Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nonlinear transport in non-centrosymmetric systems

Abstract

Ohm’s law has been a cornerstone of electronics since its experimental discovery. This law establishes that, in a conductive system, the voltage is directly proportional to the current. Even when time-reversal symmetry is disrupted, leading to the emergence of magnetoresistance and Hall effects, the linear relationship between voltage and current remains intact. However, recent experiments have demonstrated a breakdown of Ohm’s law in non-centrosymmetric structures. In these systems, nonlinear transport effects are permitted with quadratic scaling between voltages and currents. Here we review the main demonstrations of nonlinear transport in non-centrosymmetric systems, analysing the connection between nonlinear behaviour and the system’s symmetry. We also investigate the microscopic mechanisms driving these effects, such as Berry curvature dipole and Berry connection polarizability. Finally, we highlight potential applications of nonlinear transport in spintronics and energy harvesting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different transport components in centrosymmetric and non-centrosymmetric conductors.
Fig. 2: Nonlinear transport in non-centrosymmetric materials.
Fig. 3: Connection between NLMC and angular momentum textures.
Fig. 4: Wireless RF rectification.

Similar content being viewed by others

References

  1. Ohm, G. S. Die Galvanische Kette: Mathematisch Bearbeitet (T. H. Riemann, 1827).

  2. Thomson, W. XIX. On the electro-dynamic qualities of metals:—effects of magnetization on the electric conductivity of nickel and of iron. Proc. R. Soc. Lond. 8, 546–550 (1857).

    Google Scholar 

  3. Hall, E. H. On a new action of the magnet on electric currents. Am. J. Math. 2, 287–292 (1879).

    Google Scholar 

  4. Lai, S. et al. Third-order nonlinear Hall effect induced by the Berry-connection polarizability tensor. Nat. Nanotechnol. 16, 869–873 (2021).

    CAS  PubMed  Google Scholar 

  5. He, P. et al. Third-order nonlinear Hall effect in a quantum Hall system. Nat. Nanotechnol. 19, 1460–1465 (2024).

    CAS  PubMed  Google Scholar 

  6. Li, H. et al. Quantum geometry quadrupole-induced third-order nonlinear transport in antiferromagnetic topological insulator MnBi2Te4. Nat. Commun. 15, 7779 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Fang, Y., Cano, J. & Ghorashi, S. A. A. Quantum geometry induced nonlinear transport in altermagnets. Phys. Rev. Lett. 133, 106701 (2024).

    CAS  PubMed  Google Scholar 

  8. Lv, L. et al. Design and tailoring of two-dimensional Schottky, PN and tunnelling junctions for electronics and optoelectronics. Nanoscale 13, 6713–6751 (2021).

    CAS  PubMed  Google Scholar 

  9. Zhang, L., Zhou, J., Li, H., Shen, L. & Feng, Y. P. Recent progress and challenges in magnetic tunnel junctions with 2D materials for spintronic applications. Appl. Phys. Rev. 8, 021308 (2021).

    CAS  Google Scholar 

  10. Chen, S. et al. All-electrical skyrmionic magnetic tunnel junction. Nature 627, 522–527 (2024).

    CAS  PubMed  Google Scholar 

  11. Davydova, M., Prembabu, S. & Fu, L. Universal Josephson diode effect. Sci. Adv. 8, eabo0309 (2022).

    PubMed  PubMed Central  Google Scholar 

  12. Wu, H. et al. The field-free Josephson diode in a van der Waals heterostructure. Nature 604, 653–656 (2022).

    CAS  PubMed  Google Scholar 

  13. Rikken, G. L. J. A. & Raupach, E. Observation of magneto-chiral dichroism. Nature 390, 493–494 (1997).

    CAS  Google Scholar 

  14. Rikken, G. L. J. A., Fölling, J. & Wyder, P. Electrical magnetochiral anisotropy. Phys. Rev. Lett. 87, 236602 (2001).

    CAS  PubMed  Google Scholar 

  15. Rikken, G. L. J. A. & Avarvari, N. Strong electrical magnetochiral anisotropy in tellurium. Phys. Rev. B 99, 245153 (2019).

    CAS  Google Scholar 

  16. Ideue, T. et al. Bulk rectification effect in a polar semiconductor. Nat. Phys. 13, 578–583 (2017).

    CAS  Google Scholar 

  17. He, P. et al. Bilinear magnetoelectric resistance as a probe of three-dimensional spin texture in topological surface states. Nat. Phys. 14, 495–499 (2018).

    CAS  Google Scholar 

  18. He, P. et al. Observation of out-of-plane spin texture in a SrTiO3 (111) two-dimensional electron gas. Phys. Rev. Lett. 120, 266802 (2018).

    CAS  PubMed  Google Scholar 

  19. Liu, T. et al. Crystallographically dependent bilinear magnetoelectric resistance in a thin WTe2 layer. Phys. Rev. B 108, 165407 (2023).

    CAS  Google Scholar 

  20. Vaz, D. C. et al. Determining the Rashba parameter from the bilinear magnetoresistance response in a two-dimensional electron gas. Phys. Rev. Mater. 4, 071001 (2020).

    CAS  Google Scholar 

  21. Dyrdał, A., Barnaś, J. & Fert, A. Spin-momentum-locking Inhomogeneities as a source of bilinear magnetoresistance in topological insulators. Phys. Rev. Lett. 124, 046802 (2020).

    PubMed  Google Scholar 

  22. Guillet, T. et al. Observation of large unidirectional Rashba magnetoresistance in Ge(111). Phys. Rev. Lett. 124, 027201 (2020).

    CAS  PubMed  Google Scholar 

  23. Calavalle, F. et al. Gate-tuneable and chirality-dependent charge-to-spin conversion in tellurium nanowires. Nat. Mater. 21, 526–532 (2022).

    CAS  PubMed  Google Scholar 

  24. Vicente-Arche, L. M. et al. Spin–charge interconversion in KTaO3 2D electron gases. Adv. Mater. 33, 2102102 (2021).

    CAS  Google Scholar 

  25. He, P. et al. Nonlinear planar Hall effect. Phys. Rev. Lett. 123, 016801 (2019).

    CAS  PubMed  Google Scholar 

  26. Nandy, S., Sharma, G., Taraphder, A. & Tewari, S. Chiral anomaly as the origin of the planar Hall effect in weyl semimetals. Phys. Rev. Lett. 119, 176804 (2017).

    CAS  PubMed  Google Scholar 

  27. Taskin, A. A. et al. Planar Hall effect from the surface of topological insulators. Nat. Commun. 8, 1340 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, Y. et al. Nonreciprocal charge transport up to room temperature in bulk Rashba semiconductor α-GeTe. Nat. Commun. 12, 540 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, L. et al. Room-temperature gate-tunable nonreciprocal charge transport in lattice-matched InSb/CdTe heterostructures. Adv. Mater. 35, 2207322 (2023).

    CAS  Google Scholar 

  30. Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2018).

    PubMed  Google Scholar 

  31. Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).

    CAS  PubMed  Google Scholar 

  32. Suárez-Rodríguez, M. et al. Odd nonlinear conductivity under spatial inversion in chiral tellurium. Phys. Rev. Lett. 132, 046303 (2024).

    PubMed  Google Scholar 

  33. He, P. et al. Graphene moiré superlattices with giant quantum nonlinearity of chiral Bloch electrons. Nat. Nanotechnol. 17, 378–383 (2022).

    CAS  PubMed  Google Scholar 

  34. Duan, J. et al. Giant second-order nonlinear Hall effect in twisted bilayer graphene. Phys. Rev. Lett. 129, 186801 (2022).

    CAS  PubMed  Google Scholar 

  35. Isobe, H., Xu, S. Y. & Fu, L. High-frequency rectification via chiral Bloch electrons. Sci. Adv. 6, eaay2497 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tokura, Y. & Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018).

    PubMed  PubMed Central  Google Scholar 

  37. Ma, Q., Grushin, A. G. & Burch, K. S. Topology and geometry under the nonlinear electromagnetic spotlight. Nat. Mater. 20, 1601–1614 (2021).

    CAS  PubMed  Google Scholar 

  38. Orenstein, J. et al. Topology and symmetry of quantum materials via nonlinear optical responses. Annu. Rev. Condens. Matter Phys. 12, 247–272 (2021).

    Google Scholar 

  39. Ideue, T. & Iwasa, Y. Symmetry breaking and nonlinear electric transport in van der Waals nanostructures. Annu. Rev. Condens. Matter Phys. 12, 201–223 (2021).

    CAS  Google Scholar 

  40. Ortix, C. Nonlinear Hall effect with time-reversal symmetry: theory and material realizations. Adv. Quantum Technol. 4, 2100056 (2021).

    CAS  Google Scholar 

  41. Du, Z. Z., Lu, H. Z. & Xie, X. C. Nonlinear Hall effects. Nat. Rev. Phys. 3, 744–752 (2021).

    Google Scholar 

  42. Wang, S., Niu, W. & Fang, Y.-W. Nonlinear Hall effect in two-dimensional materials. Microstruct. 5, 2025060 (2025).

    Google Scholar 

  43. Gallego, S. V., Etxebarria, J., Elcoro, L., Tasci, E. S. & Perez-Mato, J. M. Automatic calculation of symmetry-adapted tensors in magnetic and non-magnetic materials: a new tool of the Bilbao Crystallographic Server. Acta Crystallogr. A 75, 438–447 (2019).

    CAS  Google Scholar 

  44. Tsirkin, S. S. & Souza, I. On the separation of Hall and Ohmic nonlinear responses. SciPost Phys. Core 5, 039 (2022).

    Google Scholar 

  45. Suárez-Rodríguez, M. et al. Symmetry origin and microscopic mechanism of electrical magnetochiral anisotropy in tellurium. Phys. Rev. B 111, 024405 (2025).

    Google Scholar 

  46. Liu, X., Souza, I. & Tsirkin, S. S. Electrical magnetochiral anisotropy in trigonal tellurium from first principles. Preprint at https://arxiv.org/abs/2303.10164 (2023).

  47. Xiao, J. et al. Berry curvature memory through electrically driven stacking transitions. Nat. Phys. 16, 1028–1034 (2020).

    CAS  Google Scholar 

  48. Ma, T. et al. Growth of bilayer MoTe2 single crystals with strong non-linear Hall effect. Nat. Commun. 13, 5465 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tiwari, A. et al. Giant c-axis nonlinear anomalous Hall effect in Td-MoTe2 and WTe2. Nat. Commun. 12, 2049 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee, J. E. et al. Spin–orbit-splitting-driven nonlinear Hall effect in NbIrTe4. Nat. Commun. 15, 3971 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lu, X. F. et al. Nonlinear transport and radio frequency rectification in BiTeBr at room temperature. Nat. Commun. 15, 245 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Min, L. et al. Strong room-temperature bulk nonlinear Hall effect in a spin-valley locked Dirac material. Nat. Commun. 14, 364 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. He, P. et al. Nonlinear magnetotransport shaped by Fermi surface topology and convexity. Nat. Commun. 10, 1290 (2019).

    PubMed  PubMed Central  Google Scholar 

  54. Yokouchi, T., Ikeda, Y., Morimoto, T. & Shiomi, Y. Giant magnetochiral anisotropy in Weyl semimetal WTe2 induced by diverging Berry curvature. Phys. Rev. Lett. 130, 136301 (2023).

    CAS  PubMed  Google Scholar 

  55. Dong, Z. & Ma, Y. Atomic-level handedness determination of chiral crystals using aberration-corrected scanning transmission electron microscopy. Nat. Commun. 11, 1588 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Niu, C. et al. Tunable chirality-dependent nonlinear electrical responses in 2D tellurium. Nano Lett. 23, 8445–8453 (2023).

    CAS  PubMed  Google Scholar 

  57. Sakano, M. et al. Radial spin texture in elemental tellurium with chiral crystal structure. Phys. Rev. Lett. 124, 136404 (2020).

    CAS  PubMed  Google Scholar 

  58. Aoki, R., Kousaka, Y. & Togawa, Y. Anomalous nonreciprocal electrical transport on chiral magnetic order. Phys. Rev. Lett. 122, 057206 (2019).

    CAS  PubMed  Google Scholar 

  59. Pop, F., Auban-Senzier, P., Canadell, E., Rikken, G. L. J. A. & Avarvari, N. Electrical magnetochiral anisotropy in a bulk chiral molecular conductor. Nat. Commun. 5, 3757 (2014).

    PubMed  Google Scholar 

  60. Cheng, B. et al. Giant nonlinear Hall and wireless rectification effects at room temperature in the elemental semiconductor tellurium. Nat. Commun. 15, 5513 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016).

    CAS  PubMed  Google Scholar 

  62. Legg, H. F. et al. Giant magnetochiral anisotropy from quantum-confined surface states of topological insulator nanowires. Nat. Nanotechnol. 17, 696–700 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, C. et al. Observation of giant non-reciprocal charge transport from quantum Hall states in a topological insulator. Nat. Mater. 23, 1208–1213 (2024).

    CAS  PubMed  Google Scholar 

  64. Zhai, J. et al. Large nonlinear transverse conductivity and Berry curvature in KTaO3 based two-dimensional electron gas. Nano Lett. 23, 11892–11898 (2023).

    CAS  PubMed  Google Scholar 

  65. He, P. et al. Quantum frequency doubling in the topological insulator Bi2Se3. Nat. Commun. 12, 698 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Dzsaber, S. et al. Giant spontaneous Hall effect in a nonmagnetic Weyl–Kondo semimetal. Proc. Natl Acad. Sci. USA 118, e2013386118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kumar, D. et al. Room-temperature nonlinear Hall effect and wireless radiofrequency rectification in Weyl semimetal TaIrTe4. Nat. Nanotechnol. 16, 421–425 (2021).

    CAS  PubMed  Google Scholar 

  68. Nishijima, T. et al. Ferroic Berry curvature dipole in a topological crystalline insulator at room temperature. Nano Lett. 23, 2247–2252 (2023).

    CAS  PubMed  Google Scholar 

  69. Makushko, P. et al. A tunable room-temperature nonlinear Hall effect in elemental bismuth thin films. Nat. Electron. 7, 207–215 (2024).

    CAS  Google Scholar 

  70. Schade, N. B., Schuster, D. I. & Nagel, S. R. A nonlinear, geometric Hall effect without magnetic field. Proc. Natl Acad. Sci. USA 116, 24475–24479 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Du, L. et al. Engineering symmetry breaking in 2D layered materials. Nat. Rev. Phys. 3, 193–206 (2021).

    CAS  Google Scholar 

  72. Du, L. et al. Nonlinear physics of moiré superlattices. Nat. Mater. 23, 1179–1192 (2024).

    CAS  PubMed  Google Scholar 

  73. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    CAS  PubMed  Google Scholar 

  74. Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).

    CAS  Google Scholar 

  75. Huang, M. et al. Intrinsic nonlinear Hall effect and gate-switchable Berry curvature sliding in twisted bilayer graphene. Phys. Rev. Lett. 131, 066301 (2023).

    CAS  PubMed  Google Scholar 

  76. Zhong, J. et al. Effective manipulation of a colossal second-order transverse response in an electric-field-tunable graphene moiré system. Nano Lett. 24, 5791–5798 (2024).

    CAS  PubMed  Google Scholar 

  77. Zhang, N. J. et al. Angle-resolved transport non-reciprocity and spontaneous symmetry breaking in twisted trilayer graphene. Nat. Mater. 23, 356–362 (2024).

    CAS  PubMed  Google Scholar 

  78. Ho, S.-C. et al. Hall effects in artificially corrugated bilayer graphene without breaking time-reversal symmetry. Nat. Electron. 4, 116–125 (2021).

    CAS  Google Scholar 

  79. Qin, M. et al. Strain tunable Berry curvature dipole, orbital magnetization and nonlinear Hall effect in WSe2 monolayer. Chin. Phys. Lett. 38, 017301 (2021).

    CAS  Google Scholar 

  80. Huang, M. et al. Giant nonlinear Hall effect in twisted bilayer WSe2. Natl Sci. Rev. 10, nwac232 (2022).

    PubMed  PubMed Central  Google Scholar 

  81. Kang, K. et al. Switchable moiré potentials in ferroelectric WTe2/WSe2 superlattices. Nat. Nanotechnol. 18, 861–866 (2023).

    CAS  PubMed  Google Scholar 

  82. Ye, X.-G. et al. Control over Berry curvature dipole with electric field in WTe2. Phys. Rev. Lett. 130, 016301 (2023).

    CAS  PubMed  Google Scholar 

  83. Zhang, Z. et al. Controlled large non-reciprocal charge transport in an intrinsic magnetic topological insulator MnBi2Te4. Nat. Commun. 13, 6191 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yasuda, K. et al. Large non-reciprocal charge transport mediated by quantum anomalous Hall edge states. Nat. Nanotechnol. 15, 831–835 (2020).

    CAS  PubMed  Google Scholar 

  85. Gao, A. et al. Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure. Science 381, 181–186 (2023).

    CAS  PubMed  Google Scholar 

  86. Wang, N. et al. Quantum-metric-induced nonlinear transport in a topological antiferromagnet. Nature 621, 487–492 (2023).

    CAS  PubMed  Google Scholar 

  87. Gao, A. et al. An antiferromagnetic diode effect in even-layered MnBi2Te4. Nat. Electron. 7, 751–759 (2024).

    CAS  Google Scholar 

  88. Gao, Y., Yang, S. A. & Niu, Q. Field induced positional shift of Bloch electrons and its dynamical implications. Phys. Rev. Lett. 112, 166601 (2014).

    PubMed  Google Scholar 

  89. Godinho, J. et al. Electrically induced and detected Néel vector reversal in a collinear antiferromagnet. Nat. Commun. 9, 4686 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Han, J. et al. Room-temperature flexible manipulation of the quantum-metric structure in a topological chiral antiferromagnet. Nat. Phys. 20, 1110–1117 (2024).

    Google Scholar 

  91. Jo, J. et al. Anomalous nonlinear magnetoconductivity in van der Waals magnet CrSBr. Adv. Mater. 37, 2419283 (2025).

    CAS  Google Scholar 

  92. Sinha, S. et al. Berry curvature dipole senses topological transition in a moiré superlattice. Nat. Phys. 18, 765–770 (2022).

    CAS  Google Scholar 

  93. Facio, J. I. et al. Strongly enhanced Berry dipole at topological phase transitions in BiTeI. Phys. Rev. Lett. 121, 246403 (2018).

    CAS  PubMed  Google Scholar 

  94. Salawu, Y. A. et al. Nonlinear electrical transport phenomena as fingerprints of a topological phase transition in ZrTe5. Commun. Mater. 4, 111 (2023).

    CAS  Google Scholar 

  95. Genkin, V. N. & Mednis, P. M. Contributions to the theory of nonlinear effects in crystals with account taken of partially filled bands. Zh. Eksp. Teor. Fiz. 54, 1137–1150 (1968).

    CAS  Google Scholar 

  96. Deyo, E., Golub, L. E., Ivchenko, E. L. & Spivak, B. Semiclassical theory of the photogalvanic effect in non-centrosymmetric systems. Preprint at https://arxiv.org/abs/0904.1917 (2009).

  97. Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    PubMed  Google Scholar 

  98. Moore, J. E. & Orenstein, J. Confinement-induced berry phase and helicity-dependent photocurrents. Phys. Rev. Lett. 105, 026805 (2010).

    CAS  PubMed  Google Scholar 

  99. Liu, H. et al. Intrinsic second-order anomalous Hall effect and its application in compensated antiferromagnets. Phys. Rev. Lett. 127, 277202 (2021).

    CAS  PubMed  Google Scholar 

  100. You, J.-S., Fang, S., Xu, S.-Y., Kaxiras, E. & Low, T. Berry curvature dipole current in the transition metal dichalcogenides family. Phys. Rev. B 98, 121109 (2018).

    CAS  Google Scholar 

  101. Zhang, Y., Van Den Brink, J., Felser, C. & Yan, B. Electrically tuneable nonlinear anomalous Hall effect in two-dimensional transition-metal dichalcogenides WTe2 and MoTe2. 2D Mater. 5, 044001 (2018).

    CAS  Google Scholar 

  102. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Google Scholar 

  103. Hou, D. et al. Multivariable scaling for the anomalous Hall effect. Phys. Rev. Lett. 114, 217203 (2015).

    PubMed  Google Scholar 

  104. Du, Z. Z., Wang, C. M., Li, S., Lu, H.-Z. & Xie, X. C. Disorder-induced nonlinear Hall effect with time-reversal symmetry. Nat. Commun. 10, 3047 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Nandy, S. & Sodemann, I. Symmetry and quantum kinetics of the nonlinear Hall effect. Phys. Rev. B 100, 195117 (2019).

    CAS  Google Scholar 

  106. Mehraeen, M. Quantum kinetic theory of quadratic responses. Phys. Rev. B 110, 174423 (2024).

    CAS  Google Scholar 

  107. Du, Z. Z., Wang, C. M., Sun, H.-P., Lu, H.-Z. & Xie, X. C. Quantum theory of the nonlinear Hall effect. Nat. Commun. 12, 5038 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Huang, Y.-X., Feng, X., Wang, H., Xiao, C. & Yang, S. A. Intrinsic nonlinear planar Hall effect. Phys. Rev. Lett. 130, 126303 (2023).

    CAS  PubMed  Google Scholar 

  109. Wang, H. et al. Orbital origin of the intrinsic planar Hall effect. Phys. Rev. Lett. 132, 056301 (2024).

    CAS  PubMed  Google Scholar 

  110. Huang, Y.-X., Xiao, C., Yang, S. A. & Li, X. Scaling law for time-reversal-odd nonlinear transport. Preprint at https://arxiv.org/abs/2311.01219 (2023).

  111. Wang, C., Gao, Y. & Xiao, D. Intrinsic nonlinear Hall effect in antiferromagnetic tetragonal CuMnAs. Phys. Rev. Lett. 127, 277201 (2021).

    CAS  PubMed  Google Scholar 

  112. Kaplan, D., Holder, T. & Yan, B. Unification of nonlinear anomalous Hall effect and nonreciprocal magnetoresistance in metals by the quantum geometry. Phys. Rev. Lett. 132, 026301 (2024).

    CAS  PubMed  Google Scholar 

  113. Das, K., Lahiri, S., Atencia, R. B., Culcer, D. & Agarwal, A. Intrinsic nonlinear conductivities induced by the quantum metric. Phys. Rev. B 108, L201405 (2023).

    CAS  Google Scholar 

  114. Jia, J., Xiang, L., Qiao, Z. & Wang, J. Equivalence of semiclassical and response theories for second-order nonlinear ac Hall effects. Phys. Rev. B 110, 245406 (2024).

    CAS  Google Scholar 

  115. Huang, Y.-X. et al. Nonlinear current response of two-dimensional systems under in-plane magnetic field. Phys. Rev. B 108, 075155 (2023).

    CAS  Google Scholar 

  116. Ma, D., Arora, A., Vignale, G. & Song, J. C. W. Anomalous skew-scattering nonlinear Hall effect and chiral photocurrents in \({\mathscr{P}}{\mathscr{T}}\)-symmetric antiferromagnets. Phys. Rev. Lett. 131, 076601 (2023).

    CAS  PubMed  Google Scholar 

  117. Gong, Z.-H., Du, Z. Z., Sun, H.-P., Lu, H.-Z. & Xie, X. C. Nonlinear transport theory at the order of quantum metric. Preprint at https://arxiv.org/abs/2410.04995 (2024).

  118. Hirohata, A. et al. Review on spintronics: principles and device applications. J. Magn. Magn. Mater. 509, 166711 (2020).

    CAS  Google Scholar 

  119. Fert, A., Ramesh, R., Garcia, V., Casanova, F. & Bibes, M. Electrical control of magnetism by electric field and current-induced torques. Rev. Mod. Phys. 96, 015005 (2024).

    CAS  Google Scholar 

  120. Dresselhaus, G. Spin–orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955).

    CAS  Google Scholar 

  121. Bychkov, Y. A. & Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39, 78–81 (1984).

    Google Scholar 

  122. Park, S. R., Kim, C. H., Yu, J., Han, J. H. & Kim, C. Orbital-angular-momentum based origin of Rashba-type surface band splitting. Phys. Rev. Lett. 107, 156803 (2011).

    PubMed  Google Scholar 

  123. Park, J. H., Kim, C. H., Rhim, J. W. & Han, J. H. Orbital Rashba effect and its detection by circular dichroism angle-resolved photoemission spectroscopy. Phys. Rev. B 85, 195401 (2012).

    Google Scholar 

  124. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    Google Scholar 

  125. Lv, B. Q. et al. Observation of Fermi-arc spin texture in TaAs. Phys. Rev. Lett. 115, 217601 (2015).

    CAS  PubMed  Google Scholar 

  126. Yang, H. et al. Twist-angle-tunable spin texture in WSe2/graphene van der Waals heterostructures. Nat. Mater. 23, 1502–1508 (2024).

    CAS  PubMed  Google Scholar 

  127. Bloom, B. P., Paltiel, Y., Naaman, R. & Waldeck, D. H. Chiral induced spin selectivity. Chem. Rev. 124, 1950–1991 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Kim, D.-J. et al. Spin Hall-induced bilinear magnetoelectric resistance. Nat. Mater. 23, 1509–1514 (2024).

    CAS  PubMed  Google Scholar 

  129. Zhang, X., Grajal, J., López-Vallejo, M., McVay, E. & Palacios, T. Opportunities and challenges of ambient radio-frequency energy harvesting. Joule 4, 1148–1152 (2020).

    Google Scholar 

  130. Hemour, S. & Wu, K. Radio-frequency rectifier for electromagnetic energy harvesting: development path and future outlook. Proc. IEEE 102, 1667–1691 (2014).

    Google Scholar 

  131. Zhang, Y. & Fu, L. Terahertz detection based on nonlinear Hall effect without magnetic field. Proc. Natl Acad. Sci. USA 118, e2100736118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Suárez-Rodríguez, M. et al. Microscale chiral rectennas for energy harvesting. Adv. Mater. 36, 2400729 (2024).

    Google Scholar 

  133. Kumar, D. et al. Quantum rectification based on room temperature multidirectional nonlinearity in Bi2Te3. Nano Lett. 24, 12545–12551 (2024).

    CAS  PubMed  Google Scholar 

  134. Aftab, S. et al. Bulk photovoltaic effect in 2D materials for solar-power harvesting. Adv. Opt. Mater. 10, 2201288 (2022).

    CAS  Google Scholar 

  135. Dai, Z. & Rappe, A. M. Recent progress in the theory of bulk photovoltaic effect. Chem. Phys. Rev. 4, 011303 (2023).

    CAS  Google Scholar 

  136. Matsuo, H. & Noguchi, Y. Bulk photovoltaic effect in ferroelectrics. Jpn. J. Appl. Phys. 63, 060101 (2024).

    CAS  Google Scholar 

  137. He, Z. & Weng, H. Giant nonlinear Hall effect in twisted bilayer WTe2. npj Quantum Mater. 6, 101 (2021).

    CAS  Google Scholar 

  138. Onishi, Y. & Fu, L. High-efficiency energy harvesting based on a nonlinear Hall rectifier. Phys. Rev. B 110, 075122 (2024).

    CAS  Google Scholar 

  139. Wang, F. et al. Deterministic switching of perpendicular magnetization by out-of-plane anti-damping magnon torques. Nat. Nanotechnol. 19, 1478–1484 (2024).

    CAS  PubMed  Google Scholar 

  140. Newnham, R. E. Properties of Materials: Anisotropy, Symmetry, Structure (Oxford Univ. Press, 2005).

  141. Hurd, C. M. The Hall Effect in Metals and Alloys (Springer, 2012).

Download references

Acknowledgements

This work is supported by the Spanish MICIU/AEI/10.13039/501100011033 and by ERDF/EU (project numbers PID2021-122511OB-I00, PID2021-128760NB-I00 and PID2021-129035NB-I00, and the ‘Maria de Maeztu’ Units of Excellence Programme grant number CEX2020-001038-M). It is also supported by MICIU and by the European Union NextGenerationEU Plan (PRTR-C17.I1), and by the IKUR Strategy under the collaboration agreement between Donostia International Physics Center and CIC nanoGUNE on behalf of the Department of Education of the Basque Government. M.S.-R. acknowledges support from La Caixa Foundation (no. 100010434) with code LCF/BQ/DR21/11880030. M.G. is grateful for support from the ‘Ramón y Cajal’ Programme by the Spanish MICIU/AEI and European Union NextGenerationEU/PRTR (grant no. RYC2021-034836-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis E. Hueso.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suárez-Rodríguez, M., de Juan, F., Souza, I. et al. Nonlinear transport in non-centrosymmetric systems. Nat. Mater. 24, 1005–1018 (2025). https://doi.org/10.1038/s41563-025-02261-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-025-02261-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing