Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Accelerated data-driven materials science with the Materials Project

Abstract

The Materials Project was launched formally in 2011 to drive materials discovery forwards through high-throughput computation and open data. More than a decade later, the Materials Project has become an indispensable tool used by more than 600,000 materials researchers around the world. This Perspective describes how the Materials Project, as a data platform and a software ecosystem, has helped to shape research in data-driven materials science. We cover how sustainable software and computational methods have accelerated materials design while becoming more open source and collaborative in nature. Next, we present cases where the Materials Project was used to understand and discover functional materials. We then describe our efforts to meet the needs of an expanding user base, through technical infrastructure updates ranging from data architecture and cloud resources to interactive web applications. Finally, we discuss opportunities to better aid the research community, with the vision that more accessible and easy-to-understand materials data will result in democratized materials knowledge and an increasingly collaborative community.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Growth of the MP in materials properties and users since its inception.
Fig. 2: The MP ecosystem of open-source software libraries.
Fig. 3: Examples of compounds predicted to have target properties by leveraging the data and analysis tools of the MP.

Similar content being viewed by others

References

  1. Draxl, C. & Scheffler, M. The NOMAD laboratory: from data sharing to artificial intelligence. J. Phys. Mater. 2, 036001 (2019).

    Article  CAS  Google Scholar 

  2. Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials design and discovery with high-throughput density functional theory: the Open Quantum Materials Database (OQMD). JOM 65, 1501–1509 (2013).

    Article  CAS  Google Scholar 

  3. Kirklin, S. et al. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. npj Comput. Mater. 1, 15010 (2015).

    Article  CAS  Google Scholar 

  4. Curtarolo, S. et al. AFLOW: an automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218–226 (2012).

    Article  CAS  Google Scholar 

  5. Calderon, C. E. et al. The AFLOW standard for high-throughput materials science calculations. Comput. Mater. Sci. 108, 233–238 (2015).

    Article  CAS  Google Scholar 

  6. Choudhary, K. et al. The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design. npj Comput. Mater. 6, 173 (2020).

    Article  Google Scholar 

  7. Talirz, L. et al. Materials Cloud, a platform for open computational science. Sci. Data 7, 299 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yang, R. X. et al. Big data in a nano world: a review on computational, data-driven design of nanomaterials structures, properties, and synthesis. ACS Nano 16, 19873–19891 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qu, X. et al. The Electrolyte Genome project: a big data approach in battery materials discovery. Comput. Mater. Sci. 103, 56–67 (2015).

    Article  CAS  Google Scholar 

  10. Cheng, L. et al. Accelerating electrolyte discovery for energy storage with high-throughput screening. J. Phys. Chem. Lett. 6, 283–291 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Spotte-Smith, E. W. C. et al. A database of molecular properties integrated in the Materials Project. Digit. Discov. 2, 1862–1882 (2023).

    Article  CAS  Google Scholar 

  12. Huo, H. et al. Semi-supervised machine-learning classification of materials synthesis procedures. npj Comput. Mater. 5, 62 (2019).

    Article  Google Scholar 

  13. Kononova, O. et al. Text-mined dataset of inorganic materials synthesis recipes. Sci. Data 6, 203 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. He, T. et al. Similarity of precursors in solid-state synthesis as text-mined from scientific literature. Chem. Mater. 32, 7861–7873 (2020).

    Article  CAS  Google Scholar 

  15. Zhou, F., Cococcioni, M., Marianetti, C. A., Morgan, D. & Ceder, G. First-principles prediction of redox potentials in transition-metal compounds with LDA + U. Phys. Rev. B 70, 235121 (2004).

    Article  Google Scholar 

  16. Adams, S. & Rao, R. P. High power lithium ion battery materials by computational design: high power Li ion battery materials by computational design. Phys. Status Solidi A 208, 1746–1753 (2011).

    Article  CAS  Google Scholar 

  17. Wang, L., Maxisch, T. & Ceder, G. A first-principles approach to studying the thermal stability of oxide cathode materials. Chem. Mater. 19, 543–552 (2007).

    Article  CAS  Google Scholar 

  18. Ong, S. P., Jain, A., Hautier, G., Kang, B. & Ceder, G. Thermal stabilities of delithiated olivine MPO4 (M = Fe, Mn) cathodes investigated using first principles calculations. Electrochem. Commun. 12, 427–430 (2010).

    Article  CAS  Google Scholar 

  19. Rosen, A. S. et al. High-throughput predictions of metal–organic framework electronic properties: theoretical challenges, graph neural networks, and data exploration. npj Comput. Mater. 8, 112 (2022).

    Article  CAS  Google Scholar 

  20. Chanussot, L. et al. Open Catalyst 2020 (OC20) dataset and community challenges. ACS Catal. 11, 6059–6072 (2021).

    Article  CAS  Google Scholar 

  21. Furness, J. W., Kaplan, A. D., Ning, J., Perdew, J. P. & Sun, J. Accurate and numerically efficient r2SCAN meta-generalized gradient approximation. J. Phys. Chem. Lett. 11, 8208–8215 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Kingsbury, R. et al. Performance comparison of r2SCAN and SCAN metaGGA density functionals for solid materials via an automated, high-throughput computational workflow. Phys. Rev. Mater. 6, 013801 (2022).

    Article  CAS  Google Scholar 

  23. Kingsbury, R. S. et al. A flexible and scalable scheme for mixing computed formation energies from different levels of theory. npj Comput. Mater. 8, 195 (2022).

    Article  Google Scholar 

  24. Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. Recent developments in the Inorganic Crystal Structure Database: theoretical crystal structure data and related features. J. Appl. Crystallogr. 52, 918–925 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Villars, P. et al. The Pauling File, Binaries Edition. J. Alloys Compd. 367, 293–297 (2004).

    Article  CAS  Google Scholar 

  26. Gražulis, S. et al. Crystallography Open Database – an open-access collection of crystal structures. J. Appl. Crystallogr. 42, 726–729 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials science literature. Nature 571, 95–98 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Jacobsson, T. J. et al. An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles. Nat. Energy 7, 107–115 (2021).

    Article  Google Scholar 

  29. Borysov, S. S., Geilhufe, R. M. & Balatsky, A. V. Organic materials database: an open-access online database for data mining. PLoS ONE 12, e0171501 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Landis, D. D. et al. The Computational Materials Repository. Comput. Sci. Eng. 14, 51–57 (2012).

    Article  Google Scholar 

  31. Schmidt, J. et al. Machine-learning-assisted determination of the global zero-temperature phase diagram of materials. Adv. Mater. 35, 2210788 (2023).

    Article  CAS  Google Scholar 

  32. Hautier, G., Fischer, C., Ehrlacher, V., Jain, A. & Ceder, G. Data mined ionic substitutions for the discovery of new compounds. Inorg. Chem. 50, 656–663 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Eckert, H. et al. The AFLOW library of crystallographic prototypes: part 4. Comput. Mater. Sci. 240, 112988 (2024).

    Article  CAS  Google Scholar 

  34. Ye, W., Lei, X., Aykol, M. & Montoya, J. H. Novel inorganic crystal structures predicted using autonomous simulation agents. Sci. Data 9, 302 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Woods-Robinson, R., Horton, M. K. & Persson, K. A. A method to computationally screen for tunable properties of crystalline alloys. Patterns 4, 100723 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barroso-Luque, L. et al. smol: a Python package for cluster expansions and beyond. J. Open Source Softw. 7, 4504 (2022).

    Article  Google Scholar 

  38. Scheffler, M. et al. FAIR data enabling new horizons for materials research. Nature 604, 635–642 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, C. & Ong, S. P. A universal graph deep learning interatomic potential for the periodic table. Nat. Comput. Sci. 2, 718–728 (2022).

    Article  PubMed  Google Scholar 

  40. Deng, B. et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell. 5, 1031–1041 (2023).

    Article  Google Scholar 

  41. Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source Python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article  CAS  Google Scholar 

  42. Huck, P. et al. User applications driven by the community contribution framework MPContribs in the Materials Project. Concurr. Comput. 28, 1982–1993 (2016).

    Article  Google Scholar 

  43. Ganose, A. et al. Atomate2: modular workflows for materials science. Preprint at https://doi.org/10.26434/chemrxiv-2025-tcr5h (2025).

  44. Ganose, A. et al. Atomate2 code repository. GitHub https://github.com/materialsproject/atomate2 (2025).

  45. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  46. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  47. Zimmermann, N. E. R. & Jain, A. Local structure order parameters and site fingerprints for quantification of coordination environment and crystal structure similarity. RSC Adv. 10, 6063–6081 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Waroquiers, D. et al. ChemEnv: a fast and robust coordination environment identification tool. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 76, 683–695 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ganose, A. M. & Jain, A. Robocrystallographer: automated crystal structure text descriptions and analysis. MRS Commun. 9, 874–881 (2019).

    Article  CAS  Google Scholar 

  50. McDermott, M. J., Dwaraknath, S. S. & Persson, K. A. A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis. Nat. Commun. 12, 3097 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McDermott, M. J. et al. Assessing thermodynamic selectivity of solid-state reactions for the predictive synthesis of inorganic materials. ACS Cent. Sci. 9, 1957–1975 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shen, J.-X., Horton, M. & Persson, K. A. A charge-density-based general cation insertion algorithm for generating new Li-ion cathode materials. npj Comput. Mater. 6, 161 (2020).

    Article  CAS  Google Scholar 

  53. Li, H. H., Shen, J.-X. & Persson, K. A. A rapid lithium-ion cathode discovery pipeline and its exemplary application. Energy Adv. https://doi.org/10.1039/D3YA00397C (2024).

  54. Shen, J.-X., Li, H. H., Rutt, A., Horton, M. K. & Persson, K. A. Topological graph-based analysis of solid-state ion migration. npj Comput. Mater. 9, 99 (2023).

    Article  Google Scholar 

  55. Rutt, A. et al. Expanding the material search space for multivalent cathodes. ACS Appl. Mater. Interfaces 14, 44367–44376 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huck, P., Jain, A., Gunter, D., Winston, D. & Persson, K. A community contribution framework for sharing materials data with materials project. In 2015 IEEE 11th International Conference on e-Science 535–541 (IEEE, 2015); https://doi.org/10.1109/eScience.2015.75

  57. Bauer, S. et al. Roadmap on data-centric materials science. Model. Simul. Mater. Sci. Eng. 32, 063301 (2024).

    Article  Google Scholar 

  58. Aykol, M. et al. High-throughput computational design of cathode coatings for Li-ion batteries. Nat. Commun. 7, 13779 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Luo, S., Li, T., Wang, X., Faizan, M. & Zhang, L. High-throughput computational materials screening and discovery of optoelectronic semiconductors. WIREs Comput. Mol. Sci. 11, e1489 (2021).

    Article  CAS  Google Scholar 

  60. Luo, X. & Xie, R.-J. Recent progress on discovery of novel phosphors for solid state lighting. J. Rare Earths 38, 464–473 (2020).

    Article  Google Scholar 

  61. Gorai, P., Stevanović, V. & Toberer, E. S. Computationally guided discovery of thermoelectric materials. Nat. Rev. Mater. 2, 17053 (2017).

    Article  CAS  Google Scholar 

  62. Talley, K. R., Sherbondy, R., Zakutayev, A. & Brennecka, G. L. Review of high-throughput approaches to search for piezoelectric nitrides. J. Vac. Sci. Technol. A 37, 060803 (2019).

    Article  Google Scholar 

  63. Singh, A. K., Gorelik, R. & Biswas, T. Data-driven discovery of robust materials for photocatalytic energy conversion. Annu. Rev. Condens. Matter Phys. 14, 237–259 (2023).

    Article  CAS  Google Scholar 

  64. Pan, J. & Yan, Q. Data-driven material discovery for photocatalysis: a short review. J. Semicond. 39, 071001 (2018).

    Article  Google Scholar 

  65. Zhao, S., Kan, E. & Li, Z. Electride: from computational characterization to theoretical design. WIREs Comput. Mol. Sci. 6, 430–440 (2016).

    Article  CAS  Google Scholar 

  66. Ren, E., Guilbaud, P. & Coudert, F.-X. High-throughput computational screening of nanoporous materials in targeted applications. Digit. Discov. 1, 355–374 (2022).

    Article  CAS  Google Scholar 

  67. Garcia, C. A. C., Bocarsly, J. D. & Seshadri, R. Computational screening of magnetocaloric alloys. Phys. Rev. Mater. 4, 024402 (2020).

    Article  CAS  Google Scholar 

  68. Shen, L., Zhou, J., Yang, T., Yang, M. & Feng, Y. P. High-throughput computational discovery and intelligent design of two-dimensional functional materials for various applications. Acc. Mater. Res. 3, 572–583 (2022).

    Article  CAS  Google Scholar 

  69. Su, Y. et al. High-throughput first-principle prediction of collinear magnetic topological materials. npj Comput. Mater. 8, 261 (2022).

    Article  Google Scholar 

  70. Frey, N. C. et al. High-throughput search for magnetic and topological order in transition metal oxides. Sci. Adv. 6, eabd1076 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gao, J. et al. High-throughput screening for Weyl semimetals with S4 symmetry. Sci. Bull. 66, 667–675 (2021).

    Article  Google Scholar 

  72. Ren, Z. et al. An invertible crystallographic representation for general inverse design of inorganic crystals with targeted properties. Matter 5, 314–335 (2022).

    Article  CAS  Google Scholar 

  73. Hautier, G., Miglio, A., Ceder, G., Rignanese, G.-M. & Gonze, X. Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nat. Commun. 4, 2292 (2013).

    Article  PubMed  Google Scholar 

  74. Ricci, F. et al. An ab initio electronic transport database for inorganic materials. Sci. Data 4, 170085 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bhatia, A. et al. High-mobility bismuth-based transparent p-type oxide from high-throughput material screening. Chem. Mater. 28, 30–34 (2016).

    Article  CAS  Google Scholar 

  76. Wang, Z. et al. Mining unexplored chemistries for phosphors for high-color-quality white-light-emitting diodes. Joule 2, 914–926 (2018).

    Article  CAS  Google Scholar 

  77. Li, S. et al. Data-driven discovery of full-visible-spectrum phosphor. Chem. Mater. 31, 6286–6294 (2019).

    Article  CAS  Google Scholar 

  78. Dunstan, M. T. et al. Large scale computational screening and experimental discovery of novel materials for high temperature CO2 capture. Energy Environ. Sci. 9, 1346–1360 (2016).

    Article  CAS  Google Scholar 

  79. Zhu, H. et al. Computational and experimental investigation of TmAgTe2 and XYZ2 compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening. J. Mater. Chem. C 3, 10554–10565 (2015).

    Article  CAS  Google Scholar 

  80. Aydemir, U. et al. YCuTe2: a member of a new class of thermoelectric materials with CuTe4-based layered structure. J. Mater. Chem. A 4, 2461–2472 (2016).

    Article  CAS  Google Scholar 

  81. Horton, M. K., Montoya, J. H., Liu, M. & Persson, K. A. High-throughput prediction of the ground-state collinear magnetic order of inorganic materials using density functional theory. npj Comput. Mater. 5, 64 (2019).

    Article  Google Scholar 

  82. Cooley, J. A. et al. From waste-heat recovery to refrigeration: compositional tuning of magnetocaloric Mn1+xSb. Chem. Mater. 32, 1243–1249 (2020).

    Article  CAS  Google Scholar 

  83. Burton, L. A., Ricci, F., Chen, W., Rignanese, G.-M. & Hautier, G. High-throughput identification of electrides from all known inorganic materials. Chem. Mater. 30, 7521–7526 (2018).

    Article  CAS  Google Scholar 

  84. Chanhom, P. et al. Sr3CrN3: a new electride with a partially filled d-shell transition metal. J. Am. Chem. Soc. 141, 10595–10598 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Tanaka, Y. et al. New oxyhalide solid electrolytes with high lithium ionic conductivity >10 mS cm−1 for all-solid-state batteries. Angew. Chem. Int. Ed. 62, e202217581 (2023).

    Article  CAS  Google Scholar 

  86. Zhuo, Y., Mansouri Tehrani, A., Oliynyk, A. O., Duke, A. C. & Brgoch, J. Identifying an efficient, thermally robust inorganic phosphor host via machine learning. Nat. Commun. 9, 4377 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Petretto, G. et al. High-throughput density-functional perturbation theory phonons for inorganic materials. Sci. Data 5, 180065 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Aykol, M., Montoya, J. H. & Hummelshøj, J. Rational solid-state synthesis routes for inorganic materials. J. Am. Chem. Soc. 143, 9244–9259 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Sivonxay, E. & Persson, K. A. Density functional theory assessment of the lithiation thermodynamics and phase evolution in Si-based amorphous binary alloys. Energy Storage Mater. 53, 42–50 (2022).

    Article  Google Scholar 

  90. Aykol, M., Dwaraknath, S. S., Sun, W. & Persson, K. A. Thermodynamic limit for synthesis of metastable inorganic materials. Sci. Adv. 4, eaaq0148 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Zheng, H. et al. The ab initio non-crystalline structure database: empowering machine learning to decode diffusivity. npj Comput. Mater. https://doi.org/10.1038/s41524-024-01469-2 (2024)

  92. Bartel, C. J. Review of computational approaches to predict the thermodynamic stability of inorganic solids. J. Mater. Sci. 57, 10475–10498 (2022).

    Article  CAS  Google Scholar 

  93. Raccuglia, P. et al. Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hautier, G., Jain, A. & Ong, S. P. From the computer to the laboratory: materials discovery and design using first-principles calculations. J. Mater. Sci. 47, 7317–7340 (2012).

    Article  CAS  Google Scholar 

  96. Jain, A., Shin, Y. & Persson, K. A. Computational predictions of energy materials using density functional theory. Nat. Rev. Mater. 1, 15004 (2016).

    Article  CAS  Google Scholar 

  97. Ko, T. W. & Ong, S. P. Recent advances and outstanding challenges for machine learning interatomic potentials. Nat. Comput. Sci. 3, 998–1000 (2023).

    Article  CAS  PubMed  Google Scholar 

  98. Fung, V., Ganesh, P. & Sumpter, B. G. Physically informed machine learning prediction of electronic density of states. Chem. Mater. 34, 4848–4855 (2022).

    Article  CAS  Google Scholar 

  99. Torrisi, S. B. et al. Random forest machine learning models for interpretable X-ray absorption near-edge structure spectrum–property relationships. npj Comput. Mater. 6, 109 (2020).

    Article  Google Scholar 

  100. Kong, S. et al. Density of states prediction for materials discovery via contrastive learning from probabilistic embeddings. Nat. Commun. 13, 949 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Shen, J.-X. et al. A representation-independent electronic charge density database for crystalline materials. Sci. Data 9, 661 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Dunn, A., Wang, Q., Ganose, A., Dopp, D. & Jain, A. Benchmarking materials property prediction methods: the Matbench test set and Automatminer reference algorithm. npj Comput. Mater. 6, 138 (2020).

    Article  Google Scholar 

  103. Wang, A. Y.-T., Kauwe, S. K., Murdock, R. J. & Sparks, T. D. Compositionally restricted attention-based network for materials property predictions. npj Comput. Mater. 7, 77 (2021).

    Article  Google Scholar 

  104. Cheng, G., Gong, X.-G. & Yin, W.-J. Crystal structure prediction by combining graph network and optimization algorithm. Nat. Commun. 13, 1492 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tadmor, E. B., Elliott, R. S., Sethna, J. P., Miller, R. E. & Becker, C. A. The potential of atomistic simulations and the knowledgebase of interatomic models. JOM 63, 17 (2011).

    Article  Google Scholar 

  106. Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Szymanski, N. J. et al. Toward autonomous design and synthesis of novel inorganic materials. Mater. Horiz. 8, 2169–2198 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Jain, A. et al. Formation enthalpies by mixing GGA and GGA + U calculations. Phys. Rev. B 84, 045115 (2011).

    Article  Google Scholar 

  110. de Jong, M., Chen, W., Geerlings, H., Asta, M. & Persson, K. A. A database to enable discovery and design of piezoelectric materials. Sci. Data 2, 150053 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  111. de Jong, M. et al. Charting the complete elastic properties of inorganic crystalline compounds. Sci. Data 2, 150009 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Tran, R. et al. Surface energies of elemental crystals. Sci. Data 3, 160080 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Petousis, I. et al. High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials. Sci. Data 4, 160134 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mathew, K. et al. High-throughput computational X-ray absorption spectroscopy. Sci. Data 5, 180151 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Latimer, K., Dwaraknath, S., Mathew, K., Winston, D. & Persson, K. A. Evaluation of thermodynamic equations of state across chemistry and structure in the Materials Project. npj Comput. Mater. 4, 40 (2018).

    Article  Google Scholar 

  116. Patel, A. M., Nørskov, J. K., Persson, K. A. & Montoya, J. H. Efficient Pourbaix diagrams of many-element compounds. Phys. Chem. Chem. Phys. 21, 25323–25327 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Zheng, H. et al. Grain boundary properties of elemental metals. Acta Mater. 186, 40–49 (2020).

    Article  CAS  Google Scholar 

  118. Bosoni, E. et al. How to verify the precision of density-functional-theory implementations via reproducible and universal workflows. Nat. Rev. Phys. 6, 45–58 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

This work was intellectually led by the Materials Project program KC23MP, supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05-CH11231. The Materials Project Collaboration includes the authors of this manuscript in addition to current and previous members of the Materials Project program, for example, developers of workflows for the prediction of various properties, plus contributors from the broader community acknowledged in this manuscript. We thank all users of the MP for their support and feedback. We thank all contributors to the MP software stack, without whom the MP would not be possible. A complete and up-to-date list of contributors is publicly available at GitHub (https://github.com/materialsproject#contributors). This research used resources of the National Energy Research Scientific Computing Center (NERSC), a Department of Energy User Facility using NERSC award BES-ERCAP 0032604. A.S.R. acknowledges support via a Miller Research Fellowship from the Miller Institute for Basic Research in Science, University of California, Berkeley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin A. Persson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Giulia Galli, Matthias Scheffler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horton, M.K., Huck, P., Yang, R.X. et al. Accelerated data-driven materials science with the Materials Project. Nat. Mater. 24, 1522–1532 (2025). https://doi.org/10.1038/s41563-025-02272-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41563-025-02272-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing