A computer algorithm discovers all valid combinations of zeolite pairs that form intergrowths and correctly predicts their experimental feasibility.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Tang, X., Altundal, O. F., Daeyaert, F., Liu, Z. & Sastre, G. Chem. Soc. Rev. 54, 7067–7092 (2025).
Li, Y., Yu, J. & Xu, R. Angew. Chem. Int. Ed. 52, 1673–1677 (2013).
Oishi, K. et al. Nat. Mater. https://doi.org/10.1038/s41563-025-02377-6 (2025).
Eliášová, P. et al. Chem. Soc. Rev. 44, 7177–7206 (2015).
Database of Disordered Zeolite Structures: Intergrowth Families (Structure Commission of the International Zeolite Association, 2025); https://go.nature.com/47KVejz
Nat. Phys. 20, 1 (2024).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing interests.
Rights and permissions
About this article
Cite this article
Sastre, G. Growing together. Nat. Mater. 24, 1875–1876 (2025). https://doi.org/10.1038/s41563-025-02369-6
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41563-025-02369-6