Abstract
Fatigue failure in metals remains a concern across engineering disciplines, substantially influencing the design, reliability and economic viability of essential load-bearing structure components. Despite notable advances in materials science, fatigue-induced failures—particularly in extreme applications such as deep-space exploration—continue to pose challenges owing to their inherent complex and unpredictable nature. This Perspective provides a concise overview of emerging frontiers in improving fatigue resistance, along with key advancements in our understanding of metal fatigue. It also explores current opportunities and challenges, ranging from the development of promising fatigue-resistant materials through spatially heterogeneous composition and microstructure design to innovations in testing methods, characterization techniques, theoretical frameworks and modelling methodologies for metal fatigue.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Suresh, S. Fatigue of Materials 2nd edn (Cambridge Univ. Press, 1998).
Peralta, P. & Laird, C. in Physical Metallurgy 5th edn (eds Laughlin D. E. & Hono K.) 1765–1880 (Elsevier, 2014).
Ashby, M. F. Materials Selection in Mechanical Design 3rd edn, 665 (Elsevier, 2004).
Meyers, M. A. & Chawla, K. K. Mechanical Behavior of Materials 2nd edn, 882 (Cambridge Univ. Press, 2009).
Pineau, A., McDowell, D. L., Busso, E. P. & Antolovich, S. D. Failure of metals II: Fatigue. Acta Mater. 107, 484–507 (2016).
Wöhler, A. Über die Festigkeitsversuche mit Eisen und Stahl. Z. Bauwes. 20, 73–106 (1870).
Ewing, J. A. & Humfrey, J. C. W. The fracture of metals under repeated alternations of stress. Philos. Trans. R. Soc. A 200, 241–250 (1903).
Mughrabi, H. Cyclic slip irreversibilities and the evolution of fatigue damage. Metall. Mater. Trans. B 40, 431–453 (2009).
Basquin, O. H. The exponential law of endurance tests. Proc. Am. Soc. Test. Mater. 10, 625–630 (1910).
Coffin, L. F. A study of the effects of cyclic thermal stresses on a ductile metal. Trans. Am. Inst. Min. Metall. Eng. 76, 931–950 (1954).
Manson, S. S. Behavior of Materials under Conditions of Thermal Stress (Lewis Flight Propulsion Laboratory, 1954).
Morrow, J. D. in Internal Friction, Damping and Cyclic Plasticity Special Technical Publication 378 (ed B. J. Lazan) 45–87 (ASTM, 1965).
Feltner, C. E. & Laird, C. Cyclic stress–strain response of fcc metals and alloys.1. Phenomenological experiments. Acta Metall. 15, 1621–1632 (1967).
Winter, A. T. Model for fatigue of copper at low plastic strain amplitudes. Philos. Mag. 30, 719–738 (1974).
Fine, M. E. Fatigue resistance of metals. Metall. Trans. A 11, 365–379 (1980).
Mughrabi, H. Cyclic hardening and saturation behavior of copper single-crystals. Mater. Sci. Eng. 33, 207–223 (1978).
Basinski, Z. S. & Basinski, S. J. Fundamental aspects of low amplitude cyclic deformation in face-centred cubic crystals. Prog. Mater. Sci. 36, 89–148 (1992).
Polák, J. & Klesnil, M. Cyclic stress–strain response and dislocation structures in polycrystalline copper. Mater. Sci. Eng. 63, 189–196 (1984).
Bathias, C. There is no infinite fatigue life in metallic materials. Fatigue Fract. Eng. Mater. Struct. 22, 559–565 (1999).
Zimmermann, M. Diversity of damage evolution during cyclic loading at very high numbers of cycles. Int. Mater. Rev. 57, 73–91 (2012).
Murphy, M. C. The engineering fatigue properties of wrought copper. Fatigue Eng. Mater. Struct. 4, 199–234 (1981).
Pang, J. C., Li, S. X., Wang, Z. G. & Zhang, Z. F. General relation between tensile strength and fatigue strength of metallic materials. Mater. Sci. Eng. A 564, 331–341 (2013).
Stinville, J. C. et al. On the origins of fatigue strength in crystalline metallic materials. Science 377, 1065–1071 (2022).
Qu, Z. et al. High fatigue resistance in a titanium alloy via near-void-free 3D printing. Nature 626, 999–1004 (2024).
Feng, R., An, K. & Liaw, P. K. Fatigue behavior and mechanisms of high-entropy alloys. High Entropy Alloys Mater. 1, 4–24 (2022).
Hull, D. & Bacon, D. J. Introduction to Dislocations 268 (Elsevier, 2011).
Paris, P. & Erdogan, F. A critical analysis of crack propagation laws. Trans. ASME 85, 528–533 (1963).
Agnew, S. R., Vinogradov, A. Y., Hashimoto, S. & Weertman, J. R. Overview of fatigue performance of Cu processed by severe plastic deformation. J. Electron. Mater. 28, 1038–1044 (1999).
Hanlon, T., Kwon, Y. N. & Suresh, S. Grain size effects on the fatigue response of nanocrystalline metals. Scr. Mater. 49, 675–680 (2003).
Mughrabi, H. & Höppel, H. W. Cyclic deformation and fatigue properties of very fine-grained metals and alloys. Int. J. Fatigue 32, 1413–1427 (2010).
Höppel, H. W., Zhou, Z. M., Mughrabi, H. & Valiev, R. Z. Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Philos. Mag. A 82, 1781–1794 (2002).
Long, J. Z. et al. Improved fatigue resistance of gradient nanograined Cu. Acta Mater. 166, 56–66 (2019).
Lu, L. et al. Ultrahigh strength and high electrical conductivity in copper. Science 304, 422–426 (2004).
Pan, Q. S. & Lu, L. Strain-controlled cyclic stability and properties of Cu with highly oriented nanoscale twins. Acta Mater. 81, 248–257 (2014).
Fang, T. H., Li, W. L., Tao, N. R. & Lu, K. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331, 1587–1590 (2011).
Roland, T., Retraint, D., Lu, K. & Lu, J. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scr. Mater. 54, 1949–1954 (2006).
Mughrabi, H. Fatigue, an everlasting materials problem—still en vogue. Proc. Eng. 2, 3–26 (2010).
Lavenstein, S. & El-Awady, J. A. Micro-scale fatigue mechanisms in metals: insights gained from small-scale experiments and discrete dislocation dynamics simulations. Curr. Opin. Solid State Mater. 23, 100765 (2019).
Echlin, M. P. et al. Serial sectioning in the SEM for three dimensional materials science. Curr. Opin. Solid State Mater. 24, 100817 (2020).
Stinville, J. C. et al. Insights into plastic localization by crystallographic slip from emerging experimental and numerical approaches. Annu. Rev. Mater. Res. 53, 275–317 (2023).
McEvily, A. J. & Boettner, R. C. On fatigue crack propagation in F.C.C. metals. Acta Metall. 11, 725–743 (1963).
Kim, W. H. & Laird, C. Crack nucleation and stage I propagation in high strain fatigue—2. Mechanism. Acta Metall. 26, 789–799 (1978).
Christ, H. J. On the orientation of cyclic-slip-induced intergranular fatigue cracks in face-centered cubic metals. Mater. Sci. Eng. A 117, L25–L29 (1989).
Zhang, Z. F. & Wang, Z. G. Grain boundary effects on cyclic deformation and fatigue damage. Prog. Mater. Sci. 53, 1025–1099 (2008).
Suresh, S. & Ritchie, R. O. A geometric model for fatigue crack closure induced by fracture surface-roughness. Metall. Trans. A 13, 1627–1631 (1982).
Lavenstein, S., Gu, Y., Madisetti, D. & El-Awady, J. A. The heterogeneity of persistent slip band nucleation and evolution in metals at the micrometer scale. Science 370, eabb2690 (2020).
Mughrabi, H. Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metall. 31, 1367–1379 (1983).
Thompson, N., Wadsworth, N. & Louat, N. The origin of fatigue fracture in copper. Philos. Mag. 1, 113–126 (1956).
Essmann, U., Gösele, U. & Mughrabi, H. A model of extrusions and intrusions in fatigued metals. 1. Point-defect production and the growth of extrusions. Philos. Mag. A 44, 405–426 (1981).
Polák, J. On the role of point defects in fatigue crack initiation. Mater. Sci. Eng. 92, 71–80 (1987).
Man, J., Obrtlík, K. & Polák, J. Extrusions and intrusions in fatigued metals. Part 1. State of the art and history. Philos. Mag. 89, 1295–1336 (2009).
Mughrabi, H., Ackermann, F. & Herz, K. in Fatigue Mechanisms Special Technical Publication 675 (ed. Fong, J. T.) 68–105 (ASTM, 1979).
Zhang, G. P. et al. Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater. 54, 3127–3139 (2006).
An, X. H., Wu, S. D., Wang, Z. G. & Zhang, Z. F. Significance of stacking fault energy in bulk nanostructured materials: insights from Cu and its binary alloys as model systems. Prog. Mater. Sci. 101, 1–45 (2019).
Pan, Q. S. et al. History-independent cyclic response of nanotwinned metals. Nature 551, 214–217 (2017).
Koyama, M. et al. Bone-like crack resistance in hierarchical metastable nanolaminate steels. Science 355, 1055–1057 (2017).
Gu, J. et al. Phase engineering of nanostructural metallic materials: classification, structures, and applications. Chem. Rev. 124, 1247–1287 (2024).
Pan, Q. S. & Lu, L. Improved fatigue resistance of gradient nanograined metallic materials: suppress strain localization and damage accumulation. Scr. Mater. 187, 301–306 (2020).
Inui, H., Hong, S. I. & Laird, C. A TEM study of dislocation-structures in fatigued Cu–16 at.% Al single crystals. Acta Metall. Mater. 38, 2261–2274 (1990).
Reed, R. The Superalloys: Fundamentals and Applications (Cambridge Univ. Press, 2006).
Skelton, R. P. High Temperature Fatigue—Properties and Prediction (Elsevier, 1987).
Pollock, T. M. & Tin, S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure, and properties. J. Propuls. Power 22, 361–374 (2006).
Antolovich, S. D., Liu, S. & Baur, R. Low-cycle fatigue behavior of René 80 at elevated temperature. Metall. Trans. A 12, 473–481 (1981).
Jin, T. et al. Research process on microstructural stability and mechanical behavior of advanced Ni-based single crystal superalloys. Acta Metall. Sin. 51, 1153–1162 (2015).
Cervellon, A. et al. Crack initiation mechanisms during very high cycle fatigue of Ni-based single crystal superalloys at high temperature. Acta Mater. 188, 131–144 (2020).
Pineau, A. & Antolovich, S. D. High temperature fatigue of nickel-base superalloys—a review with special emphasis on deformation modes and oxidation. Eng. Fail. Anal. 16, 2668–2697 (2009).
Neu, R. W. & Sehitoglu, H. Thermomechanical fatigue, oxidation, and creep. 1. Damage mechanisms. Metall. Trans. A 20, 1755–1767 (1989).
Gabb, T. P. et al. Fatigue resistance of the grain size transition zone in a dual microstructure superalloy disk. Int. J. Fatigue 33, 414–426 (2011).
Michel, H. T. et al. Mechanical properties of cast and wrought hybrid disks. In 13th International Symposium on Superalloys (eds Hardy, M. et al.) 539–548 (Wiley, 2016).
Latypova, M. A., Makhmutov, B. B. & Yerzhanov, A. S. Layered metal composites as a promising class of modern materials. Prog. Phys. Met. 25, 708–735 (2024).
Gao, K. et al. The deformation characteristics, fracture behavior and strengthening–toughening mechanisms of laminated metal composites: a review. Metals 10, 1–19 (2020).
Kanezaki, T. et al. Effects of hydrogen on fatigue crack growth behavior of austenitic stainless steels. Int. J. Hydrog. Energy 33, 2604–2619 (2008).
Adedipe, O., Brennan, F. & Kolios, A. Review of corrosion fatigue in offshore structures: present status and challenges in the offshore wind sector. Renew. Sust. Energy Rev. 61, 141–154 (2016).
Socie, D. & Marquis, G. Multiaxial Fatigue (Society of Automotive Engineers, 1999).
Foti, P., Mohammad Javad Razavi, S., Fatemi, A. & Berto, F. Multiaxial fatigue of additively manufactured metallic components: a review of the failure mechanisms and fatigue life prediction methodologies. Prog. Mater. Sci. 137, 101126 (2023).
Pan, Q. S. et al. Superior resistance to cyclic creep in a gradient structured steel. Science 388, 82–88 (2025).
Sanaei, N. & Fatemi, A. Defects in additive manufactured metals and their effect on fatigue performance: a state-of-the-art review. Prog. Mater. Sci. 117, 100724 (2021).
Dan, C. et al. Achieving ultrahigh fatigue resistance in AlSi10Mg alloy by additive manufacturing. Nat. Mater. 22, 1182–1188 (2023).
Yadollahi, A. & Shamsaei, N. Additive manufacturing of fatigue resistant materials: challenges and opportunities. Int. J. Fatigue 98, 14–31 (2017).
Martin, J. H. et al. 3D printing of high-strength aluminium alloys. Nature 549, 365–369 (2017).
Yeh, J. W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).
Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213–218 (2004).
George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).
Smith, T. M. et al. A 3D printable alloy designed for extreme environments. Nature 617, 513–518 (2023).
Gludovatz, B. et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016).
Liu, D. et al. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin. Science 378, 978–983 (2022).
Cowles, B. A. High cycle fatigue in aircraft gas turbines—an industry perspective. Int. J. Fract. 80, 147–163 (1996).
Stoecker, C., Zimmermann, M. & Christ, H.-J. Effect of precipitation condition, prestrain and temperature on the fatigue behaviour of wrought nickel-based superalloys in the VHCF range. Acta Mater. 59, 5288–5304 (2011).
Stinville, J. C. et al. Fatigue deformation in a polycrystalline nickel base superalloy at intermediate and high temperature: competing failure modes. Acta Mater. 152, 16–33 (2018).
Stephens, R., Chung, J. & Glinka, G. Low Temperature Fatigue Behavior of Steels—a Review Technical Paper 790517 (SAE, 1979).
Kim, S.-K. et al. Estimation of fatigue crack growth rate for 7% nickel steel under room and cryogenic temperatures using damage-coupled finite element analysis. Metals 5, 603–627 (2015).
Hart, G. L. W., Mueller, T., Toher, C. & Curtarolo, S. Machine learning for alloys. Nat. Rev. Mater. 6, 730–755 (2021).
Xu, Z. & Zhang, Z. The need for standardizing fatigue data reporting. Nat. Mater. 23, 866–868 (2024).
Differt, K., Essmann, U. & Mughrabi, H. A model of extrusions and intrusions in fatigued metals II. Surface roughening by random irreversible slip. Philos. Mag. A 54, 237–258 (1986).
Acknowledgements
L.L. would like to thank H. Mughrabi, Y. T. Zhu and G. P. Zhang for discussions and comments. We also acknowledge the financial support from the National Science Foundation of China (NSFC, grants 92463302, 92163202, U24A2027, 52471151 and 52122104), the International Partnership Program of Chinese Academy of Sciences (grant 172GJHZ2023075GC), Excellent Youth Innovation Promotion Association, Strategic Priority Research Program, CAS and LiaoNing Revitalization Talents Program (grant XLYC 2403211).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Materials thanks Jonathan Cormier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Pan, Q., Lu, L. Fatigue in metals and alloys. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02308-5
Received:
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s41563-025-02308-5


