Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular afterglow imaging for biomedical applications

This article has been updated

Abstract

Afterglow imaging is an emerging optical modality using agents that emit long-lasting luminescence after excitation ceases to eliminate tissue autofluorescence and improve signal-to-background ratios, achieving high imaging sensitivity and deep tissue penetration. Here we review recent advances in molecular afterglow imaging for biomedical applications, highlighting the materials and mechanisms involved in afterglow imaging modalities induced by light, ultrasound and ionizing radiation, termed photoafterglow, sonoafterglow and radioafterglow, respectively. We describe strategies to modulate the lifetime, intensity and wavelength of afterglow materials and principles for designing afterglow imaging probes that feature biomarker-activatable signal readouts and optimal biophysical properties for in vivo applications. We also highlight the applications of afterglow materials in disease diagnosis, imaging-guided therapy and in vitro diagnostics, and discuss the current challenges in the clinical translation of these technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of afterglow imaging.
Fig. 2: Representative materials for afterglow luminescence.
Fig. 3: General mechanism of afterglow luminescence.
Fig. 4: Modulating the optical properties of afterglow materials.
Fig. 5: Biomarker-activatable design and biophysical considerations.
Fig. 6: Afterglow imaging for in vivo diagnosis.
Fig. 7: Afterglow-guided therapy.
Fig. 8: Photoafterglow-based IVD.

Similar content being viewed by others

Change history

  • 19 September 2025

    In the version of the article initially published, there was an error in the first affiliation which has now been corrected to read "School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore" in the HTML and PDF versions of the article.

References

  1. Weissleder, R. & Pittet, M. J. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. James, M. L. & Gambhir, S. S. A molecular imaging primer: modalities, imaging agents, and applications. Physiol. Rev. 92, 897–965 (2012).

    Article  PubMed  CAS  Google Scholar 

  3. Hong, G. et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photon. 8, 723–730 (2014).

    Article  CAS  Google Scholar 

  4. Koch, M., Symvoulidis, P. & Ntziachristos, V. Tackling standardization in fluorescence molecular imaging. Nat. Photon. 12, 505–515 (2018).

    Article  CAS  Google Scholar 

  5. Jiang, Y. & Pu, K. Molecular probes for autofluorescence-free optical imaging. Chem. Rev. 121, 13086–13131 (2021).

    Article  PubMed  CAS  Google Scholar 

  6. Chen, Y., Wang, S. & Zhang, F. Near-infrared luminescence high-contrast in vivo biomedical imaging. Nat. Rev. Bioeng. 1, 60–78 (2023).

    Article  CAS  Google Scholar 

  7. An, Z. et al. Stabilizing triplet excited states for ultralong organic phosphorescence. Nat. Mater. 14, 685–690 (2015).

    Article  PubMed  CAS  Google Scholar 

  8. Zhen, X. et al. Ultralong phosphorescence of water-soluble organic nanoparticles for in vivo afterglow imaging. Adv. Mater. 29, 1606665 (2017).

    Article  Google Scholar 

  9. He, Z. et al. Achieving persistent, efficient, and robust room‐temperature phosphorescence from pure organics for versatile applications. Adv. Mater. 31, 1807222 (2019).

    Article  Google Scholar 

  10. Xiao, F. et al. Guest-host doped strategy for constructing ultralong-lifetime near-infrared organic phosphorescence materials for bioimaging. Nat. Commun. 13, 186 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Ran, C. & Pu, K. Molecularly generated light and its biomedical applications. Angew. Chem. Int. Ed. 63, e202314468 (2024).

    Article  CAS  Google Scholar 

  12. le Masne de Chermont, Q. et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl Acad. Sci. USA 104, 9266–9271 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Maldiney, T. et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 13, 418–426 (2014).

    Article  PubMed  CAS  Google Scholar 

  14. Palner, M., Pu, K., Shao, S. & Rao, J. Semiconducting polymer nanoparticles with persistent near-infrared luminescence for in vivo optical imaging. Angew. Chem. Int. Ed. 54, 11477–11480 (2015).

    Article  CAS  Google Scholar 

  15. Miao, Q. et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 35, 1102–1110 (2017).

    Article  PubMed  CAS  Google Scholar 

  16. Pei, P. et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol. 16, 1011–1018 (2021).

    Article  PubMed  CAS  Google Scholar 

  17. Xu, C. et al. Nanoparticles with ultrasound-induced afterglow luminescence for tumour-specific theranostics. Nat. Biomed. Eng. 7, 298–312 (2023).

    Article  PubMed  CAS  Google Scholar 

  18. Huang, J. et al. Molecular radio afterglow probes for cancer radiodynamic theranostics. Nat. Mater. 22, 1421–1429 (2023).

    Article  PubMed  Google Scholar 

  19. Kobayashi, H., Ogawa, M., Alford, R., Choyke, P. L. & Urano, Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 110, 2620–2640 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Maldiney, T. et al. Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. J. Am. Chem. Soc. 133, 11810–11815 (2011).

    Article  PubMed  CAS  Google Scholar 

  21. Abdukayum, A., Chen, J. T., Zhao, Q. & Yan, X. P. Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging. J. Am. Chem. Soc. 135, 14125–14133 (2013).

    Article  PubMed  CAS  Google Scholar 

  22. Pan, Z., Lu, Y. Y. & Liu, F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr(3+)-doped zinc gallogermanates. Nat. Mater. 11, 58–63 (2011).

    Article  PubMed  Google Scholar 

  23. Li, Z. et al. Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable near-infrared persistent luminescence. J. Am. Chem. Soc. 137, 5304–5307 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Huang, K. et al. Three-dimensional colloidal controlled growth of core-shell heterostructured persistent luminescence nanocrystals. Nano Lett. 21, 4903–4910 (2021).

    Article  PubMed  CAS  Google Scholar 

  25. Yang, F. et al. A biomineral-inspired approach of synthesizing colloidal persistent phosphors as a multicolor, intravital light source. Sci. Adv. 8, eabo6743 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wang, J., Li, J., Yu, J., Zhang, H. & Zhang, B. Large hollow cavity luminous nanoparticles with near-infrared persistent luminescence and tunable sizes for tumor afterglow imaging and chemo-/photodynamic therapies. ACS Nano 12, 4246–4258 (2018).

    Article  PubMed  CAS  Google Scholar 

  27. Wang, J. et al. Facile and controllable synthesis of the renal-clearable “luminous pearls” for in vivo afterglow/magnetic resonance imaging. ACS Nano 16, 462–472 (2021).

    Article  PubMed  Google Scholar 

  28. Li, Z. et al. In vivo repeatedly charging near-infrared-emitting mesoporous SiO2/ZnGa2O4:Cr3+ persistent luminescence nanocomposites. Adv. Sci. 2, 1500001 (2015).

    Article  Google Scholar 

  29. Li, Z. et al. Enhancing rechargeable persistent luminescence via organic dye sensitization. Angew. Chem. Int. Ed. Engl 60, 15886–15890 (2021).

    Article  PubMed  CAS  Google Scholar 

  30. Xu, Y. et al. An aggregation-induced emission dye-powered afterglow luminogen for tumor imaging. Chem. Sci. 11, 419–428 (2020).

    Article  PubMed  CAS  Google Scholar 

  31. Jiang, Y. et al. A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging. Nat. Commun. 10, 2064 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wei, X. et al. Highly bright near-infrared chemiluminescent probes for cancer imaging and laparotomy. Angew. Chem. Int. Ed. 62, e202213791 (2023).

    Article  CAS  Google Scholar 

  33. Yang, J. et al. Turn-on chemiluminescence probes and dual-amplification of signal for detection of amyloid beta species in vivo. Nat. Commun. 11, 4052 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Li, Y. et al. Single‐component photochemical afterglow near‐infrared luminescent nano‐photosensitizers: bioimaging and photodynamic therapy. Adv. Health. Mater. 13, 2304392 (2024).

    Article  CAS  Google Scholar 

  35. Li, J. et al. Building highly light‐harvesting near‐infrared aiegens using triazole‐based luminescent core for improved intravital afterglow imaging. Adv. Funct. Mater. 33, 2212380 (2023).

    Article  CAS  Google Scholar 

  36. Cui, D., Xie, C., Li, J., Lyu, Y. & Pu, K. Semiconducting photosensitizer-incorporated copolymers as near-infrared afterglow nanoagents for tumor imaging. Adv. Health. Mater. 7, e1800329 (2018).

    Article  Google Scholar 

  37. Liao, S. et al. A novel afterglow nanoreporter for monitoring cancer therapy. Theranostics 12, 6883 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Yang, L. et al. A highly bright near-infrared afterglow luminophore for activatable ultrasensitive in vivo imaging. Angew. Chem. Int. Ed. 63, e202313117 (2024).

    Article  CAS  Google Scholar 

  39. Su, X. et al. Enhanced blue afterglow through molecular fusion for bio-applications. Angew. Chem. Int. Ed. 61, e202201630 (2022).

    Article  CAS  Google Scholar 

  40. Zheng, G. S. et al. Photooxidation triggered ultralong afterglow in carbon nanodots. Nat. Commun. 15, 2365 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Chen, W. et al. Near-infrared afterglow luminescence of chlorin nanoparticles for ultrasensitive in vivo imaging. J. Am. Chem. Soc. 144, 6719–6726 (2022).

    Article  PubMed  CAS  Google Scholar 

  42. Zhu, J. et al. A self-sustaining near-infrared afterglow chemiluminophore for high-contrast activatable imaging. Angew. Chem. Int. Ed. 63, e202318545 (2024).

    Article  CAS  Google Scholar 

  43. Duan, X. et al. Activatable persistent luminescence from porphyrin derivatives and supramolecular probes with imaging-modality transformable characteristics for improved biological applications. Angew. Chem. Int. Ed. 61, e202116174 (2022).

    Article  CAS  Google Scholar 

  44. Juengpanich, S. et al. Pre-activated nanoparticles with persistent luminescence for deep tumor photodynamic therapy in gallbladder cancer. Nat. Commun. 14, 5699 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Liu, Y., Teng, L., Lou, X. F., Zhang, X. B. & Song, G. Four-in-one” design of a hemicyanine-based modular scaffold for high-contrast activatable molecular afterglow imaging. J. Am. Chem. Soc. 145, 5134–5144 (2023).

    Article  PubMed  CAS  Google Scholar 

  46. Li, Z. et al. Superoxide anion-mediated afterglow mechanism-based water-soluble zwitterion dye achieving renal-failure mice detection. J. Am. Chem. Soc. 145, 26736–26746 (2023).

    Article  PubMed  CAS  Google Scholar 

  47. Lawrence, J. P. Physics and instrumentation of ultrasound. Crit. Care Med. 35, S314–S322 (2007).

    Article  PubMed  Google Scholar 

  48. Baker, K. G., Robertson, V. J. & Duck, F. A. A review of therapeutic ultrasound: biophysical effects. Phys. Ther. 81, 1351–1358 (2001).

    Article  PubMed  CAS  Google Scholar 

  49. Cafarelli, A. et al. Piezoelectric nanomaterials activated by ultrasound: the pathway from discovery to future clinical adoption. ACS Nano 15, 11066–11086 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Van der Heggen, D. et al. Persistent luminescence in strontium aluminate: a roadmap to a brighter future. Adv. Funct. Mater. 32, 2208809 (2022).

    Article  Google Scholar 

  51. Zhou, D. et al. Ultrasound-activated persistent luminescence imaging and bacteria-triggered drug release for Helicobacter pylori infection theranostics. ACS Appl. Mater. Interf. 14, 26418–26430 (2022).

    Article  CAS  Google Scholar 

  52. Zhang, Z. et al. Ultrasound-chargeable persistent luminescence nanoparticles to generate self-propelled motion and photothermal/NO therapy for synergistic tumor treatment. ACS Nano 17, 16089–16106 (2023).

    Article  PubMed  CAS  Google Scholar 

  53. Wu, R. et al. Ultrasound-activated NIR chemiluminescence for deep tissue and tumor foci imaging. Anal. Chem. 95, 11219–11226 (2023).

    Article  PubMed  CAS  Google Scholar 

  54. Wang, W. et al. Ultrasound triggered organic mechanoluminescence materials. Adv. Drug Deliv. Rev. 186, 114343 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Wang, Y. et al. In vivo ultrasound-induced luminescence molecular imaging. Nat. Photon. 18, 334–343 (2024).

    Article  CAS  Google Scholar 

  56. Son, S. et al. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem. Soc. Rev. 49, 3244–3261 (2020).

    Article  PubMed  CAS  Google Scholar 

  57. Alessio, A. M., Kinahan, P. E., Cheng, P. M., Vesselle, H. & Karp, J. S. PET/CT scanner instrumentation, challenges, and solutions. Radiol. Clin. North Am. 42, 1017–1032 (2004).

  58. Chen, X., Song, J., Chen, X. & Yang, H. X-ray-activated nanosystems for theranostic applications. Chem. Soc. Rev. 48, 3073–3101 (2019).

    Article  PubMed  CAS  Google Scholar 

  59. Chen, H. et al. LiGa5O8:Cr-based theranostic nanoparticles for imaging-guided X-ray induced photodynamic therapy of deep-seated tumors. Mater. Horiz. 4, 1092–1101 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Chen, Z. Z. et al. Low dose of X-ray-excited long-lasting luminescent concave nanocubes in highly passive targeting deep-seated hepatic tumors. Adv. Mater. 31, e1905087 (2019).

    Article  PubMed  Google Scholar 

  61. Ding, D. et al. X-ray-activated simultaneous near-infrared and short-wave infrared persistent luminescence imaging for long-term tracking of drug delivery. ACS Appl. Mater. Interf. 13, 16166–16172 (2021).

    Article  CAS  Google Scholar 

  62. Wang, X. et al. Organic phosphorescent nanoscintillator for low-dose X-ray-induced photodynamic therapy. Nat. Commun. 13, 5091 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Huang, J. et al. Chemiluminescent probes with long-lasting high brightness for in vivo imaging of neutrophils. Angew. Chem. Int. Ed. 61, e202203235 (2022).

    Article  CAS  Google Scholar 

  64. Tannous, R. et al. Spirostrain-accelerated chemiexcitation of dioxetanes yields unprecedented detection sensitivity in chemiluminescence bioassays. ACS Cent. Sci. 10, 28–42 (2024).

    Article  PubMed  CAS  Google Scholar 

  65. Wang, X. et al. Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence. Nat. Photon. 15, 187–192 (2021).

    Article  CAS  Google Scholar 

  66. Li, L. et al. Mechanism of the trivalent lanthanides’ persistent luminescence in wide bandgap materials. Light. Sci. Appl. 11, 51 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Huang, J., Jiang, Y., Li, J., Huang, J. & Pu, K. Molecular chemiluminescent probes with a very long near-infrared emission wavelength for in vivo imaging. Angew. Chem. Int. Ed. 60, 3999–4003 (2021).

    Article  CAS  Google Scholar 

  68. Wang, X. & Pu, K. Molecular substrates for the construction of afterglow imaging probes in disease diagnosis and treatment. Chem. Soc. Rev. 52, 4549–4566 (2023).

    Article  PubMed  CAS  Google Scholar 

  69. Lei, L. et al. Noninvasive imaging of tumor glycolysis and chemotherapeutic resistance via de novo design of molecular afterglow scaffold. J. Am. Chem. Soc. 145, 24386–24400 (2023).

    Article  PubMed  CAS  Google Scholar 

  70. Jiang, Y. et al. Acidity-activatable upconversion afterglow luminescence cocktail nanoparticles for ultrasensitive in vivo imaging. Nat. Commun. 15, 2124 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Xu, C. et al. Activatable sonoafterglow nanoprobes for T-cell imaging. Adv. Mater. 35, e2211651 (2023).

    Article  PubMed  Google Scholar 

  72. Zeng, W. et al. An activatable afterglow/MRI bimodal nanoprobe with fast response to H2S for in vivo imaging of acute hepatitis. Angew. Chem. Int. Ed. 61, e202111759 (2022).

    Article  CAS  Google Scholar 

  73. Huang, W. et al. Ratiometric afterglow luminescent imaging of matrix metalloproteinase-2 activity via an energy diversion process. Angew. Chem. Int. Ed. 63, e202404244 (2024).

    Article  CAS  Google Scholar 

  74. Liu, Y. et al. Ratiometric afterglow luminescent nanoplatform enables reliable quantification and molecular imaging. Nat. Commun. 13, 2216 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Wu, L. et al. H2S-activatable near-infrared afterglow luminescent probes for sensitive molecular imaging in vivo. Nat. Commun. 11, 446 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Xie, C., Zhen, X., Miao, Q., Lyu, Y. & Pu, K. Self-assembled semiconducting polymer nanoparticles for ultrasensitive near-infrared afterglow imaging of metastatic tumors. Adv. Mater. 30, e1801331 (2018).

    Article  PubMed  Google Scholar 

  77. Maldiney, T. et al. Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice. ACS Nano 5, 854–862 (2011).

    Article  PubMed  CAS  Google Scholar 

  78. Kong, J., Zou, R., Law, G. L. & Wang, Y. Biomimetic multifunctional persistent luminescence nanoprobes for long-term near-infrared imaging and therapy of cerebral and cerebellar gliomas. Sci. Adv. 8, eabm7077 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Cabral, H., Li, J., Miyata, K. & Kataoka, K. Controlling the biodistribution and clearance of nanomedicines. Nat. Rev. Bioeng. 2, 214–232 (2024).

    Article  CAS  Google Scholar 

  80. Xu, C. & Pu, K. Artificial urinary biomarker probes for diagnosis. Nat. Rev. Bioeng. 2, 425–441 (2024).

    Article  CAS  Google Scholar 

  81. Luo, X. et al. Near-infrared persistent luminescence nanoprobe for early detection of atherosclerotic plaque. ACS Nano 18, 6500–6512 (2024).

    Article  PubMed  CAS  Google Scholar 

  82. Chen, C. et al. Amplification of activated near-infrared afterglow luminescence by introducing twisted molecular geometry for understanding neutrophil-involved diseases. J. Am. Chem. Soc. 144, 3429–3441 (2022).

    Article  PubMed  CAS  Google Scholar 

  83. Wei, X. et al. Leveraging long-distance singlet-oxygen transfer for bienzyme-locked afterglow imaging of intratumoral granule enzymes. J. Am. Chem. Soc. 146, 17393–17403 (2024).

    Article  PubMed  CAS  Google Scholar 

  84. He, S., Xie, C., Jiang, Y. & Pu, K. An organic afterglow protheranostic nanoassembly. Adv. Mater. 31, e1902672 (2019).

    Article  PubMed  Google Scholar 

  85. Gao, Z. et al. An activatable near-infrared afterglow theranostic prodrug with self-sustainable magnification effect of immunogenic cell death. Angew. Chem. Int. Ed. 61, e202209793 (2022).

    Article  CAS  Google Scholar 

  86. Du, S., Yan, J., Xue, Y., Zhong, Y. & Dong, Y. Adoptive cell therapy for cancer treatment. Exploration 3, 20210058 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Ma, G. et al. Rechargeable afterglow nanotorches for in vivo tracing of cell-based microrobots. Angew. Chem. Int. Ed. 63, e202400658 (2024).

    Article  CAS  Google Scholar 

  88. Gawne, P. J., Man, F., Blower, P. J. & de Rosales, R. T. M. Direct cell radiolabeling for in vivo cell tracking with PET and SPECT imaging. Chem. Rev. 122, 10266–10318 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Zhao, H. et al. Persistent luminescent nanoparticles containing hydrogels for targeted, sustained, and autofluorescence-free tumor metastasis imaging. Nano Lett. 20, 252–260 (2020).

    Article  PubMed  CAS  Google Scholar 

  90. Wu, S. Q., Yang, C. X. & Yan, X. P. A dual‐functional persistently luminescent nanocomposite enables engineering of mesenchymal stem cells for homing and gene therapy of glioblastoma. Adv. Funct. Mater. 27, 1604992 (2017).

    Article  Google Scholar 

  91. Liu, J. et al. Tumor-microenvironment-activatable polymer nano-immunomodulator for precision cancer photoimmunotherapy. Adv. Mater. 34, e2106654 (2022).

    Article  PubMed  Google Scholar 

  92. Zhang, Y., Xu, C., Yang, X. & Pu, K. Photoactivatable protherapeutic nanomedicine for cancer. Adv. Mater. 32, e2002661 (2020).

    Article  PubMed  Google Scholar 

  93. He, S. et al. A semiconducting iron-chelating nano-immunomodulator for specific and sensitized sono-metallo-immunotherapy of cancer. Angew. Chem. Int. Ed. 62, e202310178 (2023).

    Article  CAS  Google Scholar 

  94. Yu, J. et al. Polymeric STING pro-agonists for tumor-specific sonodynamic immunotherapy. Angew. Chem. Int. Ed. 62, e202307272 (2023).

    Article  CAS  Google Scholar 

  95. Wang, Y. et al. Enhancing fractionated cancer therapy: a triple-anthracene photosensitizer unleashes long-persistent photodynamic and luminous efficacy. J. Am. Chem. Soc. 146, 6252–6265 (2024).

    Article  PubMed  CAS  Google Scholar 

  96. Wang, Y. et al. Cyclic amplification of the afterglow luminescent nanoreporter enables the prediction of anti-cancer efficiency. Angew. Chem. Int. Ed. 60, 19779–19789 (2021).

    Article  CAS  Google Scholar 

  97. Wen, Y., Zhang, S., Yuan, W., Feng, W. & Li, F. Afterglow/fluorescence dual-emissive ratiometric oxygen probe for tumor hypoxia imaging. Anal. Chem. 95, 2478–2486 (2023).

    Article  PubMed  CAS  Google Scholar 

  98. Fan, W. et al. Enhanced afterglow performance of persistent luminescence implants for efficient repeatable photodynamic therapy. ACS Nano 11, 5864–5872 (2017).

    Article  PubMed  CAS  Google Scholar 

  99. Xu, C. & Pu, K. Second near-infrared photothermal materials for combinational nanotheranostics. Chem. Soc. Rev. 50, 1111–1137 (2021).

    Article  PubMed  CAS  Google Scholar 

  100. Xu, M. et al. Activatable immunoprotease nanorestimulator for second near-infrared photothermal immunotherapy of cancer. ACS Nano 17, 8183–8194 (2023).

    Article  PubMed  CAS  Google Scholar 

  101. Qu, R. et al. Afterglow/photothermal bifunctional polymeric nanoparticles for precise postbreast-conserving surgery adjuvant therapy and early recurrence theranostic. Nano Lett. 23, 4216–4225 (2023).

    Article  PubMed  CAS  Google Scholar 

  102. Zhen, X., Xie, C. & Pu, K. Temperature-correlated afterglow of a semiconducting polymer nanococktail for imaging-guided photothermal therapy. Angew. Chem. Int. Ed. 57, 3938–3942 (2018).

    Article  CAS  Google Scholar 

  103. Chen, C., Zhang, X., Gao, Z., Feng, G. & Ding, D. Preparation of AIEgen-based near-infrared afterglow luminescence nanoprobes for tumor imaging and image-guided tumor resection. Nat. Protoc. 19, 2408–2434 (2024).

    Article  PubMed  CAS  Google Scholar 

  104. Ni, X. et al. Near-infrared afterglow luminescent aggregation-induced emission dots with ultrahigh tumor-to-liver signal ratio for promoted image-guided cancer surgery. Nano Lett. 19, 318–330 (2019).

    Article  PubMed  CAS  Google Scholar 

  105. Gubala, V., Harris, L. F., Ricco, A. J., Tan, M. X. & Williams, D. E. Point of care diagnostics: status and future. Anal. Chem. 84, 487–515 (2012).

    Article  PubMed  CAS  Google Scholar 

  106. Lyu, Y. et al. Near-infrared afterglow semiconducting nano-polycomplexes for the multiplex differentiation of cancer exosomes. Angew. Chem. Int. Ed. 58, 4983–4987 (2019).

    Article  CAS  Google Scholar 

  107. Timilsina, S. S., Jolly, P., Durr, N., Yafia, M. & Ingber, D. E. Enabling multiplexed electrochemical detection of biomarkers with high sensitivity in complex biological samples. Acc. Chem. Res. 54, 3529–3539 (2021).

    Article  PubMed  CAS  Google Scholar 

  108. Wu, B. Y., Wang, H. F., Chen, J. T. & Yan, X. P. Fluorescence resonance energy transfer inhibition assay for alpha-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles. J. Am. Chem. Soc. 133, 686–688 (2011).

    Article  PubMed  CAS  Google Scholar 

  109. Wang, J. et al. One-dimensional luminous nanorods featuring tunable persistent luminescence for autofluorescence-free biosensing. ACS Nano 11, 8185–8191 (2017).

    Article  PubMed  CAS  Google Scholar 

  110. Wang, X. et al. A persistent luminescence resonance energy transfer-based molecular beacon probe for the highly sensitive detection of microRNA in biological samples. Biosens. Bioelectron. 198, 113849 (2022).

    Article  PubMed  CAS  Google Scholar 

  111. Chen, X. et al. Self-assembled colloidal gold superparticles to enhance the sensitivity of lateral flow immunoassays with sandwich format. Theranostics 10, 3737–3748 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Lei, H., Wang, K., Ji, X. & Cui, D. Contactless measurement of magnetic nanoparticles on lateral flow strips using tunneling magnetoresistance (TMR) sensors in differential configuration. Sensors 16, 2130 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wang, F., Zhong, Y., Bruns, O., Liang, Y. & Dai, H. In vivo NIR-II fluorescence imaging for biology and medicine. Nat. Photon. 18, 535–547 (2024).

  114. Gu, L. et al. In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nat. Commun. 4, 2326 (2013).

    Article  PubMed  Google Scholar 

  115. Fan, Y. et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 13, 941–946 (2018).

    Article  PubMed  CAS  Google Scholar 

  116. Yang, Y. et al. NIR-II chemiluminescence molecular sensor for in vivo high-contrast inflammation imaging. Angew. Chem. Int. Ed. 59, 18380–18385 (2020).

    Article  CAS  Google Scholar 

  117. Lu, L. et al. NIR-II bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing. Nat. Commun. 11, 4192 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Li, Z. et al. Coloring afterglow nanoparticles for high-contrast time-gating-free multiplex luminescence imaging. Adv. Mater. 32, e2003881 (2020).

    Article  PubMed  Google Scholar 

  119. Lei, L. et al. Manipulation of time-dependent multicolour evolution of X-ray excited afterglow in lanthanide-doped fluoride nanoparticles. Nat. Commun. 13, 5739 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Angello, N. H. et al. Closed-loop transfer enables artificial intelligence to yield chemical knowledge. Nature 633, 351–358 (2024).

    Article  PubMed  CAS  Google Scholar 

  121. Wang, G., Ye, J. C. & De Man, B. Deep learning for tomographic image reconstruction. Nat. Mach. Intell. 2, 737–748 (2020).

    Article  Google Scholar 

  122. Cheng, P. & Pu, K. Enzyme-responsive, multi-lock optical probes for molecular imaging and disease theranostics. Chem. Soc. Rev. 53, 10171–10188 (2024).

    Article  PubMed  CAS  Google Scholar 

  123. Naahidi, S. et al. Biocompatibility of engineered nanoparticles for drug delivery. J. Control. Release 166, 182–194 (2013).

    Article  PubMed  CAS  Google Scholar 

  124. Liew, S. S. et al. Renal-clearable molecular probe for near-infrared fluorescence imaging and urinalysis of SARS-CoV-2. J. Am. Chem. Soc. 143, 18827–18831 (2021).

    Article  PubMed  CAS  Google Scholar 

  125. He, S., Cheng, P. & Pu, K. Activatable near-infrared probes for the detection of specific populations of tumour-infiltrating leukocytes in vivo and in urine. Nat. Biomed. Eng. 7, 281–297 (2023).

    Article  PubMed  CAS  Google Scholar 

  126. Soenen, S. J. et al. Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6, 446–465 (2011).

    Article  CAS  Google Scholar 

  127. Maldiney, T. et al. Gadolinium‐doped persistent nanophosphors as versatile tool for multimodal in vivo imaging. Adv. Funct. Mater. 25, 331–338 (2015).

    Article  CAS  Google Scholar 

  128. van Dam, G. M. et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat. Med. 17, 1315–1319 (2011).

    Article  PubMed  Google Scholar 

  129. Hu, Z. et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat. Biomed. Eng. 4, 259–271 (2020).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Y.Z. thanks the National Natural Science Foundation of China (22322406) for financial support. G.L. thanks the National Natural Science Foundation of China (22234002) for financial support. K.P. thanks the Singapore National Research Foundation (NRF-NRFI07-2021-0005) and the Singapore Ministry of Education Academic Research Fund Tier 2 (MOE-T2EP30220-0010 and MOE-T2EP30221-0004) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Zhang, Gaolin Liang or Kanyi Pu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Xiaoyuan Chen, Hak Soo Choi, Fan Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Zhang, Y., Liang, G. et al. Molecular afterglow imaging for biomedical applications. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02338-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-025-02338-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing