Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Roll-to-plate printable RGB achromatic metalens for wide-field-of-view holographic near-eye displays

Abstract

Metalenses show promise for replacing conventional lenses in virtual reality systems, thereby facilitating lighter and more compact near-eye displays (NEDs). However, at the centimetre scale necessary for practical applications, previous multiwavelength achromatic metalenses have faced challenges in mass production and exhibited a low numerical aperture (NA), which limits their practical application in NEDs. Here we introduce a centimetre-scale red, green and blue achromatic metalens fabricated using a roll-to-plate technique and explore its potential for practical applications in NEDs. This metalens is designed through topological inverse design utilizing a finite-difference time-domain simulation for entire areas (~10,000λ). Our design method demonstrates the ability to compensate chromatic aberrations even at the centimetre scale and high NA with low-index materials such as resin suitable for scalable manufacturing. In addition, we developed a compact NED by integrating the metalens with computer-generated holography (CGH). In this NED system, the high-NA metalens address the limitations of narrow field of view and extensive empty space typical of conventional CGH-based NEDs. The CGH optimization model further resolves the challenges of broadband operation and off-axis aberration in centimetre-scale red, green and blue achromatic metalenses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inverse design method based on topology optimization for RGB achromatic metalens.
Fig. 2: R2P manufacturing of RGB achromatic metalenses.
Fig. 3: Optical properties and imaging results of 1 cm diameter RGB (λ = 450, 532 and 635 nm) achromatic metalens.
Fig. 4: System setup and acquisition of CGH for correcting aberration.
Fig. 5: Experimental results before and after the optimization of spatial-variant aberration correction and speckle reduction.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The code used for this study is available from the corresponding author upon reasonable request.

References

  1. Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015).

    CAS  PubMed  Google Scholar 

  2. Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).

    CAS  PubMed  Google Scholar 

  3. Chung, H. & Miller, O. D. High-NA achromatic metalenses by inverse design. Opt. Express 28, 6945–6965 (2020).

    PubMed  Google Scholar 

  4. Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019).

    CAS  PubMed  Google Scholar 

  5. Kim, J. et al. Photonic encryption platform via dual-band vectorial metaholograms in the ultraviolet and visible. ACS Nano 16, 3546–3553 (2022).

    CAS  PubMed  Google Scholar 

  6. So, S. et al. Multicolor and 3D holography generated by inverse-designed single-cell metasurfaces. Adv. Mater. 35, 2208520 (2023).

    CAS  Google Scholar 

  7. Kim, J. et al. Dynamic hyperspectral holography enabled by inverse-designed metasurfaces with oblique helicoidal cholesterics. Adv. Mater. 36, 2311785 (2024).

    CAS  Google Scholar 

  8. Kim, S. et al. Anti-aliased metasurfaces beyond the Nyquist limit. Nat. Commun. 16, 411 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, P., Mohammad, N. & Menon, R. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing. Sci. Rep. 6, 21545 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jang, C., Bang, K., Chae, M., Lee, B. & Lanman, D. Waveguide holography for 3D augmented reality glasses. Nat. Commun. 15, 66 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Shi, L., Li, B., Kim, C., Kellnhofer, P. & Matusik, W. Towards real-time photorealistic 3D holography with deep neural networks. Nature 591, 234–239 (2021).

    CAS  PubMed  Google Scholar 

  12. Peng, Y., Choi, S., Kim, J. & Wetzstein, G. Speckle-free holography with partially coherent light sources and camera-in-the-loop calibration. Sci. Adv. 7, eabg5040 (2021).

    PubMed  PubMed Central  Google Scholar 

  13. Li, Z. et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci. Adv. 7, eabe4458 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, Z. et al. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nat. Commun. 13, 2409 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee, G.-Y. et al. Metasurface eyepiece for augmented reality. Nat. Commun. 9, 4562 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. Gopakumar, M. et al. Full-colour 3D holographic augmented-reality displays with metasurface waveguides. Nature 629, 791–797 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shi, Y. et al. Augmented reality enabled by on-chip meta-holography multiplexing. Laser Photonics Rev. 16, 2100638 (2022).

    Google Scholar 

  18. Wang, S. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018).

    CAS  PubMed  Google Scholar 

  19. Wang, S. et al. Broadband achromatic optical metasurface devices. Nat. Commun. 8, 187 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. Wang, Y. et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat. Commun. 12, 5560 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shrestha, S., Overvig, A. C., Lu, M., Stein, A. & Yu, N. Broadband achromatic dielectric metalenses. Light Sci. Appl. 7, 85 (2018).

    PubMed  PubMed Central  Google Scholar 

  22. Feng, W. et al. RGB achromatic metalens doublet for digital imaging. Nano Lett. 22, 3969–3975 (2022).

    CAS  PubMed  Google Scholar 

  23. Lin, R. J. et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 14, 227–231 (2019).

    CAS  PubMed  Google Scholar 

  24. Pan, C.-F. et al. 3D-printed multilayer structures for high-numerical aperture achromatic metalenses. Sci. Adv. 9, eadj9262 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bayati, E., Zhan, A., Colburn, S., Zhelyeznyakov, M. V. & Majumdar, A. Role of refractive index in metalens performance. Appl. Opt. 58, 1460–1466 (2019).

    CAS  PubMed  Google Scholar 

  26. Taflove, A., Oskooi, A. & Johnson, S. G. Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology (Artech House Publishers, 2013).

  27. Miller, O. D. Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design (Univ. California Berkeley, 2012).

  28. Baek, S. et al. High numerical aperture RGB achromatic metalens in the visible. Photonics Res. 10, B30–B39 (2022).

    Google Scholar 

  29. Peng, Y., Choi, S., Padmanaban, N., Kim, J. & Wetzstein, G. in ACM SIGGRAPH 2020 Emerging Technologies 1–2 (ACM, 2020).

  30. Peng, Y., Choi, S., Padmanaban, N. & Wetzstein, G. Neural holography with camera-in-the-loop training. ACM Trans. Graph. 39, 185 (2020).

    CAS  Google Scholar 

  31. Kuo, G., Waller, L., Ng, R. & Maimone, A. High resolution étendue expansion for holographic displays. ACM Trans. Graph. 39, 66 (2020).

    Google Scholar 

  32. Nam, S.-W., Kim, Y., Kim, D. & Jeong, Y. Depolarized holography with polarization-multiplexing metasurface. ACM Trans. Graph. 42, 202 (2023).

    Google Scholar 

  33. Wang, X., Zhang, H., Cao, L. & Jin, G. Generalized single-sideband three-dimensional computer-generated holography. Opt. Express 27, 2612–2620 (2019).

    PubMed  Google Scholar 

  34. Nam, S.-W. et al. Aberration-corrected full-color holographic augmented reality near-eye display using a Pancharatnam–Berry phase lens. Opt. Express 28, 30836–30850 (2020).

    PubMed  Google Scholar 

  35. Haist, T., Peter, A. & Osten, W. Holographic projection with field-dependent aberration correction. Opt. Express 23, 5590–5595 (2015).

    CAS  PubMed  Google Scholar 

  36. Yang, W., Zhou, J., Tsai, D. P. & Xiao, S. Advanced manufacturing of dielectric meta-devices. Photonics Insights 3, R04 (2024).

    Google Scholar 

  37. Kim, J. et al. Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible. Nat. Mater. 22, 474–481 (2023).

    CAS  PubMed  Google Scholar 

  38. Kim, J. et al. A water-soluble label for food products prevents packaging waste and counterfeiting. Nat. Food 5, 293–300 (2024).

    PubMed  Google Scholar 

  39. Kim, J. et al. 8″ wafer-scale, centimeter-sized, high-efficiency metalenses in the ultraviolet. Mater. Today 73, 9–15 (2024).

    CAS  Google Scholar 

  40. Chung, H., Zhang, F., Li, H., Miller, O. D. & Smith, H. I. Inverse design of high-NA metalens for maskless lithography. Nanophotonics 12, 2371–2381 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Moon, S.-W. et al. Wafer-scale manufacturing of near-infrared metalenses. Laser Photonics Rev. 18, 2300929 (2024).

    Google Scholar 

  42. Kim, J. et al. Amorphous to crystalline transition in nanoimprinted sol–gel titanium oxide metasurfaces. Adv. Mater. 36, 2405378 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim, J. et al. One-step printable platform for high-efficiency metasurfaces down to the deep-ultraviolet region. Light Sci. Appl. 12, 68 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the POSCO-POSTECH-RIST Convergence Research Center programme funded by POSCO, an industry-academia strategic grant funded by Samsung Research, the Samsung Research Funding and Incubation Center for Future Technology grant (SRFC-IT1901-52) funded by Samsung Electronics, the National Research Foundation (NRF) grants (RS-2024-00462912, RS-2024-00356928, RS-2024-00416272, RS-2024-00337012, RS-2024-00408286, RS-2022-NR067559, RS-2022-NR068141) funded by the Ministry of Science and ICT (MSIT) of the Korean government and the Korea Planning & Evaluation Institute of Industrial Technology (KEIT) grant (no. 1415179744/20019169, Alchemist project) funded by the Ministry of Trade, Industry and Energy (MOTIE) of the Korean government. J.K. acknowledges the Asan Foundation Biomedical Science fellowship. J.K. and Y.P. acknowledge the Presidential Science fellowship funded by the MSIT of the Korean government. Y.P. acknowledges the NRF M.S. fellowship (RS-2024-00460406) funded by the Ministry of Education (MOE) of the Korean government.

Author information

Authors and Affiliations

Authors

Contributions

J.R. conceived the idea and initiated the project. J.R., M.C., J.K. and S.M. did theoretical studies and designed the whole experiments. M.C. and K.S. performed numerical simulations and optimizations of the metalenses. J.K., Y.P., D.K., G.J., K.-I.L. and D.H.Y. fabricated the metalenses. M.C., J.K. and K.S. performed the experimental characterizations and data analyses of the metalenses. S.M., S.N., Y.J. and C.L. designed and verified the CGH optimization model. S.M., S.N. and C.L. performed the experimental characterizations and data analyses of the NEDs. M.C., J.K., S.M. and J.R. mainly wrote the manuscript. All authors confirmed the final manuscript. J.R. guided the entire work.

Corresponding author

Correspondence to Junsuk Rho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–14 and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, M., Kim, J., Moon, S. et al. Roll-to-plate printable RGB achromatic metalens for wide-field-of-view holographic near-eye displays. Nat. Mater. 24, 535–543 (2025). https://doi.org/10.1038/s41563-025-02121-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-025-02121-0

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics