Abstract
Ohm’s law has been a cornerstone of electronics since its experimental discovery. This law establishes that, in a conductive system, the voltage is directly proportional to the current. Even when time-reversal symmetry is disrupted, leading to the emergence of magnetoresistance and Hall effects, the linear relationship between voltage and current remains intact. However, recent experiments have demonstrated a breakdown of Ohm’s law in non-centrosymmetric structures. In these systems, nonlinear transport effects are permitted with quadratic scaling between voltages and currents. Here we review the main demonstrations of nonlinear transport in non-centrosymmetric systems, analysing the connection between nonlinear behaviour and the system’s symmetry. We also investigate the microscopic mechanisms driving these effects, such as Berry curvature dipole and Berry connection polarizability. Finally, we highlight potential applications of nonlinear transport in spintronics and energy harvesting.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Ohm, G. S. Die Galvanische Kette: Mathematisch Bearbeitet (T. H. Riemann, 1827).
Thomson, W. XIX. On the electro-dynamic qualities of metals:—effects of magnetization on the electric conductivity of nickel and of iron. Proc. R. Soc. Lond. 8, 546–550 (1857).
Hall, E. H. On a new action of the magnet on electric currents. Am. J. Math. 2, 287–292 (1879).
Lai, S. et al. Third-order nonlinear Hall effect induced by the Berry-connection polarizability tensor. Nat. Nanotechnol. 16, 869–873 (2021).
He, P. et al. Third-order nonlinear Hall effect in a quantum Hall system. Nat. Nanotechnol. 19, 1460–1465 (2024).
Li, H. et al. Quantum geometry quadrupole-induced third-order nonlinear transport in antiferromagnetic topological insulator MnBi2Te4. Nat. Commun. 15, 7779 (2024).
Fang, Y., Cano, J. & Ghorashi, S. A. A. Quantum geometry induced nonlinear transport in altermagnets. Phys. Rev. Lett. 133, 106701 (2024).
Lv, L. et al. Design and tailoring of two-dimensional Schottky, PN and tunnelling junctions for electronics and optoelectronics. Nanoscale 13, 6713–6751 (2021).
Zhang, L., Zhou, J., Li, H., Shen, L. & Feng, Y. P. Recent progress and challenges in magnetic tunnel junctions with 2D materials for spintronic applications. Appl. Phys. Rev. 8, 021308 (2021).
Chen, S. et al. All-electrical skyrmionic magnetic tunnel junction. Nature 627, 522–527 (2024).
Davydova, M., Prembabu, S. & Fu, L. Universal Josephson diode effect. Sci. Adv. 8, eabo0309 (2022).
Wu, H. et al. The field-free Josephson diode in a van der Waals heterostructure. Nature 604, 653–656 (2022).
Rikken, G. L. J. A. & Raupach, E. Observation of magneto-chiral dichroism. Nature 390, 493–494 (1997).
Rikken, G. L. J. A., Fölling, J. & Wyder, P. Electrical magnetochiral anisotropy. Phys. Rev. Lett. 87, 236602 (2001).
Rikken, G. L. J. A. & Avarvari, N. Strong electrical magnetochiral anisotropy in tellurium. Phys. Rev. B 99, 245153 (2019).
Ideue, T. et al. Bulk rectification effect in a polar semiconductor. Nat. Phys. 13, 578–583 (2017).
He, P. et al. Bilinear magnetoelectric resistance as a probe of three-dimensional spin texture in topological surface states. Nat. Phys. 14, 495–499 (2018).
He, P. et al. Observation of out-of-plane spin texture in a SrTiO3 (111) two-dimensional electron gas. Phys. Rev. Lett. 120, 266802 (2018).
Liu, T. et al. Crystallographically dependent bilinear magnetoelectric resistance in a thin WTe2 layer. Phys. Rev. B 108, 165407 (2023).
Vaz, D. C. et al. Determining the Rashba parameter from the bilinear magnetoresistance response in a two-dimensional electron gas. Phys. Rev. Mater. 4, 071001 (2020).
Dyrdał, A., Barnaś, J. & Fert, A. Spin-momentum-locking Inhomogeneities as a source of bilinear magnetoresistance in topological insulators. Phys. Rev. Lett. 124, 046802 (2020).
Guillet, T. et al. Observation of large unidirectional Rashba magnetoresistance in Ge(111). Phys. Rev. Lett. 124, 027201 (2020).
Calavalle, F. et al. Gate-tuneable and chirality-dependent charge-to-spin conversion in tellurium nanowires. Nat. Mater. 21, 526–532 (2022).
Vicente-Arche, L. M. et al. Spin–charge interconversion in KTaO3 2D electron gases. Adv. Mater. 33, 2102102 (2021).
He, P. et al. Nonlinear planar Hall effect. Phys. Rev. Lett. 123, 016801 (2019).
Nandy, S., Sharma, G., Taraphder, A. & Tewari, S. Chiral anomaly as the origin of the planar Hall effect in weyl semimetals. Phys. Rev. Lett. 119, 176804 (2017).
Taskin, A. A. et al. Planar Hall effect from the surface of topological insulators. Nat. Commun. 8, 1340 (2017).
Li, Y. et al. Nonreciprocal charge transport up to room temperature in bulk Rashba semiconductor α-GeTe. Nat. Commun. 12, 540 (2021).
Li, L. et al. Room-temperature gate-tunable nonreciprocal charge transport in lattice-matched InSb/CdTe heterostructures. Adv. Mater. 35, 2207322 (2023).
Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2018).
Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).
Suárez-Rodríguez, M. et al. Odd nonlinear conductivity under spatial inversion in chiral tellurium. Phys. Rev. Lett. 132, 046303 (2024).
He, P. et al. Graphene moiré superlattices with giant quantum nonlinearity of chiral Bloch electrons. Nat. Nanotechnol. 17, 378–383 (2022).
Duan, J. et al. Giant second-order nonlinear Hall effect in twisted bilayer graphene. Phys. Rev. Lett. 129, 186801 (2022).
Isobe, H., Xu, S. Y. & Fu, L. High-frequency rectification via chiral Bloch electrons. Sci. Adv. 6, eaay2497 (2020).
Tokura, Y. & Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018).
Ma, Q., Grushin, A. G. & Burch, K. S. Topology and geometry under the nonlinear electromagnetic spotlight. Nat. Mater. 20, 1601–1614 (2021).
Orenstein, J. et al. Topology and symmetry of quantum materials via nonlinear optical responses. Annu. Rev. Condens. Matter Phys. 12, 247–272 (2021).
Ideue, T. & Iwasa, Y. Symmetry breaking and nonlinear electric transport in van der Waals nanostructures. Annu. Rev. Condens. Matter Phys. 12, 201–223 (2021).
Ortix, C. Nonlinear Hall effect with time-reversal symmetry: theory and material realizations. Adv. Quantum Technol. 4, 2100056 (2021).
Du, Z. Z., Lu, H. Z. & Xie, X. C. Nonlinear Hall effects. Nat. Rev. Phys. 3, 744–752 (2021).
Wang, S., Niu, W. & Fang, Y.-W. Nonlinear Hall effect in two-dimensional materials. Microstruct. 5, 2025060 (2025).
Gallego, S. V., Etxebarria, J., Elcoro, L., Tasci, E. S. & Perez-Mato, J. M. Automatic calculation of symmetry-adapted tensors in magnetic and non-magnetic materials: a new tool of the Bilbao Crystallographic Server. Acta Crystallogr. A 75, 438–447 (2019).
Tsirkin, S. S. & Souza, I. On the separation of Hall and Ohmic nonlinear responses. SciPost Phys. Core 5, 039 (2022).
Suárez-Rodríguez, M. et al. Symmetry origin and microscopic mechanism of electrical magnetochiral anisotropy in tellurium. Phys. Rev. B 111, 024405 (2025).
Liu, X., Souza, I. & Tsirkin, S. S. Electrical magnetochiral anisotropy in trigonal tellurium from first principles. Preprint at https://arxiv.org/abs/2303.10164 (2023).
Xiao, J. et al. Berry curvature memory through electrically driven stacking transitions. Nat. Phys. 16, 1028–1034 (2020).
Ma, T. et al. Growth of bilayer MoTe2 single crystals with strong non-linear Hall effect. Nat. Commun. 13, 5465 (2022).
Tiwari, A. et al. Giant c-axis nonlinear anomalous Hall effect in Td-MoTe2 and WTe2. Nat. Commun. 12, 2049 (2021).
Lee, J. E. et al. Spin–orbit-splitting-driven nonlinear Hall effect in NbIrTe4. Nat. Commun. 15, 3971 (2024).
Lu, X. F. et al. Nonlinear transport and radio frequency rectification in BiTeBr at room temperature. Nat. Commun. 15, 245 (2024).
Min, L. et al. Strong room-temperature bulk nonlinear Hall effect in a spin-valley locked Dirac material. Nat. Commun. 14, 364 (2023).
He, P. et al. Nonlinear magnetotransport shaped by Fermi surface topology and convexity. Nat. Commun. 10, 1290 (2019).
Yokouchi, T., Ikeda, Y., Morimoto, T. & Shiomi, Y. Giant magnetochiral anisotropy in Weyl semimetal WTe2 induced by diverging Berry curvature. Phys. Rev. Lett. 130, 136301 (2023).
Dong, Z. & Ma, Y. Atomic-level handedness determination of chiral crystals using aberration-corrected scanning transmission electron microscopy. Nat. Commun. 11, 1588 (2020).
Niu, C. et al. Tunable chirality-dependent nonlinear electrical responses in 2D tellurium. Nano Lett. 23, 8445–8453 (2023).
Sakano, M. et al. Radial spin texture in elemental tellurium with chiral crystal structure. Phys. Rev. Lett. 124, 136404 (2020).
Aoki, R., Kousaka, Y. & Togawa, Y. Anomalous nonreciprocal electrical transport on chiral magnetic order. Phys. Rev. Lett. 122, 057206 (2019).
Pop, F., Auban-Senzier, P., Canadell, E., Rikken, G. L. J. A. & Avarvari, N. Electrical magnetochiral anisotropy in a bulk chiral molecular conductor. Nat. Commun. 5, 3757 (2014).
Cheng, B. et al. Giant nonlinear Hall and wireless rectification effects at room temperature in the elemental semiconductor tellurium. Nat. Commun. 15, 5513 (2024).
Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016).
Legg, H. F. et al. Giant magnetochiral anisotropy from quantum-confined surface states of topological insulator nanowires. Nat. Nanotechnol. 17, 696–700 (2022).
Li, C. et al. Observation of giant non-reciprocal charge transport from quantum Hall states in a topological insulator. Nat. Mater. 23, 1208–1213 (2024).
Zhai, J. et al. Large nonlinear transverse conductivity and Berry curvature in KTaO3 based two-dimensional electron gas. Nano Lett. 23, 11892–11898 (2023).
He, P. et al. Quantum frequency doubling in the topological insulator Bi2Se3. Nat. Commun. 12, 698 (2021).
Dzsaber, S. et al. Giant spontaneous Hall effect in a nonmagnetic Weyl–Kondo semimetal. Proc. Natl Acad. Sci. USA 118, e2013386118 (2021).
Kumar, D. et al. Room-temperature nonlinear Hall effect and wireless radiofrequency rectification in Weyl semimetal TaIrTe4. Nat. Nanotechnol. 16, 421–425 (2021).
Nishijima, T. et al. Ferroic Berry curvature dipole in a topological crystalline insulator at room temperature. Nano Lett. 23, 2247–2252 (2023).
Makushko, P. et al. A tunable room-temperature nonlinear Hall effect in elemental bismuth thin films. Nat. Electron. 7, 207–215 (2024).
Schade, N. B., Schuster, D. I. & Nagel, S. R. A nonlinear, geometric Hall effect without magnetic field. Proc. Natl Acad. Sci. USA 116, 24475–24479 (2019).
Du, L. et al. Engineering symmetry breaking in 2D layered materials. Nat. Rev. Phys. 3, 193–206 (2021).
Du, L. et al. Nonlinear physics of moiré superlattices. Nat. Mater. 23, 1179–1192 (2024).
Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).
Andrei, E. Y. et al. The marvels of moiré materials. Nat. Rev. Mater. 6, 201–206 (2021).
Huang, M. et al. Intrinsic nonlinear Hall effect and gate-switchable Berry curvature sliding in twisted bilayer graphene. Phys. Rev. Lett. 131, 066301 (2023).
Zhong, J. et al. Effective manipulation of a colossal second-order transverse response in an electric-field-tunable graphene moiré system. Nano Lett. 24, 5791–5798 (2024).
Zhang, N. J. et al. Angle-resolved transport non-reciprocity and spontaneous symmetry breaking in twisted trilayer graphene. Nat. Mater. 23, 356–362 (2024).
Ho, S.-C. et al. Hall effects in artificially corrugated bilayer graphene without breaking time-reversal symmetry. Nat. Electron. 4, 116–125 (2021).
Qin, M. et al. Strain tunable Berry curvature dipole, orbital magnetization and nonlinear Hall effect in WSe2 monolayer. Chin. Phys. Lett. 38, 017301 (2021).
Huang, M. et al. Giant nonlinear Hall effect in twisted bilayer WSe2. Natl Sci. Rev. 10, nwac232 (2022).
Kang, K. et al. Switchable moiré potentials in ferroelectric WTe2/WSe2 superlattices. Nat. Nanotechnol. 18, 861–866 (2023).
Ye, X.-G. et al. Control over Berry curvature dipole with electric field in WTe2. Phys. Rev. Lett. 130, 016301 (2023).
Zhang, Z. et al. Controlled large non-reciprocal charge transport in an intrinsic magnetic topological insulator MnBi2Te4. Nat. Commun. 13, 6191 (2022).
Yasuda, K. et al. Large non-reciprocal charge transport mediated by quantum anomalous Hall edge states. Nat. Nanotechnol. 15, 831–835 (2020).
Gao, A. et al. Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure. Science 381, 181–186 (2023).
Wang, N. et al. Quantum-metric-induced nonlinear transport in a topological antiferromagnet. Nature 621, 487–492 (2023).
Gao, A. et al. An antiferromagnetic diode effect in even-layered MnBi2Te4. Nat. Electron. 7, 751–759 (2024).
Gao, Y., Yang, S. A. & Niu, Q. Field induced positional shift of Bloch electrons and its dynamical implications. Phys. Rev. Lett. 112, 166601 (2014).
Godinho, J. et al. Electrically induced and detected Néel vector reversal in a collinear antiferromagnet. Nat. Commun. 9, 4686 (2018).
Han, J. et al. Room-temperature flexible manipulation of the quantum-metric structure in a topological chiral antiferromagnet. Nat. Phys. 20, 1110–1117 (2024).
Jo, J. et al. Anomalous nonlinear magnetoconductivity in van der Waals magnet CrSBr. Adv. Mater. 37, 2419283 (2025).
Sinha, S. et al. Berry curvature dipole senses topological transition in a moiré superlattice. Nat. Phys. 18, 765–770 (2022).
Facio, J. I. et al. Strongly enhanced Berry dipole at topological phase transitions in BiTeI. Phys. Rev. Lett. 121, 246403 (2018).
Salawu, Y. A. et al. Nonlinear electrical transport phenomena as fingerprints of a topological phase transition in ZrTe5. Commun. Mater. 4, 111 (2023).
Genkin, V. N. & Mednis, P. M. Contributions to the theory of nonlinear effects in crystals with account taken of partially filled bands. Zh. Eksp. Teor. Fiz. 54, 1137–1150 (1968).
Deyo, E., Golub, L. E., Ivchenko, E. L. & Spivak, B. Semiclassical theory of the photogalvanic effect in non-centrosymmetric systems. Preprint at https://arxiv.org/abs/0904.1917 (2009).
Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).
Moore, J. E. & Orenstein, J. Confinement-induced berry phase and helicity-dependent photocurrents. Phys. Rev. Lett. 105, 026805 (2010).
Liu, H. et al. Intrinsic second-order anomalous Hall effect and its application in compensated antiferromagnets. Phys. Rev. Lett. 127, 277202 (2021).
You, J.-S., Fang, S., Xu, S.-Y., Kaxiras, E. & Low, T. Berry curvature dipole current in the transition metal dichalcogenides family. Phys. Rev. B 98, 121109 (2018).
Zhang, Y., Van Den Brink, J., Felser, C. & Yan, B. Electrically tuneable nonlinear anomalous Hall effect in two-dimensional transition-metal dichalcogenides WTe2 and MoTe2. 2D Mater. 5, 044001 (2018).
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).
Hou, D. et al. Multivariable scaling for the anomalous Hall effect. Phys. Rev. Lett. 114, 217203 (2015).
Du, Z. Z., Wang, C. M., Li, S., Lu, H.-Z. & Xie, X. C. Disorder-induced nonlinear Hall effect with time-reversal symmetry. Nat. Commun. 10, 3047 (2019).
Nandy, S. & Sodemann, I. Symmetry and quantum kinetics of the nonlinear Hall effect. Phys. Rev. B 100, 195117 (2019).
Mehraeen, M. Quantum kinetic theory of quadratic responses. Phys. Rev. B 110, 174423 (2024).
Du, Z. Z., Wang, C. M., Sun, H.-P., Lu, H.-Z. & Xie, X. C. Quantum theory of the nonlinear Hall effect. Nat. Commun. 12, 5038 (2021).
Huang, Y.-X., Feng, X., Wang, H., Xiao, C. & Yang, S. A. Intrinsic nonlinear planar Hall effect. Phys. Rev. Lett. 130, 126303 (2023).
Wang, H. et al. Orbital origin of the intrinsic planar Hall effect. Phys. Rev. Lett. 132, 056301 (2024).
Huang, Y.-X., Xiao, C., Yang, S. A. & Li, X. Scaling law for time-reversal-odd nonlinear transport. Preprint at https://arxiv.org/abs/2311.01219 (2023).
Wang, C., Gao, Y. & Xiao, D. Intrinsic nonlinear Hall effect in antiferromagnetic tetragonal CuMnAs. Phys. Rev. Lett. 127, 277201 (2021).
Kaplan, D., Holder, T. & Yan, B. Unification of nonlinear anomalous Hall effect and nonreciprocal magnetoresistance in metals by the quantum geometry. Phys. Rev. Lett. 132, 026301 (2024).
Das, K., Lahiri, S., Atencia, R. B., Culcer, D. & Agarwal, A. Intrinsic nonlinear conductivities induced by the quantum metric. Phys. Rev. B 108, L201405 (2023).
Jia, J., Xiang, L., Qiao, Z. & Wang, J. Equivalence of semiclassical and response theories for second-order nonlinear ac Hall effects. Phys. Rev. B 110, 245406 (2024).
Huang, Y.-X. et al. Nonlinear current response of two-dimensional systems under in-plane magnetic field. Phys. Rev. B 108, 075155 (2023).
Ma, D., Arora, A., Vignale, G. & Song, J. C. W. Anomalous skew-scattering nonlinear Hall effect and chiral photocurrents in \({\mathscr{P}}{\mathscr{T}}\)-symmetric antiferromagnets. Phys. Rev. Lett. 131, 076601 (2023).
Gong, Z.-H., Du, Z. Z., Sun, H.-P., Lu, H.-Z. & Xie, X. C. Nonlinear transport theory at the order of quantum metric. Preprint at https://arxiv.org/abs/2410.04995 (2024).
Hirohata, A. et al. Review on spintronics: principles and device applications. J. Magn. Magn. Mater. 509, 166711 (2020).
Fert, A., Ramesh, R., Garcia, V., Casanova, F. & Bibes, M. Electrical control of magnetism by electric field and current-induced torques. Rev. Mod. Phys. 96, 015005 (2024).
Dresselhaus, G. Spin–orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955).
Bychkov, Y. A. & Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39, 78–81 (1984).
Park, S. R., Kim, C. H., Yu, J., Han, J. H. & Kim, C. Orbital-angular-momentum based origin of Rashba-type surface band splitting. Phys. Rev. Lett. 107, 156803 (2011).
Park, J. H., Kim, C. H., Rhim, J. W. & Han, J. H. Orbital Rashba effect and its detection by circular dichroism angle-resolved photoemission spectroscopy. Phys. Rev. B 85, 195401 (2012).
Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).
Lv, B. Q. et al. Observation of Fermi-arc spin texture in TaAs. Phys. Rev. Lett. 115, 217601 (2015).
Yang, H. et al. Twist-angle-tunable spin texture in WSe2/graphene van der Waals heterostructures. Nat. Mater. 23, 1502–1508 (2024).
Bloom, B. P., Paltiel, Y., Naaman, R. & Waldeck, D. H. Chiral induced spin selectivity. Chem. Rev. 124, 1950–1991 (2024).
Kim, D.-J. et al. Spin Hall-induced bilinear magnetoelectric resistance. Nat. Mater. 23, 1509–1514 (2024).
Zhang, X., Grajal, J., López-Vallejo, M., McVay, E. & Palacios, T. Opportunities and challenges of ambient radio-frequency energy harvesting. Joule 4, 1148–1152 (2020).
Hemour, S. & Wu, K. Radio-frequency rectifier for electromagnetic energy harvesting: development path and future outlook. Proc. IEEE 102, 1667–1691 (2014).
Zhang, Y. & Fu, L. Terahertz detection based on nonlinear Hall effect without magnetic field. Proc. Natl Acad. Sci. USA 118, e2100736118 (2021).
Suárez-Rodríguez, M. et al. Microscale chiral rectennas for energy harvesting. Adv. Mater. 36, 2400729 (2024).
Kumar, D. et al. Quantum rectification based on room temperature multidirectional nonlinearity in Bi2Te3. Nano Lett. 24, 12545–12551 (2024).
Aftab, S. et al. Bulk photovoltaic effect in 2D materials for solar-power harvesting. Adv. Opt. Mater. 10, 2201288 (2022).
Dai, Z. & Rappe, A. M. Recent progress in the theory of bulk photovoltaic effect. Chem. Phys. Rev. 4, 011303 (2023).
Matsuo, H. & Noguchi, Y. Bulk photovoltaic effect in ferroelectrics. Jpn. J. Appl. Phys. 63, 060101 (2024).
He, Z. & Weng, H. Giant nonlinear Hall effect in twisted bilayer WTe2. npj Quantum Mater. 6, 101 (2021).
Onishi, Y. & Fu, L. High-efficiency energy harvesting based on a nonlinear Hall rectifier. Phys. Rev. B 110, 075122 (2024).
Wang, F. et al. Deterministic switching of perpendicular magnetization by out-of-plane anti-damping magnon torques. Nat. Nanotechnol. 19, 1478–1484 (2024).
Newnham, R. E. Properties of Materials: Anisotropy, Symmetry, Structure (Oxford Univ. Press, 2005).
Hurd, C. M. The Hall Effect in Metals and Alloys (Springer, 2012).
Acknowledgements
This work is supported by the Spanish MICIU/AEI/10.13039/501100011033 and by ERDF/EU (project numbers PID2021-122511OB-I00, PID2021-128760NB-I00 and PID2021-129035NB-I00, and the ‘Maria de Maeztu’ Units of Excellence Programme grant number CEX2020-001038-M). It is also supported by MICIU and by the European Union NextGenerationEU Plan (PRTR-C17.I1), and by the IKUR Strategy under the collaboration agreement between Donostia International Physics Center and CIC nanoGUNE on behalf of the Department of Education of the Basque Government. M.S.-R. acknowledges support from La Caixa Foundation (no. 100010434) with code LCF/BQ/DR21/11880030. M.G. is grateful for support from the ‘Ramón y Cajal’ Programme by the Spanish MICIU/AEI and European Union NextGenerationEU/PRTR (grant no. RYC2021-034836-I).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Tables 1 and 2.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Suárez-Rodríguez, M., de Juan, F., Souza, I. et al. Nonlinear transport in non-centrosymmetric systems. Nat. Mater. 24, 1005–1018 (2025). https://doi.org/10.1038/s41563-025-02261-3
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41563-025-02261-3