Abstract
The Materials Project was launched formally in 2011 to drive materials discovery forwards through high-throughput computation and open data. More than a decade later, the Materials Project has become an indispensable tool used by more than 600,000 materials researchers around the world. This Perspective describes how the Materials Project, as a data platform and a software ecosystem, has helped to shape research in data-driven materials science. We cover how sustainable software and computational methods have accelerated materials design while becoming more open source and collaborative in nature. Next, we present cases where the Materials Project was used to understand and discover functional materials. We then describe our efforts to meet the needs of an expanding user base, through technical infrastructure updates ranging from data architecture and cloud resources to interactive web applications. Finally, we discuss opportunities to better aid the research community, with the vision that more accessible and easy-to-understand materials data will result in democratized materials knowledge and an increasingly collaborative community.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Draxl, C. & Scheffler, M. The NOMAD laboratory: from data sharing to artificial intelligence. J. Phys. Mater. 2, 036001 (2019).
Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials design and discovery with high-throughput density functional theory: the Open Quantum Materials Database (OQMD). JOM 65, 1501–1509 (2013).
Kirklin, S. et al. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. npj Comput. Mater. 1, 15010 (2015).
Curtarolo, S. et al. AFLOW: an automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218–226 (2012).
Calderon, C. E. et al. The AFLOW standard for high-throughput materials science calculations. Comput. Mater. Sci. 108, 233–238 (2015).
Choudhary, K. et al. The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design. npj Comput. Mater. 6, 173 (2020).
Talirz, L. et al. Materials Cloud, a platform for open computational science. Sci. Data 7, 299 (2020).
Yang, R. X. et al. Big data in a nano world: a review on computational, data-driven design of nanomaterials structures, properties, and synthesis. ACS Nano 16, 19873–19891 (2022).
Qu, X. et al. The Electrolyte Genome project: a big data approach in battery materials discovery. Comput. Mater. Sci. 103, 56–67 (2015).
Cheng, L. et al. Accelerating electrolyte discovery for energy storage with high-throughput screening. J. Phys. Chem. Lett. 6, 283–291 (2015).
Spotte-Smith, E. W. C. et al. A database of molecular properties integrated in the Materials Project. Digit. Discov. 2, 1862–1882 (2023).
Huo, H. et al. Semi-supervised machine-learning classification of materials synthesis procedures. npj Comput. Mater. 5, 62 (2019).
Kononova, O. et al. Text-mined dataset of inorganic materials synthesis recipes. Sci. Data 6, 203 (2019).
He, T. et al. Similarity of precursors in solid-state synthesis as text-mined from scientific literature. Chem. Mater. 32, 7861–7873 (2020).
Zhou, F., Cococcioni, M., Marianetti, C. A., Morgan, D. & Ceder, G. First-principles prediction of redox potentials in transition-metal compounds with LDA + U. Phys. Rev. B 70, 235121 (2004).
Adams, S. & Rao, R. P. High power lithium ion battery materials by computational design: high power Li ion battery materials by computational design. Phys. Status Solidi A 208, 1746–1753 (2011).
Wang, L., Maxisch, T. & Ceder, G. A first-principles approach to studying the thermal stability of oxide cathode materials. Chem. Mater. 19, 543–552 (2007).
Ong, S. P., Jain, A., Hautier, G., Kang, B. & Ceder, G. Thermal stabilities of delithiated olivine MPO4 (M = Fe, Mn) cathodes investigated using first principles calculations. Electrochem. Commun. 12, 427–430 (2010).
Rosen, A. S. et al. High-throughput predictions of metal–organic framework electronic properties: theoretical challenges, graph neural networks, and data exploration. npj Comput. Mater. 8, 112 (2022).
Chanussot, L. et al. Open Catalyst 2020 (OC20) dataset and community challenges. ACS Catal. 11, 6059–6072 (2021).
Furness, J. W., Kaplan, A. D., Ning, J., Perdew, J. P. & Sun, J. Accurate and numerically efficient r2SCAN meta-generalized gradient approximation. J. Phys. Chem. Lett. 11, 8208–8215 (2020).
Kingsbury, R. et al. Performance comparison of r2SCAN and SCAN metaGGA density functionals for solid materials via an automated, high-throughput computational workflow. Phys. Rev. Mater. 6, 013801 (2022).
Kingsbury, R. S. et al. A flexible and scalable scheme for mixing computed formation energies from different levels of theory. npj Comput. Mater. 8, 195 (2022).
Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. Recent developments in the Inorganic Crystal Structure Database: theoretical crystal structure data and related features. J. Appl. Crystallogr. 52, 918–925 (2019).
Villars, P. et al. The Pauling File, Binaries Edition. J. Alloys Compd. 367, 293–297 (2004).
Gražulis, S. et al. Crystallography Open Database – an open-access collection of crystal structures. J. Appl. Crystallogr. 42, 726–729 (2009).
Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).
Jacobsson, T. J. et al. An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles. Nat. Energy 7, 107–115 (2021).
Borysov, S. S., Geilhufe, R. M. & Balatsky, A. V. Organic materials database: an open-access online database for data mining. PLoS ONE 12, e0171501 (2017).
Landis, D. D. et al. The Computational Materials Repository. Comput. Sci. Eng. 14, 51–57 (2012).
Schmidt, J. et al. Machine-learning-assisted determination of the global zero-temperature phase diagram of materials. Adv. Mater. 35, 2210788 (2023).
Hautier, G., Fischer, C., Ehrlacher, V., Jain, A. & Ceder, G. Data mined ionic substitutions for the discovery of new compounds. Inorg. Chem. 50, 656–663 (2011).
Eckert, H. et al. The AFLOW library of crystallographic prototypes: part 4. Comput. Mater. Sci. 240, 112988 (2024).
Ye, W., Lei, X., Aykol, M. & Montoya, J. H. Novel inorganic crystal structures predicted using autonomous simulation agents. Sci. Data 9, 302 (2022).
Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).
Woods-Robinson, R., Horton, M. K. & Persson, K. A. A method to computationally screen for tunable properties of crystalline alloys. Patterns 4, 100723 (2023).
Barroso-Luque, L. et al. smol: a Python package for cluster expansions and beyond. J. Open Source Softw. 7, 4504 (2022).
Scheffler, M. et al. FAIR data enabling new horizons for materials research. Nature 604, 635–642 (2022).
Chen, C. & Ong, S. P. A universal graph deep learning interatomic potential for the periodic table. Nat. Comput. Sci. 2, 718–728 (2022).
Deng, B. et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell. 5, 1031–1041 (2023).
Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source Python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).
Huck, P. et al. User applications driven by the community contribution framework MPContribs in the Materials Project. Concurr. Comput. 28, 1982–1993 (2016).
Ganose, A. et al. Atomate2: modular workflows for materials science. Preprint at https://doi.org/10.26434/chemrxiv-2025-tcr5h (2025).
Ganose, A. et al. Atomate2 code repository. GitHub https://github.com/materialsproject/atomate2 (2025).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Zimmermann, N. E. R. & Jain, A. Local structure order parameters and site fingerprints for quantification of coordination environment and crystal structure similarity. RSC Adv. 10, 6063–6081 (2020).
Waroquiers, D. et al. ChemEnv: a fast and robust coordination environment identification tool. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 76, 683–695 (2020).
Ganose, A. M. & Jain, A. Robocrystallographer: automated crystal structure text descriptions and analysis. MRS Commun. 9, 874–881 (2019).
McDermott, M. J., Dwaraknath, S. S. & Persson, K. A. A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis. Nat. Commun. 12, 3097 (2021).
McDermott, M. J. et al. Assessing thermodynamic selectivity of solid-state reactions for the predictive synthesis of inorganic materials. ACS Cent. Sci. 9, 1957–1975 (2023).
Shen, J.-X., Horton, M. & Persson, K. A. A charge-density-based general cation insertion algorithm for generating new Li-ion cathode materials. npj Comput. Mater. 6, 161 (2020).
Li, H. H., Shen, J.-X. & Persson, K. A. A rapid lithium-ion cathode discovery pipeline and its exemplary application. Energy Adv. https://doi.org/10.1039/D3YA00397C (2024).
Shen, J.-X., Li, H. H., Rutt, A., Horton, M. K. & Persson, K. A. Topological graph-based analysis of solid-state ion migration. npj Comput. Mater. 9, 99 (2023).
Rutt, A. et al. Expanding the material search space for multivalent cathodes. ACS Appl. Mater. Interfaces 14, 44367–44376 (2022).
Huck, P., Jain, A., Gunter, D., Winston, D. & Persson, K. A community contribution framework for sharing materials data with materials project. In 2015 IEEE 11th International Conference on e-Science 535–541 (IEEE, 2015); https://doi.org/10.1109/eScience.2015.75
Bauer, S. et al. Roadmap on data-centric materials science. Model. Simul. Mater. Sci. Eng. 32, 063301 (2024).
Aykol, M. et al. High-throughput computational design of cathode coatings for Li-ion batteries. Nat. Commun. 7, 13779 (2016).
Luo, S., Li, T., Wang, X., Faizan, M. & Zhang, L. High-throughput computational materials screening and discovery of optoelectronic semiconductors. WIREs Comput. Mol. Sci. 11, e1489 (2021).
Luo, X. & Xie, R.-J. Recent progress on discovery of novel phosphors for solid state lighting. J. Rare Earths 38, 464–473 (2020).
Gorai, P., Stevanović, V. & Toberer, E. S. Computationally guided discovery of thermoelectric materials. Nat. Rev. Mater. 2, 17053 (2017).
Talley, K. R., Sherbondy, R., Zakutayev, A. & Brennecka, G. L. Review of high-throughput approaches to search for piezoelectric nitrides. J. Vac. Sci. Technol. A 37, 060803 (2019).
Singh, A. K., Gorelik, R. & Biswas, T. Data-driven discovery of robust materials for photocatalytic energy conversion. Annu. Rev. Condens. Matter Phys. 14, 237–259 (2023).
Pan, J. & Yan, Q. Data-driven material discovery for photocatalysis: a short review. J. Semicond. 39, 071001 (2018).
Zhao, S., Kan, E. & Li, Z. Electride: from computational characterization to theoretical design. WIREs Comput. Mol. Sci. 6, 430–440 (2016).
Ren, E., Guilbaud, P. & Coudert, F.-X. High-throughput computational screening of nanoporous materials in targeted applications. Digit. Discov. 1, 355–374 (2022).
Garcia, C. A. C., Bocarsly, J. D. & Seshadri, R. Computational screening of magnetocaloric alloys. Phys. Rev. Mater. 4, 024402 (2020).
Shen, L., Zhou, J., Yang, T., Yang, M. & Feng, Y. P. High-throughput computational discovery and intelligent design of two-dimensional functional materials for various applications. Acc. Mater. Res. 3, 572–583 (2022).
Su, Y. et al. High-throughput first-principle prediction of collinear magnetic topological materials. npj Comput. Mater. 8, 261 (2022).
Frey, N. C. et al. High-throughput search for magnetic and topological order in transition metal oxides. Sci. Adv. 6, eabd1076 (2020).
Gao, J. et al. High-throughput screening for Weyl semimetals with S4 symmetry. Sci. Bull. 66, 667–675 (2021).
Ren, Z. et al. An invertible crystallographic representation for general inverse design of inorganic crystals with targeted properties. Matter 5, 314–335 (2022).
Hautier, G., Miglio, A., Ceder, G., Rignanese, G.-M. & Gonze, X. Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nat. Commun. 4, 2292 (2013).
Ricci, F. et al. An ab initio electronic transport database for inorganic materials. Sci. Data 4, 170085 (2017).
Bhatia, A. et al. High-mobility bismuth-based transparent p-type oxide from high-throughput material screening. Chem. Mater. 28, 30–34 (2016).
Wang, Z. et al. Mining unexplored chemistries for phosphors for high-color-quality white-light-emitting diodes. Joule 2, 914–926 (2018).
Li, S. et al. Data-driven discovery of full-visible-spectrum phosphor. Chem. Mater. 31, 6286–6294 (2019).
Dunstan, M. T. et al. Large scale computational screening and experimental discovery of novel materials for high temperature CO2 capture. Energy Environ. Sci. 9, 1346–1360 (2016).
Zhu, H. et al. Computational and experimental investigation of TmAgTe2 and XYZ2 compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening. J. Mater. Chem. C 3, 10554–10565 (2015).
Aydemir, U. et al. YCuTe2: a member of a new class of thermoelectric materials with CuTe4-based layered structure. J. Mater. Chem. A 4, 2461–2472 (2016).
Horton, M. K., Montoya, J. H., Liu, M. & Persson, K. A. High-throughput prediction of the ground-state collinear magnetic order of inorganic materials using density functional theory. npj Comput. Mater. 5, 64 (2019).
Cooley, J. A. et al. From waste-heat recovery to refrigeration: compositional tuning of magnetocaloric Mn1+xSb. Chem. Mater. 32, 1243–1249 (2020).
Burton, L. A., Ricci, F., Chen, W., Rignanese, G.-M. & Hautier, G. High-throughput identification of electrides from all known inorganic materials. Chem. Mater. 30, 7521–7526 (2018).
Chanhom, P. et al. Sr3CrN3: a new electride with a partially filled d-shell transition metal. J. Am. Chem. Soc. 141, 10595–10598 (2019).
Tanaka, Y. et al. New oxyhalide solid electrolytes with high lithium ionic conductivity >10 mS cm−1 for all-solid-state batteries. Angew. Chem. Int. Ed. 62, e202217581 (2023).
Zhuo, Y., Mansouri Tehrani, A., Oliynyk, A. O., Duke, A. C. & Brgoch, J. Identifying an efficient, thermally robust inorganic phosphor host via machine learning. Nat. Commun. 9, 4377 (2018).
Petretto, G. et al. High-throughput density-functional perturbation theory phonons for inorganic materials. Sci. Data 5, 180065 (2018).
Aykol, M., Montoya, J. H. & Hummelshøj, J. Rational solid-state synthesis routes for inorganic materials. J. Am. Chem. Soc. 143, 9244–9259 (2021).
Sivonxay, E. & Persson, K. A. Density functional theory assessment of the lithiation thermodynamics and phase evolution in Si-based amorphous binary alloys. Energy Storage Mater. 53, 42–50 (2022).
Aykol, M., Dwaraknath, S. S., Sun, W. & Persson, K. A. Thermodynamic limit for synthesis of metastable inorganic materials. Sci. Adv. 4, eaaq0148 (2018).
Zheng, H. et al. The ab initio non-crystalline structure database: empowering machine learning to decode diffusivity. npj Comput. Mater. https://doi.org/10.1038/s41524-024-01469-2 (2024)
Bartel, C. J. Review of computational approaches to predict the thermodynamic stability of inorganic solids. J. Mater. Sci. 57, 10475–10498 (2022).
Raccuglia, P. et al. Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73–76 (2016).
Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023).
Hautier, G., Jain, A. & Ong, S. P. From the computer to the laboratory: materials discovery and design using first-principles calculations. J. Mater. Sci. 47, 7317–7340 (2012).
Jain, A., Shin, Y. & Persson, K. A. Computational predictions of energy materials using density functional theory. Nat. Rev. Mater. 1, 15004 (2016).
Ko, T. W. & Ong, S. P. Recent advances and outstanding challenges for machine learning interatomic potentials. Nat. Comput. Sci. 3, 998–1000 (2023).
Fung, V., Ganesh, P. & Sumpter, B. G. Physically informed machine learning prediction of electronic density of states. Chem. Mater. 34, 4848–4855 (2022).
Torrisi, S. B. et al. Random forest machine learning models for interpretable X-ray absorption near-edge structure spectrum–property relationships. npj Comput. Mater. 6, 109 (2020).
Kong, S. et al. Density of states prediction for materials discovery via contrastive learning from probabilistic embeddings. Nat. Commun. 13, 949 (2022).
Shen, J.-X. et al. A representation-independent electronic charge density database for crystalline materials. Sci. Data 9, 661 (2022).
Dunn, A., Wang, Q., Ganose, A., Dopp, D. & Jain, A. Benchmarking materials property prediction methods: the Matbench test set and Automatminer reference algorithm. npj Comput. Mater. 6, 138 (2020).
Wang, A. Y.-T., Kauwe, S. K., Murdock, R. J. & Sparks, T. D. Compositionally restricted attention-based network for materials property predictions. npj Comput. Mater. 7, 77 (2021).
Cheng, G., Gong, X.-G. & Yin, W.-J. Crystal structure prediction by combining graph network and optimization algorithm. Nat. Commun. 13, 1492 (2022).
Tadmor, E. B., Elliott, R. S., Sethna, J. P., Miller, R. E. & Becker, C. A. The potential of atomistic simulations and the knowledgebase of interatomic models. JOM 63, 17 (2011).
Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).
Szymanski, N. J. et al. Toward autonomous design and synthesis of novel inorganic materials. Mater. Horiz. 8, 2169–2198 (2021).
Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).
Jain, A. et al. Formation enthalpies by mixing GGA and GGA + U calculations. Phys. Rev. B 84, 045115 (2011).
de Jong, M., Chen, W., Geerlings, H., Asta, M. & Persson, K. A. A database to enable discovery and design of piezoelectric materials. Sci. Data 2, 150053 (2015).
de Jong, M. et al. Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data 2, 150009 (2015).
Tran, R. et al. Surface energies of elemental crystals. Sci. Data 3, 160080 (2016).
Petousis, I. et al. High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials. Sci. Data 4, 160134 (2017).
Mathew, K. et al. High-throughput computational X-ray absorption spectroscopy. Sci. Data 5, 180151 (2018).
Latimer, K., Dwaraknath, S., Mathew, K., Winston, D. & Persson, K. A. Evaluation of thermodynamic equations of state across chemistry and structure in the Materials Project. npj Comput. Mater. 4, 40 (2018).
Patel, A. M., Nørskov, J. K., Persson, K. A. & Montoya, J. H. Efficient Pourbaix diagrams of many-element compounds. Phys. Chem. Chem. Phys. 21, 25323–25327 (2019).
Zheng, H. et al. Grain boundary properties of elemental metals. Acta Mater. 186, 40–49 (2020).
Bosoni, E. et al. How to verify the precision of density-functional-theory implementations via reproducible and universal workflows. Nat. Rev. Phys. 6, 45–58 (2024).
Acknowledgements
This work was intellectually led by the Materials Project program KC23MP, supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05-CH11231. The Materials Project Collaboration includes the authors of this manuscript in addition to current and previous members of the Materials Project program, for example, developers of workflows for the prediction of various properties, plus contributors from the broader community acknowledged in this manuscript. We thank all users of the MP for their support and feedback. We thank all contributors to the MP software stack, without whom the MP would not be possible. A complete and up-to-date list of contributors is publicly available at GitHub (https://github.com/materialsproject#contributors). This research used resources of the National Energy Research Scientific Computing Center (NERSC), a Department of Energy User Facility using NERSC award BES-ERCAP 0032604. A.S.R. acknowledges support via a Miller Research Fellowship from the Miller Institute for Basic Research in Science, University of California, Berkeley.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Materials thanks Giulia Galli, Matthias Scheffler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Horton, M.K., Huck, P., Yang, R.X. et al. Accelerated data-driven materials science with the Materials Project. Nat. Mater. 24, 1522–1532 (2025). https://doi.org/10.1038/s41563-025-02272-0
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41563-025-02272-0
This article is cited by
-
An automated framework for exploring and learning potential-energy surfaces
Nature Communications (2025)
-
AI is dreaming up millions of new materials. Are they any good?
Nature (2025)
-
Darwin4Matter: A Platform Integrating Machine Learning and Quantum Chemistry for New Materials Design
Chemical Research in Chinese Universities (2025)