Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atomic structures of enterovirus D68 in complex with two monoclonal antibodies define distinct mechanisms of viral neutralization

Abstract

Enterovirus D68 (EV-D68) undergoes structural transformation between mature, cell-entry intermediate (A-particle) and empty forms throughout its life cycle. Structural information for the various forms and antibody-bound capsids will facilitate the development of effective vaccines and therapeutics against EV-D68 infection, which causes childhood respiratory and paralytic diseases worldwide. Here, we report the structures of three EV-D68 capsid states representing the virus at major phases. We further describe two original monoclonal antibodies (15C5 and 11G1) with distinct structurally defined mechanisms for virus neutralization. 15C5 and 11G1 engage the capsid loci at icosahedral three-fold and five-fold axes, respectively. To block viral attachment, 15C5 binds three forms of capsids, and triggers mature virions to transform into A-particles, mimicking engagement by the functional receptor ICAM-5, whereas 11G1 exclusively recognizes the A-particle. Our data provide a structural and molecular explanation for the transition of picornavirus capsid conformations and demonstrate distinct mechanisms for antibody-mediated neutralization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The cryoEM structures of EV-D68 particles.
Fig. 2: Characterization of the neutralizing antibodies 15C5 and 11G1.
Fig. 3: CryoEM structures of immune complexes EV-D68-M:15C5 and EV-D68-A:11G1.
Fig. 4: Superposition of mature virion with or without the binding of 15C5 shows details of 15C5-induced conformational changes.
Fig. 5: The cryoEM structure of EV-D68 in complex with 15C5 and 11G1.

Similar content being viewed by others

Data availability

The atomic coordinates of the mature virion, procapsid, A-particle_i5, EV-D68-M:15C5 and EV-D68-M:15C5:11G1 have been deposited in the Protein Data Bank (accession numbers 6AJ0, 6AJ3, 6AJ2, 6AJ7 and 6AJ9, respectively). The cryoEM maps of the mature virion, procapsid, A-particle_us, A-particle_i5, EV-D68-M:15C5, EV-D68-A:11G1 and EV-D68-M:15C5:11G1 have been deposited in the Electron Microscopy Data Bank (accession numbers EMDB-9629, EMDB-9632, EMDB-9635, EMDB-9631, EMDB-9633, EMDB-9636 and EMDB-9634, respectively).

References

  1. Schieble, J. H., Fox, V. L. & Lennette, E. H. A probable new human picornavirus associated with respiratory diseases. Am. J. Epidemiol. 85, 297–310 (1967).

    Article  CAS  PubMed  Google Scholar 

  2. Ikeda, T. et al. Acute respiratory infections due to enterovirus 68 in Yamagata, Japan between 2005 and 2010. Microbiol. Immunol. 56, 139–143 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Kaida, A. et al. Distinct genetic clades of enterovirus D68 detected in 2010, 2013, and 2015 in Osaka City, Japan. PLoS ONE 12, e0184335 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Knoester, M. et al. Upsurge of enterovirus D68, the Netherlands, 2016. Emerg. Infect. Dis. 23, 140–143 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Midgley, C. M. et al. Severe respiratory illness associated with enterovirus D68 - Missouri and Illinois, 2014. MMWR. Morb. Mortal. Wkly Rep. 63, 798–799 (2014).

    PubMed  PubMed Central  Google Scholar 

  6. Holm-Hansen, C. C., Midgley, S. E. & Fischer, T. K. Global emergence of enterovirus D68: a systematic review. Lancet Infect. Dis. 16, e64–e75 (2016).

    Article  PubMed  Google Scholar 

  7. Messacar, K. et al. A cluster of acute flaccid paralysis and cranial nerve dysfunction temporally associated with an outbreak of enterovirus D68 in children in Colorado, USA. Lancet 385, 1662–1671 (2015).

    Article  PubMed  Google Scholar 

  8. Imamura, T. & Oshitani, H. Global reemergence of enterovirus D68 as an important pathogen for acute respiratory infections. Rev. Med. Virol. 25, 102–114 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, Y. et al. Structure and inhibition of EV-D68, a virus that causes respiratory illness in children. Science 347, 71–74 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, Y. et al. Sialic acid-dependent cell entry of human enterovirus D68. Nat. Commun. 6, 8865 (2015).

    Article  PubMed  Google Scholar 

  11. Hogle, J. M., Chow, M. & Filman, D. J. Three-dimensional structure of poliovirus at 2.9 A resolution. Science 229, 1358–1365 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. Rossmann, M. G. et al. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317, 145–153 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, X. et al. A sensor–adaptor mechanism for enterovirus uncoating from structures of EV71. Nat. Struct. Mol. Biol. 19, 424–429 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Plevka, P., Perera, R., Cardosa, J., Kuhn, R. J. & Rossmann, M. G. Crystal structure of human enterovirus 71. Science 336, 1274 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ren, J. et al. Picornavirus uncoating intermediate captured in atomic detail. Nat. Commun. 4, 1929 (2013).

    Article  PubMed  Google Scholar 

  16. Shingler, K. L. et al. The enterovirus 71 A-particle forms a gateway to allow genome release: a cryoEM study of picornavirus uncoating. PLoS Pathog. 9, e1003240 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu, L. et al. Atomic structures of Coxsackievirus A6 and its complex with a neutralizing antibody. Nat. Commun. 8, 505 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wei, W. et al. ICAM-5/Telencephalin is a functional entry receptor for enterovirus D68. Cell Host Microbe 20, 631–641 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, Y. X. et al. A highly conserved amino acid in VP1 regulates maturation of enterovirus 71. PLoS Pathog. 13, e1006625 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chong, P. et al. Immunological and biochemical characterization of coxsackie virus A16 viral particles. PLoS ONE 7, e49973 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Plevka, P. et al. Neutralizing antibodies can initiate genome release from human enterovirus 71. Proc. Natl Acad. Sci. USA 111, 2134–2139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dong, Y. et al. Antibody-induced uncoating of human rhinovirus B14. Proc. Natl Acad. Sci. USA 114, 8017–8022 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, H. et al. The novel asymmetric entry intermediate of a picornavirus captured with nanodiscs. Sci. Adv. 2, e1501929 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ye, X. et al. Structural basis for recognition of human enterovirus 71 by a bivalent broadly neutralizing monoclonal antibody. PLoS Pathog. 12, e1005454 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bergelson, J. M. & Coyne, C. B. Picornavirus entry. Adv. Exp. Med. Biol. 790, 24–41 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Johnson, J. E. & Vogt, P. K. Cell entry by non-enveloped viruses. Curr. Top. Microbiol. Immunol. 343, v–vii (2010).

    PubMed  Google Scholar 

  28. Curry, S., Chow, M. & Hogle, J. M. The poliovirus 135S particle is infectious. J. Virol. 70, 7125–7131 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaplan, G., Freistadt, M. S. & Racaniello, V. R. Neutralization of poliovirus by cell receptors expressed in insect cells. J. Virol. 64, 4697–4702 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tsang, S. K., McDermott, B. M., Racaniello, V. R. & Hogle, J. M. Kinetic analysis of the effect of poliovirus receptor on viral uncoating: the receptor as a catalyst. J. Virol. 75, 4984–4989 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baggen, J., Thibaut, H. J., Strating, J. & van Kuppeveld, F. J. M. The life cycle of non-polio enteroviruses and how to target it. Nat. Rev. Microbiol. 16, 368–381 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Bubeck, D., Filman, D. J. & Hogle, J. M. Cryo-electron microscopy reconstruction of a poliovirus-receptor-membrane complex. Nat. Struct. Mol. Biol. 12, 615–618 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bergelson, J. M. et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320–1323 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Belnap, D. M. et al. Three-dimensional structure of poliovirus receptor bound to poliovirus. Proc. Natl Acad. Sci. USA 97, 73–78 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Levy, H. C., Bostina, M., Filman, D. J. & Hogle, J. M. Catching a virus in the act of RNA release: a novel poliovirus uncoating intermediate characterized by cryo-electron microscopy. J. Virol. 84, 4426–4441 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Organtini, L. J., Makhov, A. M., Conway, J. F., Hafenstein, S. & Carson, S. D. Kinetic and structural analysis of coxsackievirus B3 receptor interactions and formation of the A-particle. J. Virol. 88, 5755–5765 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Walter, T. S. et al. A plate-based high-throughput assay for virus stability and vaccine formulation. J. Virol. Methods 185, 166–170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yan, X., Sinkovits, R. S. & Baker, T. S. AUTO3DEM–an automated and high throughput program for image reconstruction of icosahedral particles. J. Struct. Biol. 157, 73–82 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Scheres, S. H. & Chen, S. Prevention of overfitting in cryo-EM structure determination. Nat. Methods 9, 853–854 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Swint-Kruse, L. & Brown, C. S. Resmap: automated representation of macromolecular interfaces as two-dimensional networks. Bioinformatics 21, 3327–3328 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    Google Scholar 

  46. Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Gouet, P., Robert, X. & Courcelle, E. ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res. 31, 3320–3323 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Xiao, C. & Rossmann, M. G. Interpretation of electron density with stereographic roadmap projections. J. Struct. Biol. 158, 182–187 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Collaborative Computational Project, Number 4. TheCCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

Download references

Acknowledgements

This work was supported by a grant from the National Science and Technology Major Projects for Major New Drugs Innovation and Development (no. 2018ZX09711003-005-003), the National Science and Technology Major Project of Infectious Diseases (no. 2017ZX10304402-002-003), the National Natural Science Foundation of China (no. 81401669 and 81801646) and the Natural Science Foundation of Fujian Province (no. 2015J05073). This work was supported in part by funding by the National Institutes of Health (grants R37-GM33050, GM071940, DE025567 and AI094386). We acknowledge the use of instruments at the Electron Imaging Center for Nanomachines supported by UCLA and by instrumentation grants from the NIH (1S10RR23057 and 1U24GM116792) and NSF (DBI-1338135 and DMR-1548924). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript. We also thank L. Wang and K. M. Morabito for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

N.X., T.C., Shaowei L., B.S.G., L.X. and Q.Z. contributed to experimental design. R.Z., L.X., D.L., Z.Y., Y.W., Y.L. and L.Y. contributed to virus preparation and characteristic analysis. Y.L., W.H. and Shuxuan L. contributed to preparation and in vitro characterization of antibody. R.Z, L.X. and D.L. performed animal experiments. Q.Z., M.H., X.Y., Z.C., Zizhen L., Zhihai L., H.Y. and Y.G. contributed to structural data collection and analysis. Q.Z., R.Z, L.X., M.H. and X.Y. prepared the original manuscript. Shaowei L., T.C., J.Z., Z.H.Z., T.S.B. and B.S.G. approved the final version. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Barney S. Graham, Tong Cheng, Shaowei Li or Ningshao Xia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–13, Supplementary Tables 1–4.

Reporting Summary

Supplementary Video 1

Conformational changes of a protomer when EV-D68 mature virion transforms (triggered by ICAM-5) into A-particle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Q., Zhu, R., Xu, L. et al. Atomic structures of enterovirus D68 in complex with two monoclonal antibodies define distinct mechanisms of viral neutralization. Nat Microbiol 4, 124–133 (2019). https://doi.org/10.1038/s41564-018-0275-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41564-018-0275-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing