitagawa, S. Angew. Chem. Int. Ed. 59, 15325–15341 (2020).
Gu, C. et al. Science 363, 387–391 (2019).
Cadiau, A., Adil, K., Bhatt, P. M., Belmabkhout, Y. & Eddaoudi, M. Science 353, 137–140 (2016).
Dong, J. et al. Chem. Mater. 28, 7889–7897 (2016).
Dong, J. et al. J. Am. Chem. Soc. 140, 4035–4046 (2018).
Gong, W. et al. Chem 7, 190–201 (2021).
Acknowledgements
This work was supported by the Ministry of Education - Singapore (MOE2018-T2-2-148, MOE2019-T2-1-093), the Energy Market Authority (EMA-EP009-SEGC-020), and the Agency for Science, Technology and Research (U2102d2004, U2102d2012).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Materials thanks Stefan Kaskel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Rights and permissions
About this article
Cite this article
Dong, J., Wee, V. & Zhao, D. Stimuli-responsive metal–organic frameworks enabled by intrinsic molecular motion. Nat. Mater. 21, 1334–1340 (2022). https://doi.org/10.1038/s41563-022-01317-y
Published:
Issue date:
DOI: https://doi.org/10.1038/s41563-022-01317-y
This article is cited by
-
Pressure-Modulated Host–Guest Interactions Boost Effective Blue-Light Emission of MIL-140A Nanocrystals
Nano-Micro Letters (2026)
-
Metal–organic framework-based smart stimuli-responsive drug delivery systems for cancer therapy: advances, challenges, and future perspectives
Journal of Nanobiotechnology (2025)
-
Space-confined charge transfer turns on multicolor emission in metal-organic frameworks via pressure treatment
Nature Communications (2025)
-
Efficiently regulating the electrochromic behavior of naphthalene-diimide-based zirconium-organic frameworks through linker installation
Nature Communications (2025)
-
Molecular Mechanism Behind the Capture of Fluorinated Gases by Metal–Organic Frameworks
Nano-Micro Letters (2025)