Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Flaw-size-dependent mechanical interlayer coupling and edge-reconstruction embrittlement in van der Waals materials

Abstract

Van der Waals (vdW) materials consisting of two-dimensional (2D) building blocks have strong in-plane covalent bonding and weak interlayer interactions. While monolayer 2D materials exhibit impressive fracture resistance, as demonstrated in hexagonal boron nitride (h-BN), preserving these remarkable properties in vdW materials remains a challenge. Here we reveal an anomalous mechanical interlayer coupling that involves interlayer-friction toughening and edge-reconstruction embrittlement during the fracture of multilayer h-BN. Both asynchronous and synchronous fracture modes and their flaw-size dependence are identified. Edge reconstruction in the synchronous fracture mode can eliminate a toughening mechanism induced by lattice asymmetry in monolayer h-BN, leading to embrittlement of the multilayer h-BN, while the asynchronous fracture mode results in greater fracture resistance. Such findings will provide fundamental guidelines for engineering interlayer interactions in vdW materials including heterostructures and layered architectures for better mechanical and functional performances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In situ quantitative tensile tests of MBN.
Fig. 2: MBN crack edge characterization after tensile testing.
Fig. 3: Ideal KI field analysis of dual fracture modes in MBN.
Fig. 4: Flaw-size dependence of fracture modes in MBN.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

Code availability

The code that supports the findings of this study is available from the corresponding authors on reasonable request.

References

  1. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Liu, Z. et al. Observation of microscale superlubricity in graphite. Phys. Rev. Lett. 108, 205503 (2012).

    Article  PubMed  Google Scholar 

  3. Liao, M. et al. UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures. Nat. Mater. 21, 47–53 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Song, Y. et al. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions. Nat. Mater. 17, 894–899 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Shinokita, K., Miyauchi, Y., Watanabe, K., Taniguchi, T. & Matsuda, K. Resonant coupling of a moiré exciton to a phonon in a WSe2/MoSe2 heterobilayer. Nano Lett. 21, 5938–5944 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Nakamura, K. et al. All 2D heterostructure tunnel field-effect transistors: impact of band alignment and heterointerface quality. ACS Appl. Mater. Interfaces 12, 51598–51606 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Sukma Aji, A. et al. Two-step synthesis and characterization of vertically stacked SnS–WS2 and SnS–MoS2 p–n heterojunctions. Phys. Chem. Chem. Phys. 20, 889–897 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Park, J. M. et al. Robust superconductivity in magic-angle multilayer graphene family. Nat. Mater. 21, 877–883 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).

    Article  CAS  Google Scholar 

  11. Kapfer, M. et al. Programming twist angle and strain profiles in 2D materials. Science 381, 677–681 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Yang, Y. et al. Intrinsic toughening and stable crack propagation in hexagonal boron nitride. Nature 594, 57–61 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Jang, B. et al. Asynchronous cracking with dissimilar paths in multilayer graphene. Nanoscale 9, 17325–17333 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Jung, G. S. et al. Interlocking friction governs the mechanical fracture of bilayer MoS2. ACS Nano 12, 3600–3608 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, P. et al. Fracture toughness of graphene. Nat. Commun. 5, 3782 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Constantinescu, G., Kuc, A. & Heine, T. Stacking in bulk and bilayer hexagonal boron nitride. Phys. Rev. Lett. 111, 036104 (2013).

    Article  PubMed  Google Scholar 

  18. Falin, A. et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat. Commun. 8, 15815 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wei, X. et al. Comparative fracture toughness of multilayer graphenes and boronitrenes. Nano Lett. 15, 689–694 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Aksay, I. A. et al. Biomimetic pathways for assembling inorganic thin films. Science 273, 892–898 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Finnemore, A. et al. Biomimetic layer-by-layer assembly of artificial nacre. Nat. Commun. 3, 966 (2012).

    Article  PubMed  Google Scholar 

  22. Wu, X. et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc. Natl Acad. Sci. USA 112, 14501–14505 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Gao, H. & Chen, S. Flaw tolerance in a thin strip under tension. J. Appl. Mech. 72, 732–737 (2005).

    Article  Google Scholar 

  25. Griffith, A. A. VI. The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. A 221, 163–198 (1921).

    Google Scholar 

  26. Buehler, M. J. & Gao, H. Dynamical fracture instabilities due to local hyperelasticity at crack tips. Nature 439, 307–310 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Buehler, M. J., Abraham, F. F. & Gao, H. Hyperelasticity governs dynamic fracture at a critical length scale. Nature 426, 141–146 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Liu, Z., Suenaga, K., Harris, P. J. F. & Iijima, S. Open and closed edges of graphene layers. Phys. Rev. Lett. 102, 015501 (2009).

    Article  PubMed  Google Scholar 

  29. Alem, N. et al. Subangstrom edge relaxations probed by electron microscopy in hexagonal boron nitride. Phys. Rev. Lett. 109, 205502 (2012).

    Article  PubMed  Google Scholar 

  30. Thomson, R., Hsieh, C. & Rana, V. Lattice trapping of fracture cracks. J. Appl. Phys. 42, 3154–3160 (1971).

    Article  CAS  Google Scholar 

  31. Weertman, J. Dislocation Based Fracture Mechanics (World Scientific, 1996).

  32. Li, X., Wei, Y., Lu, L., Lu, K. & Gao, H. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464, 877–880 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Caillard, D. & Martin, J. Thermally Activated Mechanisms in Crystal Plasticity (Pergamon, 2003).

  34. Sheppard, D., Xiao, P., Chemelewski, W., Johnson, D. D. & Henkelman, G. A generalized solid-state nudged elastic band method. J. Chem. Phys. 136, 074103 (2012).

    Article  PubMed  Google Scholar 

  35. Ago, H. et al. Science of 2.5 dimensional materials: paradigm shift of materials science toward future social innovation. Sci. Technol. Adv. Mater. 23, 275–299 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Hod, O., Meyer, E., Zheng, Q. & Urbakh, M. Structural superlubricity and ultralow friction across the length scales. Nature 563, 485–492 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Liu, K. et al. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nat. Commun. 5, 4966 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Koch, C. T. Determination of Core Structure Periodicity and Point Defect Density Along Dislocations. PhD thesis, Arizona State Univ. (2002).

  40. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  41. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  42. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  43. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, S. M. et al. Synthesis of large-area multilayer hexagonal boron nitride for high material performance. Nat. Commun. 6, 8662 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Pease, R. S. An X-ray study of boron nitride. Acta Crystallogr. 5, 356–361 (1952).

    Article  CAS  Google Scholar 

  46. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  47. Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support by the US Department of Energy, Office of Basic Energy Sciences under grant DE-SC0018193. H.G. acknowledges a start-up grant from Nanyang Technological University (002479-00001) and Agency for Science, Technology and Research (A*STAR). During the revision of this manuscript, the affiliation of H.G. has changed to Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China.

Author information

Authors and Affiliations

Authors

Contributions

Z.S., B.Z. and Y.Y. conceived the project. B.Z., Y.Y. and J.L. designed the experiments and analysed the data. Z.S. and H.G. performed simulations and analysed the results. G.G., Y.H. and D.T. performed TEM analysis. Q.F., B.S., D.S., Q.A. and X.Z. helped with the sample preparation and characterization. Y.Z. performed digital image correlation. T.T. and K.W. performed material synthesis. Z.S., B.Z., Y.Y. supervised by N.P.P., B.W.S., J.L. and H.G. drafted the manuscript with inputs, discussion and approval from all co-authors.

Corresponding authors

Correspondence to Huajian Gao or Jun Lou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Zonghoon Lee, Arend van der Zande and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–9, Figs. 1–11, Tables 1–3 and References.

Supplementary Video 1

In situ tension of MBN ribbon with no precrack.

Supplementary Video 2

In situ tension of MBN ribbon with precrack length of ~0.61 μm.

Supplementary Video 3

In situ tension of MBN ribbon with precrack length of ~0.86 μm.

Supplementary Video 4

In situ tension of MBN ribbon with precrack length of ~1.65 μm.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Zhang, B., Yang, Y. et al. Flaw-size-dependent mechanical interlayer coupling and edge-reconstruction embrittlement in van der Waals materials. Nat. Mater. 24, 1554–1560 (2025). https://doi.org/10.1038/s41563-025-02194-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-025-02194-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing