Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Fatigue in metals and alloys

Abstract

Fatigue failure in metals remains a concern across engineering disciplines, substantially influencing the design, reliability and economic viability of essential load-bearing structure components. Despite notable advances in materials science, fatigue-induced failures—particularly in extreme applications such as deep-space exploration—continue to pose challenges owing to their inherent complex and unpredictable nature. This Perspective provides a concise overview of emerging frontiers in improving fatigue resistance, along with key advancements in our understanding of metal fatigue. It also explores current opportunities and challenges, ranging from the development of promising fatigue-resistant materials through spatially heterogeneous composition and microstructure design to innovations in testing methods, characterization techniques, theoretical frameworks and modelling methodologies for metal fatigue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Relationship between fatigue strength and tensile properties.
Fig. 2: Fatigue life under stress and strain control.
Fig. 3: Fatigue mechanisms of pure Cu with various microstructures.
Fig. 4: Fatigue mechanisms of alloys.

Similar content being viewed by others

References

  1. Suresh, S. Fatigue of Materials 2nd edn (Cambridge Univ. Press, 1998).

  2. Peralta, P. & Laird, C. in Physical Metallurgy 5th edn (eds Laughlin D. E. & Hono K.) 1765–1880 (Elsevier, 2014).

  3. Ashby, M. F. Materials Selection in Mechanical Design 3rd edn, 665 (Elsevier, 2004).

  4. Meyers, M. A. & Chawla, K. K. Mechanical Behavior of Materials 2nd edn, 882 (Cambridge Univ. Press, 2009).

  5. Pineau, A., McDowell, D. L., Busso, E. P. & Antolovich, S. D. Failure of metals II: Fatigue. Acta Mater. 107, 484–507 (2016).

    Article  CAS  Google Scholar 

  6. Wöhler, A. Über die Festigkeitsversuche mit Eisen und Stahl. Z. Bauwes. 20, 73–106 (1870).

    Google Scholar 

  7. Ewing, J. A. & Humfrey, J. C. W. The fracture of metals under repeated alternations of stress. Philos. Trans. R. Soc. A 200, 241–250 (1903).

    Google Scholar 

  8. Mughrabi, H. Cyclic slip irreversibilities and the evolution of fatigue damage. Metall. Mater. Trans. B 40, 431–453 (2009).

    Article  Google Scholar 

  9. Basquin, O. H. The exponential law of endurance tests. Proc. Am. Soc. Test. Mater. 10, 625–630 (1910).

    Google Scholar 

  10. Coffin, L. F. A study of the effects of cyclic thermal stresses on a ductile metal. Trans. Am. Inst. Min. Metall. Eng. 76, 931–950 (1954).

    CAS  Google Scholar 

  11. Manson, S. S. Behavior of Materials under Conditions of Thermal Stress (Lewis Flight Propulsion Laboratory, 1954).

  12. Morrow, J. D. in Internal Friction, Damping and Cyclic Plasticity Special Technical Publication 378 (ed B. J. Lazan) 45–87 (ASTM, 1965).

  13. Feltner, C. E. & Laird, C. Cyclic stress–strain response of fcc metals and alloys.1. Phenomenological experiments. Acta Metall. 15, 1621–1632 (1967).

    Article  CAS  Google Scholar 

  14. Winter, A. T. Model for fatigue of copper at low plastic strain amplitudes. Philos. Mag. 30, 719–738 (1974).

    Article  CAS  Google Scholar 

  15. Fine, M. E. Fatigue resistance of metals. Metall. Trans. A 11, 365–379 (1980).

    Article  Google Scholar 

  16. Mughrabi, H. Cyclic hardening and saturation behavior of copper single-crystals. Mater. Sci. Eng. 33, 207–223 (1978).

    Article  CAS  Google Scholar 

  17. Basinski, Z. S. & Basinski, S. J. Fundamental aspects of low amplitude cyclic deformation in face-centred cubic crystals. Prog. Mater. Sci. 36, 89–148 (1992).

    Article  CAS  Google Scholar 

  18. Polák, J. & Klesnil, M. Cyclic stress–strain response and dislocation structures in polycrystalline copper. Mater. Sci. Eng. 63, 189–196 (1984).

    Article  Google Scholar 

  19. Bathias, C. There is no infinite fatigue life in metallic materials. Fatigue Fract. Eng. Mater. Struct. 22, 559–565 (1999).

    Article  CAS  Google Scholar 

  20. Zimmermann, M. Diversity of damage evolution during cyclic loading at very high numbers of cycles. Int. Mater. Rev. 57, 73–91 (2012).

    Article  CAS  Google Scholar 

  21. Murphy, M. C. The engineering fatigue properties of wrought copper. Fatigue Eng. Mater. Struct. 4, 199–234 (1981).

    Article  CAS  Google Scholar 

  22. Pang, J. C., Li, S. X., Wang, Z. G. & Zhang, Z. F. General relation between tensile strength and fatigue strength of metallic materials. Mater. Sci. Eng. A 564, 331–341 (2013).

    Article  CAS  Google Scholar 

  23. Stinville, J. C. et al. On the origins of fatigue strength in crystalline metallic materials. Science 377, 1065–1071 (2022).

    Article  CAS  Google Scholar 

  24. Qu, Z. et al. High fatigue resistance in a titanium alloy via near-void-free 3D printing. Nature 626, 999–1004 (2024).

    Article  CAS  Google Scholar 

  25. Feng, R., An, K. & Liaw, P. K. Fatigue behavior and mechanisms of high-entropy alloys. High Entropy Alloys Mater. 1, 4–24 (2022).

    Article  Google Scholar 

  26. Hull, D. & Bacon, D. J. Introduction to Dislocations 268 (Elsevier, 2011).

  27. Paris, P. & Erdogan, F. A critical analysis of crack propagation laws. Trans. ASME 85, 528–533 (1963).

    Article  CAS  Google Scholar 

  28. Agnew, S. R., Vinogradov, A. Y., Hashimoto, S. & Weertman, J. R. Overview of fatigue performance of Cu processed by severe plastic deformation. J. Electron. Mater. 28, 1038–1044 (1999).

    Article  CAS  Google Scholar 

  29. Hanlon, T., Kwon, Y. N. & Suresh, S. Grain size effects on the fatigue response of nanocrystalline metals. Scr. Mater. 49, 675–680 (2003).

    Article  CAS  Google Scholar 

  30. Mughrabi, H. & Höppel, H. W. Cyclic deformation and fatigue properties of very fine-grained metals and alloys. Int. J. Fatigue 32, 1413–1427 (2010).

    Article  CAS  Google Scholar 

  31. Höppel, H. W., Zhou, Z. M., Mughrabi, H. & Valiev, R. Z. Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Philos. Mag. A 82, 1781–1794 (2002).

    Article  Google Scholar 

  32. Long, J. Z. et al. Improved fatigue resistance of gradient nanograined Cu. Acta Mater. 166, 56–66 (2019).

    Article  CAS  Google Scholar 

  33. Lu, L. et al. Ultrahigh strength and high electrical conductivity in copper. Science 304, 422–426 (2004).

    Article  CAS  Google Scholar 

  34. Pan, Q. S. & Lu, L. Strain-controlled cyclic stability and properties of Cu with highly oriented nanoscale twins. Acta Mater. 81, 248–257 (2014).

    Article  CAS  Google Scholar 

  35. Fang, T. H., Li, W. L., Tao, N. R. & Lu, K. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 331, 1587–1590 (2011).

    Article  CAS  Google Scholar 

  36. Roland, T., Retraint, D., Lu, K. & Lu, J. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment. Scr. Mater. 54, 1949–1954 (2006).

    Article  CAS  Google Scholar 

  37. Mughrabi, H. Fatigue, an everlasting materials problem—still en vogue. Proc. Eng. 2, 3–26 (2010).

    Article  CAS  Google Scholar 

  38. Lavenstein, S. & El-Awady, J. A. Micro-scale fatigue mechanisms in metals: insights gained from small-scale experiments and discrete dislocation dynamics simulations. Curr. Opin. Solid State Mater. 23, 100765 (2019).

    Article  CAS  Google Scholar 

  39. Echlin, M. P. et al. Serial sectioning in the SEM for three dimensional materials science. Curr. Opin. Solid State Mater. 24, 100817 (2020).

    Article  CAS  Google Scholar 

  40. Stinville, J. C. et al. Insights into plastic localization by crystallographic slip from emerging experimental and numerical approaches. Annu. Rev. Mater. Res. 53, 275–317 (2023).

    Article  CAS  Google Scholar 

  41. McEvily, A. J. & Boettner, R. C. On fatigue crack propagation in F.C.C. metals. Acta Metall. 11, 725–743 (1963).

    Article  Google Scholar 

  42. Kim, W. H. & Laird, C. Crack nucleation and stage I propagation in high strain fatigue—2. Mechanism. Acta Metall. 26, 789–799 (1978).

    Article  CAS  Google Scholar 

  43. Christ, H. J. On the orientation of cyclic-slip-induced intergranular fatigue cracks in face-centered cubic metals. Mater. Sci. Eng. A 117, L25–L29 (1989).

    Article  Google Scholar 

  44. Zhang, Z. F. & Wang, Z. G. Grain boundary effects on cyclic deformation and fatigue damage. Prog. Mater. Sci. 53, 1025–1099 (2008).

    Article  Google Scholar 

  45. Suresh, S. & Ritchie, R. O. A geometric model for fatigue crack closure induced by fracture surface-roughness. Metall. Trans. A 13, 1627–1631 (1982).

    Article  Google Scholar 

  46. Lavenstein, S., Gu, Y., Madisetti, D. & El-Awady, J. A. The heterogeneity of persistent slip band nucleation and evolution in metals at the micrometer scale. Science 370, eabb2690 (2020).

    Article  CAS  Google Scholar 

  47. Mughrabi, H. Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metall. 31, 1367–1379 (1983).

    Article  CAS  Google Scholar 

  48. Thompson, N., Wadsworth, N. & Louat, N. The origin of fatigue fracture in copper. Philos. Mag. 1, 113–126 (1956).

    Article  CAS  Google Scholar 

  49. Essmann, U., Gösele, U. & Mughrabi, H. A model of extrusions and intrusions in fatigued metals. 1. Point-defect production and the growth of extrusions. Philos. Mag. A 44, 405–426 (1981).

    Article  CAS  Google Scholar 

  50. Polák, J. On the role of point defects in fatigue crack initiation. Mater. Sci. Eng. 92, 71–80 (1987).

    Article  Google Scholar 

  51. Man, J., Obrtlík, K. & Polák, J. Extrusions and intrusions in fatigued metals. Part 1. State of the art and history. Philos. Mag. 89, 1295–1336 (2009).

    Article  CAS  Google Scholar 

  52. Mughrabi, H., Ackermann, F. & Herz, K. in Fatigue Mechanisms Special Technical Publication 675 (ed. Fong, J. T.) 68–105 (ASTM, 1979).

  53. Zhang, G. P. et al. Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater. 54, 3127–3139 (2006).

    Article  CAS  Google Scholar 

  54. An, X. H., Wu, S. D., Wang, Z. G. & Zhang, Z. F. Significance of stacking fault energy in bulk nanostructured materials: insights from Cu and its binary alloys as model systems. Prog. Mater. Sci. 101, 1–45 (2019).

    Article  CAS  Google Scholar 

  55. Pan, Q. S. et al. History-independent cyclic response of nanotwinned metals. Nature 551, 214–217 (2017).

    Article  CAS  Google Scholar 

  56. Koyama, M. et al. Bone-like crack resistance in hierarchical metastable nanolaminate steels. Science 355, 1055–1057 (2017).

    Article  CAS  Google Scholar 

  57. Gu, J. et al. Phase engineering of nanostructural metallic materials: classification, structures, and applications. Chem. Rev. 124, 1247–1287 (2024).

    Article  CAS  Google Scholar 

  58. Pan, Q. S. & Lu, L. Improved fatigue resistance of gradient nanograined metallic materials: suppress strain localization and damage accumulation. Scr. Mater. 187, 301–306 (2020).

    Article  CAS  Google Scholar 

  59. Inui, H., Hong, S. I. & Laird, C. A TEM study of dislocation-structures in fatigued Cu–16 at.% Al single crystals. Acta Metall. Mater. 38, 2261–2274 (1990).

    Article  CAS  Google Scholar 

  60. Reed, R. The Superalloys: Fundamentals and Applications (Cambridge Univ. Press, 2006).

  61. Skelton, R. P. High Temperature Fatigue—Properties and Prediction (Elsevier, 1987).

  62. Pollock, T. M. & Tin, S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure, and properties. J. Propuls. Power 22, 361–374 (2006).

    Article  CAS  Google Scholar 

  63. Antolovich, S. D., Liu, S. & Baur, R. Low-cycle fatigue behavior of René 80 at elevated temperature. Metall. Trans. A 12, 473–481 (1981).

    Article  CAS  Google Scholar 

  64. Jin, T. et al. Research process on microstructural stability and mechanical behavior of advanced Ni-based single crystal superalloys. Acta Metall. Sin. 51, 1153–1162 (2015).

    CAS  Google Scholar 

  65. Cervellon, A. et al. Crack initiation mechanisms during very high cycle fatigue of Ni-based single crystal superalloys at high temperature. Acta Mater. 188, 131–144 (2020).

    Article  CAS  Google Scholar 

  66. Pineau, A. & Antolovich, S. D. High temperature fatigue of nickel-base superalloys—a review with special emphasis on deformation modes and oxidation. Eng. Fail. Anal. 16, 2668–2697 (2009).

    Article  CAS  Google Scholar 

  67. Neu, R. W. & Sehitoglu, H. Thermomechanical fatigue, oxidation, and creep. 1. Damage mechanisms. Metall. Trans. A 20, 1755–1767 (1989).

    Article  Google Scholar 

  68. Gabb, T. P. et al. Fatigue resistance of the grain size transition zone in a dual microstructure superalloy disk. Int. J. Fatigue 33, 414–426 (2011).

    Article  CAS  Google Scholar 

  69. Michel, H. T. et al. Mechanical properties of cast and wrought hybrid disks. In 13th International Symposium on Superalloys (eds Hardy, M. et al.) 539–548 (Wiley, 2016).

  70. Latypova, M. A., Makhmutov, B. B. & Yerzhanov, A. S. Layered metal composites as a promising class of modern materials. Prog. Phys. Met. 25, 708–735 (2024).

    Google Scholar 

  71. Gao, K. et al. The deformation characteristics, fracture behavior and strengthening–toughening mechanisms of laminated metal composites: a review. Metals 10, 1–19 (2020).

    Google Scholar 

  72. Kanezaki, T. et al. Effects of hydrogen on fatigue crack growth behavior of austenitic stainless steels. Int. J. Hydrog. Energy 33, 2604–2619 (2008).

    Article  CAS  Google Scholar 

  73. Adedipe, O., Brennan, F. & Kolios, A. Review of corrosion fatigue in offshore structures: present status and challenges in the offshore wind sector. Renew. Sust. Energy Rev. 61, 141–154 (2016).

    Article  Google Scholar 

  74. Socie, D. & Marquis, G. Multiaxial Fatigue (Society of Automotive Engineers, 1999).

  75. Foti, P., Mohammad Javad Razavi, S., Fatemi, A. & Berto, F. Multiaxial fatigue of additively manufactured metallic components: a review of the failure mechanisms and fatigue life prediction methodologies. Prog. Mater. Sci. 137, 101126 (2023).

    Article  Google Scholar 

  76. Pan, Q. S. et al. Superior resistance to cyclic creep in a gradient structured steel. Science 388, 82–88 (2025).

    Article  CAS  Google Scholar 

  77. Sanaei, N. & Fatemi, A. Defects in additive manufactured metals and their effect on fatigue performance: a state-of-the-art review. Prog. Mater. Sci. 117, 100724 (2021).

    Article  CAS  Google Scholar 

  78. Dan, C. et al. Achieving ultrahigh fatigue resistance in AlSi10Mg alloy by additive manufacturing. Nat. Mater. 22, 1182–1188 (2023).

    Article  CAS  Google Scholar 

  79. Yadollahi, A. & Shamsaei, N. Additive manufacturing of fatigue resistant materials: challenges and opportunities. Int. J. Fatigue 98, 14–31 (2017).

    Article  Google Scholar 

  80. Martin, J. H. et al. 3D printing of high-strength aluminium alloys. Nature 549, 365–369 (2017).

    Article  CAS  Google Scholar 

  81. Yeh, J. W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).

    Article  CAS  Google Scholar 

  82. Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213–218 (2004).

    Article  Google Scholar 

  83. George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).

    Article  CAS  Google Scholar 

  84. Smith, T. M. et al. A 3D printable alloy designed for extreme environments. Nature 617, 513–518 (2023).

    Article  CAS  Google Scholar 

  85. Gludovatz, B. et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016).

    Article  CAS  Google Scholar 

  86. Liu, D. et al. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin. Science 378, 978–983 (2022).

    Article  CAS  Google Scholar 

  87. Cowles, B. A. High cycle fatigue in aircraft gas turbines—an industry perspective. Int. J. Fract. 80, 147–163 (1996).

    Article  CAS  Google Scholar 

  88. Stoecker, C., Zimmermann, M. & Christ, H.-J. Effect of precipitation condition, prestrain and temperature on the fatigue behaviour of wrought nickel-based superalloys in the VHCF range. Acta Mater. 59, 5288–5304 (2011).

    Article  CAS  Google Scholar 

  89. Stinville, J. C. et al. Fatigue deformation in a polycrystalline nickel base superalloy at intermediate and high temperature: competing failure modes. Acta Mater. 152, 16–33 (2018).

    Article  CAS  Google Scholar 

  90. Stephens, R., Chung, J. & Glinka, G. Low Temperature Fatigue Behavior of Steels—a Review Technical Paper 790517 (SAE, 1979).

  91. Kim, S.-K. et al. Estimation of fatigue crack growth rate for 7% nickel steel under room and cryogenic temperatures using damage-coupled finite element analysis. Metals 5, 603–627 (2015).

    Article  Google Scholar 

  92. Hart, G. L. W., Mueller, T., Toher, C. & Curtarolo, S. Machine learning for alloys. Nat. Rev. Mater. 6, 730–755 (2021).

    Article  Google Scholar 

  93. Xu, Z. & Zhang, Z. The need for standardizing fatigue data reporting. Nat. Mater. 23, 866–868 (2024).

    Article  CAS  Google Scholar 

  94. Differt, K., Essmann, U. & Mughrabi, H. A model of extrusions and intrusions in fatigued metals II. Surface roughening by random irreversible slip. Philos. Mag. A 54, 237–258 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L.L. would like to thank H. Mughrabi, Y. T. Zhu and G. P. Zhang for discussions and comments. We also acknowledge the financial support from the National Science Foundation of China (NSFC, grants 92463302, 92163202, U24A2027, 52471151 and 52122104), the International Partnership Program of Chinese Academy of Sciences (grant 172GJHZ2023075GC), Excellent Youth Innovation Promotion Association, Strategic Priority Research Program, CAS and LiaoNing Revitalization Talents Program (grant XLYC 2403211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Jonathan Cormier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Q., Lu, L. Fatigue in metals and alloys. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02308-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41563-025-02308-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing