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The earliest known case of SARS-CoV-2 infection causing 
COVID-19 is thought to have occurred on 17 November 2019 
(ref. 1). As of 3 August 2021, 198.7 million confirmed cases of 

COVID-19 and 4.2 million deaths have been reported worldwide2. 
As the global scientific community has rallied in a concerted effort 
to understand SARS-CoV-2 infections, our background knowledge 
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Respiratory failure is associated with increased mortality in COVID-19 patients. There are no validated lower airway biomarkers 
to predict clinical outcome. We investigated whether bacterial respiratory infections were associated with poor clinical out-
come of COVID-19 in a prospective, observational cohort of 589 critically ill adults, all of whom required mechanical ventilation. 
For a subset of 142 patients who underwent bronchoscopy, we quantified SARS-CoV-2 viral load, analysed the lower respira-
tory tract microbiome using metagenomics and metatranscriptomics and profiled the host immune response. Acquisition of a 
hospital-acquired respiratory pathogen was not associated with fatal outcome. Poor clinical outcome was associated with lower 
airway enrichment with an oral commensal (Mycoplasma salivarium). Increased SARS-CoV-2 abundance, low anti-SARS-CoV-2 
antibody response and a distinct host transcriptome profile of the lower airways were most predictive of mortality. Our data 
provide evidence that secondary respiratory infections do not drive mortality in COVID-19 and clinical management strategies 
should prioritize reducing viral replication and maximizing host responses to SARS-CoV-2.
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is rooted in previous experience with the related zoonotic beta-
coronaviruses Middle East Respiratory Syndrome coronavirus 
(MERS-CoV) and SARS-CoV-1, which have caused severe pneu-
monia with 34.4% and 9% case fatality, respectively3. As observed 
for these related coronaviruses, SARS-CoV-2 infection can result 
in an uncontrolled inflammatory response4 leading to acute respi-
ratory distress syndrome (ARDS) and multi-organ failure, both 
associated with increased mortality. While a large proportion of the 
SARS-CoV-2 infected population is asymptomatic or experiences 
mild illness, a substantial number of individuals will develop severe 
disease and require hospitalization, with some progressing to respi-
ratory failure and death.

Mortality in other viral pandemics, such as the 1918 H1N1 and 
2009 H1N1 influenza pandemics, has been attributed in part to bac-
terial co-infection or super-infection5,6. To determine whether this 
is also the case for COVID-19, we can use next generation sequenc-
ing (NGS) to probe the complexity of the microbial environment 
(including RNA and DNA viruses, bacteria and fungi) and how the 
host (human) responds to infection. Recent studies have used this 
approach to uncover microbial signatures in patients with ARDS7,8. 
Increased bacterial burden and the presence of gut-associated bac-
teria in the lung were shown to worsen outcomes in these critically 
ill patients7,9, highlighting the potential role of the lung microbiome 
in predicting outcomes in ARDS. In a recent study using whole 
genome sequencing to profile the gut microbiome of 69 patients 
from Hong Kong, investigators identified an increased abundance 
of opportunistic fungal pathogens among patients with confirmed 
COVID-19 (ref. 10). While there is emerging interest in understand-
ing the microbial environment in patients with SARS-CoV-2 infec-
tions, few studies have attempted to characterize this at the primary 
site of disease activity: the lower airways11,12.

In this investigation, we characterized the lung microbiome and 
lower airway markers of host immunity in a cohort of hospitalized 
COVID-19 patients. While we did not find that isolation of a second-
ary respiratory pathogen was associated with prolonged mechanical 
ventilation (MV; >28 days) or fatal outcome, we did identify critical 
microbial signatures—characterized by enrichment of oral com-
mensals, high SARS-CoV-2 load and decreased anti-SARS-CoV-2 
IgG response—associated with fatal outcome, suggesting a need for 
more targeted antiviral therapeutic approaches for the care of criti-
cally ill COVID19 patients.

Results
Cohort description. From 3 March to 18 June 2020, a total of 
589 patients with laboratory-confirmed SARS-CoV-2 infection 
were admitted to the intensive care units of two academic medi-
cal centres of NYU Langone Health in New York (Long Island and 
Manhattan) and required invasive MV (Supplementary Results 
and Supplementary Tables 1 and 2). This included a subset of 142 
patients from the Manhattan campus who underwent bronchos-
copy for airway clearance and/or tracheostomy, from whom we col-
lected and processed lower airway (bronchoalveolar lavage, BAL) 
samples for this investigation (Extended Data Fig. 1). Table 1 shows 
demographics and clinical characteristics of the 142 patients who 
underwent bronchoscopy divided into three clinical outcomes: sur-
vivors with ≤28 days on MV; survivors with >28 days on MV and 
deceased. The median post admission follow-up time was 232 days 
(confidence interval 226–237 days). Patients within the bronchos-
copy cohort had higher overall survival than the rest of the NYU 
COVID-19 cohort since the most critically ill patients were not eli-
gible for bronchoscopy or tracheostomy.

Among the factors associated with clinical outcome within the 
bronchoscopy cohort, patients who survived were more commonly 
placed on veno-venous extracorporeal membrane oxygenation 
(ECMO), whereas patients who died had frequently required dialy-
sis (Table 1). These trends were also observed across the whole NYU 

cohort. Neither hydroxychloroquine nor azithromycin were signifi-
cantly associated with clinical outcome. However, patients who sur-
vived were more frequently treated with the combination antibiotic 
piperacillin/tazobactam.

Within the first 48 hours from admission, respiratory bacte-
rial cultures were rarely obtained (n = 70/589, 12%) with very few 
positive results (n = 12, 17%). Blood cultures were more com-
monly obtained (n = 353/589, 60%) but the rate of bacterial culture 
positivity was much lower (n = 5, 1.4%). These data support that 
community-acquired bacterial co-infection was not a common pre-
sentation among critically ill COVID-19 patients.

We evaluated whether respiratory or blood culture results 
obtained as per clinical standard of care were associated with clini-
cal outcome. Risk analyses for the culture results during hospital-
ization for the whole cohort (n = 589) demonstrated that bacterial 
culture positivity with suspected pathogens—excluding possible 
contaminants such as oral microbes in respiratory samples—was 
not associated with increased odds of dying but was associated with 
prolonged MV in the surviving patients (Fig. 1). Since length of stay 
could potentially affect these results (patients who died could have a 
shorter hospitalization and therefore may have had fewer specimens 
collected for cultures), we repeated the analysis using culture data 
obtained during the first two weeks of hospitalization. This analy-
sis showed that bacterial pathogen culture positivity (both respira-
tory and blood) during the early period of hospitalization was not 
associated with worse outcome (Fig. 1 and Supplementary Table 3). 
Interestingly, identification of oral bacteria in respiratory culture, 
commonly regarded as procedural contaminants, was associated 
with higher odds of prolonged MV (>28 days) among survivors. 
Similar trends were noted when analysis was performed on subjects 
from NYU LI and NYU Manhattan separately or for the bronchos-
copy cohort (Supplementary Table 2). Among the bronchoscopy 
cohort, there was no statistically significant association between cul-
ture results and clinical outcome, but there was a trend towards an 
increased rate of positive respiratory cultures for S. aureus (including 
MRSA), Staphylococcus epidermidis and K. pneumoniae in the sur-
vival groups (Table 1). These data suggest that in critically ill patients 
with COVID-19 requiring MV, in whom broad-spectrum antimicro-
bials were frequently used, hospital isolation of a secondary respira-
tory bacterial pathogen is not associated with worse clinical outcome.

SARS-CoV-2 load in the lower airways. Using bronchoscopy 
samples from 142 patients, we evaluated the viral load by real-time 
reverse transcription PCR (rRT–PCR) for the SARS-CoV-2 N gene, 
adjusted by levels of human RNase P gene (RP). Of note is that the 
majority of samples were obtained in the second week of hospitaliza-
tion (Table 1, median[interquartile range] = 10[6–14], 13[8–16] and 
13[8–16] for the ≤28 day MV, >28 day MV and deceased groups, 
respectively, P = non-significant). Paired analysis of upper airways 
(UA) and BAL samples revealed that, while there was a positive 
association between SARS-CoV-2 viral load of the paired samples 
(ρ = 0.60, P < 0.0001), there was a subset of subjects (21%) for which 
the viral load was greater in the BAL than in the supraglottic area, 
indicating topographical differences in SARS-CoV-2 replication 
(Fig. 2a). Importantly, while the SARS-CoV-2 viral load in the UA 
samples was not associated with clinical outcome (Supplementary 
Fig. 1), patients who died had higher viral load in their lower airways 
than patients who survived (Fig. 2b). Several studies have explored 
the relationship between SARS-CoV-2 viral load and mortality13–18. 
In a large cohort of 1,145 patients with confirmed SARS-CoV-2, 
viral load measured in nasopharyngeal swab samples was found to 
be significantly associated with mortality, even after adjusting for 
age, sex, race and several comorbidities18. Similar results were found 
in a cohort of patients in New York City with or without cancer, 
where in-hospital mortality was significantly associated with a high 
SARS-CoV-2 viral load in the UA17.
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Table 1 | NYU Manhattan bronchoscopy comparison cohort

Outcomes

Variable MV ≤ 28 days MV > 28 days Deceased P value

n 52(36.6) 56(39.4) 34(24)

Age 59[38–67] 64[47–71] 64[56–72] 0.094

Sex (male) 40(76.9) 46(82.1) 25(73.5) 0.608

Race/ethnicity 0.231

 Caucasian 25(48.1) 28(50) 14(41.2)

 Hispanic or Latino 10(19.2) 16(28.6) 8(23.5)

 AAM 1(1.9) 4(7.1) 6(17.6)

 Asian 4(7.7) 4(7.1) 1(2.9)

 Other 22(42.3) 20(35.7) 13(38.2)

BMI 29[25–32] 26[23–29] 29[25–33] 0.094

Comorbidities

 Hyperlipidemia 11(21.2) 19(33.9) 7(20.6) 0.226

 Hypertension 29(55.8) 23(41.1) 17(50) 0.306

 CHF 2(3.8) 3(5.4) 3(8.8) 0.615

 CAD 5(9.6) 8(14.3) 5(14.7) 0.705

 Diabetes 18(34.6) 23(41.1) 13(38.2) 0.788

 Asthma 1(1.9) 0(0) 1(2.9) 0.478

 CKD 4(7.7) 3(5.4) 8(23.5) 0.017*#

 CVA 3(5.8) 10(17.9) 13(38.2) 0.001*#

Smoking Status 0.846

 Ever 10(19.2) 13(23.2) 8(23.5)

 Never 42(80.8) 43(76.8) 26(76.5)

Biomarkers¥

 IL-6 83[44–180] 40[16-143] 113[23–214] 0.284

 Lymphocytes 9[7–12] 6[4–8] 4[3–6] 6.984 × 10−11 *#$

 WBC 10.7[8.9–13.4] 12.2[9.8–15.7] 14.2[11–17.4] 0.004*

 Ferritin 1,286[722–2,513] 1,448[915–2,352] 1,882[1,001–2,893] 0.240

 CRP 49[23–135] 82[36–138] 66[37–157] 0.224

 D-dimer 2,038[956–3,592] 2,350[747–3,399] 2,006[889–3,035] 0.903

 PaO2/FiO2 168[103–210] 96[74–178] 97[65–152] 0.001*$

Treatment

 ECMO 10(19.2) 15(26.8) 2(5.9) 0.05#

 Dialysis 5(9.6) 15(26.8) 11(32.4) 0.023*$

 Steroids 26(50) 44(78.6) 28(82.4) 0.001*$

 Anticoagulation 50(96.2) 54(96.4) 34(100) 0.521

 Hydroxychloroquine 49(94.2) 51(91.1) 31(91.2) 0.799

 Tocilizumab 24(46.2) 23(41.1) 12(35.3) 0.604

Antiviral 18(34.6) 21(37.5) 14(41.2) 0.827

 Lopinavir/Ritonavir 10(19.2) 8(14.3) 6(17.6) 0.784

 Remdesivir 5(9.6) 8(14.3) 2(5.9) 0.436

Antibiotic 52(100) 56(100) 34(100)

 Azithromycin 48(92.3) 47(83.9) 28(82.4) 0.311

 Vancomycin 48(92.3) 53(94.6) 29(85.3) 0.294

 Piperacillin/tazobactam 45(86.5) 47(83.9) 21(61.8) 0.012*#

 Ceftriaxone 37(71.2) 40(71.4) 19(55.9) 0.246

 Cefepime 14(26.9) 22(39.3) 11(32.4) 0.392

 Amikacin 14(26.9) 23(41.1) 18(52.9) 0.048*

Continued
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We then evaluated virus replication in BAL samples by mea-
suring levels of subgenomic RNA (sgRNA) targeting the E gene of 
SARS-CoV-2. This mRNA is only transcribed inside infected cells 
and is not packaged into virus particles; thus, its presence is indica-
tive of recent virus replication19–21. In BAL, levels of sgRNA corre-
lated with viral load as estimated by rRT–PCR for the SARS-CoV-2 
N gene (Fig. 2c), and the highest percentage of measurable sgRNA 
was in the deceased group, followed by the ≤28 day MV group 
and the >28 day MV group (17.7%, 11.5% and 3.7%, respectively; 
chi-square P = 0.028 for the comparison deceased versus >28 day 
MV group). Thus, while in most cases levels of sgRNA were not 
measurable in BAL, suggesting that no active virus replication was 
ongoing in the lower airways of COVID-19 patients at the time 
of bronchoscopy (overall median[interquartile range] = 12[7–16] 
days from hospitalization), the lower airway viral burden, as esti-
mated by rRT–PCR, is associated with mortality in critically ill  
COVID-19 patients.

Microbial community structure of the lower and upper airways. 
Considering the bacterial species and the viral loads identified in the 
BAL and UA of this cohort and their association with outcomes, we 
profiled in detail their viral and microbial composition. Microbial 
communities were evaluated using parallel datasets of RNA and 
DNA sequencing from 118 COVID-19 patients with BAL samples 
that passed appropriate quality control and a subset of paired 64 UA 
samples, along with background bronchoscope controls.

Given the low biomass of BAL samples in the metatranscriptome 
data, we first identified taxa as probable contaminants by compar-
ing the relative abundance between background bronchoscope and 

BAL samples (Extended Data Fig. 2a and Supplementary Table 4). 
However, we did not remove any taxa identified as probable con-
taminants from subsequent analyses. A comparison of the microbial 
community complexity captured in these data, determined using 
the Shannon diversity index, showed there was significantly lower 
α-diversity in the BAL samples than in the UA and background con-
trols (Extended Data Fig. 3a). Similarly, β-diversity analysis based 
on the Bray–Curtis dissimilarity index indicated that the micro-
bial composition of the lower airways was distinct from the UA 
and background controls (Extended Data Fig. 3b, PERMANOVA 
P < 0.01). Sequence reads indicated a much higher relative abun-
dance of SARS-CoV-2 in the lower airways than in the UA for this 
cohort (Extended Data Fig. 3c). Comparisons of the most dominant 
bacterial and fungal taxa that were functionally active showed that 
S. epidermidis, M. salivarium, S. aureus, Prevotella oris and Candida 
albicans, many of which are often considered oral commensals, 
were present in both UA and BAL samples (Extended Data Fig. 3c). 
Interestingly, the lytic phage Proteus virus Isfahan, known to be 
active against biofilms of Proteus mirabilis22, was found to be highly 
transcriptionally active in the BAL.

As with the metatranscriptome data, we first identified taxa as 
probable contaminants in the metagenome data, but these were not 
removed for subsequent analyses (Extended Data Fig. 2b). Both 
α- and β-diversity analyses of the metagenome supported distinct 
microbial community features in the lower airways as compared 
with the UA and background controls (Extended Data Fig. 4a,b). 
Interestingly, S. epidermis ranked as the most highly functional 
taxon in both BAL and UA, based on RNA-Seq reads (Extended 
Data Fig. 3c), and was 33rd in relative abundance in the BAL 

Outcomes

Variable MV ≤ 28 days MV > 28 days Deceased P value

Antifungal 32(61.5) 48(85.7) 27(79.4) 0.012

 Micafungin 22(42.3) 37(66.1) 25(73.5) 0.006*$

 Fluconazole 14(26.9) 33(58.9) 10(29.4) 0.001$#

Respiratory culture 51(98.1) 56(100) 33(97.1) 0.478

 Positive bacteria 28(54.9) 49(87.5) 22(66.7) 0.001$#

 Staphylococcus aureus 11(21.6) 12(21.4) 5(15.2) 0.728

 MRSA 4(7.8) 5(8.9) 0(0) 0.221

 Klebsiella pneumoniae 2(3.9) 8(14.3) 2(6.1) 0.135

Blood culture 52(100) 56(100) 34(100)

 Positive bacteria 7(13.5) 17(30.4) 9(26.5) 0.101

Hospitalization data

 Hospital length of stay 40[33–47] 60[53–82] 34[23–53] 2.3968 × 10−11 #$

 ICU admission day 2[1–3] 2[0–4] 3[1–6] 0.413

 Sampling day 10[6–14] 13[8–16] 13[8–16] 0.115

 ICU length of stay 28[21–33] 52[41–63] 29[21–40] 7.3978 × 10−12 #$

 Intubation day 2[1–4] 3[1–5] 4[2–8] 0.125

 Ventilator days 21[16–24] 41[34–57] 25[18–32] 1.6601 × 10−19 #$

 Average follow-up 234[230,240] 230[224–235] — 0.004$

 Days between death and ICU admission n.a. n.a. 30[22–47]

Data expressed as n(%) or median[interquartile range]. P values denote chi square and Kruskal–Wallis for categorical and continuous variables, respectively. AAM, African American. BMI, body mass 
index. BMI is the weight in kilograms divided by the square of the height in metres. CHF, congestive heart failure; CAD, coronary artery disease; CKD, chronic kidney disease; CVA, cerebrovascular accident. 
¥ Biomarkers calculated as median value day 1–14 after initiation of MV. IL-6, interleukin 6; WBC, white blood cell count; CRP, c-reactive protein; PaO2, partial pressure of arterial oxygen; FiO2, fraction 
inspired oxygen. ECMO, extracorporeal membrane oxygenation. Anticoagulation, full dose anticoagulation with therapeutic anti-Xa level > 0.3IU ml−1 and/or PTT > 45 s. Respiratory culture, defined as 
having any respiratory culture performed. Positive bacteria, a culture resulting in any bacterial growth. MRSA, methicillin-resistant S. aureus. Blood culture, defined as having any blood culture performed. 
ICU, intensive care unit; ICU admission day, the number of days between hospital admission and ICU admission. Sampling day, the number of days between hospital admission and day of sample collection. 
Intubation day, number of days between hospital admission and day of intubation. Ventilator days, total number of days on MV. Average follow-up, number of days between hospital admission and the last 
day of active follow-up. n.a., not applicable. * Significance between ‘≤28 days’ and ‘deceased’ # Significance between ‘>28 days’ and ‘deceased’ $ Significance between ‘≤28 days’ and ‘>28 days’

Table 1 | NYU Manhattan bronchoscopy comparison cohort (Continued)
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DNAseq data but present at very high relative abundance in the UA 
(ranked no. 3). These data suggest that microbes that colonize the 
UA and the skin were common in the lower airways in this cohort 
of COVID-19 patients requiring invasive MV.

Airway microbiota are associated with clinical outcomes. 
Consistent with the SARS-CoV-2 viral load assessed by reverse tran-
scriptase PCR (RT–PCR), differential expression analysis (DESeq) 
of the RNA virome identified SARS-CoV-2 as being enriched in 
the deceased group, as compared with both ≤28 day and >28 day 
MV groups (fold change greater than 5, Fig. 2d). Cox proportional 
hazards modelling supports that enrichment with SARS-CoV-2 was 
associated with increased risk for death (hazard ratio (HR) 1.33, 
95% confidence interval 1.07–1.67, P value = 0.011, false discovery 
rate (FDR) adjusted P value = 0.06; Supplementary Table 5).

The phage metatranscriptome α- and β-diversity was similar 
across the clinical outcome groups. There were, however, vari-
ous taxonomic differences at the RNA level, with enrichment of 
Staphylococcus phages CNPx in the deceased and >28 day MV 
groups when compared with the ≤28 day MV group (Fig. 2e). 
Differential expression from two other Staphylococcus phages was 
also observed in the >28 day MV group as compared with the 
≤28 day MV group (Fig. 2e). None of the described taxa were iden-
tified as possible contaminants (Supplementary Table 4).

Oral commensals and poor clinical outcome. We evaluated the 
overall bacterial load by quantitative PCR, targeting the 16S rRNA 
gene. As expected, the bacterial load in the BAL was several-fold 

lower than in the UA but clearly higher than the background 
bronchoscope control (Supplementary Fig. 2). Patients who died 
had higher total bacterial load in their BAL than patients who  
survived (Fig. 3a).

While no statistically significant differences were noted in 
α- or β-diversity across clinical outcome groups (Fig. 3b,c), sev-
eral differences were noted when differential enrichment was 
evaluated using DESeq. For the comparisons made across the 
clinical outcome groups, we focused on consistent signatures 
identified in the lower airway metagenome and metatranscrip-
tome. Coherence of differentially enriched taxa was determined 
by GSEA (Fig. 3d) and directionality of enrichment between 
the two datasets was evaluated (Fig. 3e). Among the most abun-
dant taxa, the oral commensal M. salivarum was enriched in the 
deceased and >28 day MV groups as compared with the ≤28 day 
MV group. In contrast, a different oral commensal, P. oris, was 
enriched in the ≤28 day MV group as compared with the deceased 
and >28 day MV groups. From previous data published by us, 
enrichment of the lower airway microbiota with oral commen-
sals was seen to be associated with a pro-inflammatory state in 
several diseases, including lung cancer23,24 and non-tuberculosis 
mycobacterium-related bronchiectasis25. The data in this analysis 
support that oral commensals are frequently found in the lower 
airways of critically ill COVID-19 patients and that differences 
between groups could be due to differential microbial pressures 
related to host factors. Interestingly, most of the statistically sig-
nificant taxa were identified in the metatranscriptome rather 
than in the metagenome data, with only P. oris identified in both 
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datasets. None of the described taxa were identified as possible 
contaminants (Supplementary Table 4).

For the fungal data, there were no statistically significant differ-
ences in α- or β-diversity identified between clinical outcome groups 
in the metagenome or the metatranscriptome data (Extended Data 
Fig. 5a,c). However, in the metagenome data, we identified Candida 
glabrata as being enriched in the deceased group as compared with 

the ≤28 day MV and the >28 day MV groups, but this was not con-
sistent in the metatranscriptome data (Extended Data Fig. 5b,d).

Microbial functional profile and poor outcome. We used the gene 
annotation of the DNAseq and RNA-Seq data to profile the micro-
bial functional potential of the BAL samples. For the comparisons 
made across the clinical outcome groups, we focused on consistent 
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functional signatures identified in the lower airway metagenome 
and metatranscriptome. Coherence of differentially enriched func-
tions was determined using GSEA (Extended Data Fig. 6a) and 
directionality of enrichment was also evaluated (Extended Data 
Fig. 6b). Overall, there was coherence of directionality between 
the metranscriptomics and metagenomics datasets for the com-
parisons between deceased versus ≤28 day MV and >28 day MV 
versus ≤28 day MV groups. Interestingly, statistically significant 
differences were only noted in the metatranscriptome data and 
not in the metagenome data, suggesting that functional activa-
tion of microbes can provide further insights into the lower airway 
microbial environment of patients with worst outcome. Among the 
top differentially expressed pathways in the poor outcome groups 
were glycosylases, oxidoreductase activity, transporters and the 
two-component system, which is used by bacteria and fungi for sig-
nalling. A specific analysis of antibiotic resistance genes showed that 
there was significant gene enrichment and expression of biocide 
resistance in the deceased group as compared to the two other MV 
groups (Extended Data Fig. 7). There was also significant expres-
sion of genes resistant to trimethoprim and phenolic compound, as 
well as multi-drug resistance in the deceased group as compared to 
the ≤28 day MV group. Presence of the resistance gene against trim-
ethoprim was not significantly associated with prior exposure to the 
drug. However, only seven patients received this drug before sample 
collection. These differences may indicate important functional dif-
ferences leading to a different metabolic environment in the lower 
airways that could impact host immune responses. It could also be 
representative of differences in microbial pressure in patients with 
higher viral loads and different inflammatory environments.

Adaptive and innate immune responses to SARS-CoV-2. To 
evaluate the host immune response to SARS-CoV-2 infection, 
we first measured levels of anti-spike and anti-RBD (receptor 
binding domain) antibodies in BAL samples. For both anti-spike 
and anti-RBD immunoglobulins, levels of IgG, IgA and IgM 
were several logs higher than levels found in BAL samples from 
non-SARS-CoV-2 infected patients. Importantly, IgG levels of 
anti-spike and anti-RBD were significantly lower in the deceased 
group as compared to the levels found in patients who survived 
(Fig. 4a and Extended Data Fig. 8a–c, P < 0.05). Prior investigations 
have suggested that IgA levels are a key driver of neutralization in 
the mucosa26–28. The differences noted in the current investigation 
in the IgG pools are intriguing, and future work investigating the 
antibodies generated during SARS-CoV-2 infections will be essen-
tial. Additionally, a neutralization assay performed using BAL fluid 
showed varying levels of neutralization across all samples (as esti-
mated by EC50) but no statistically significant differences between 
the clinical outcome groups (Extended Data Fig. 8d).

Host transcriptome analyses of BAL samples showed significant 
differences across clinical outcome groups based on β-diversity 
composition (Extended Data Fig. 9). We identified multiple dif-
ferentially expressed genes across the clinical outcome groups 
(Extended Data Fig. 9b–d). First, we noted that the lower airway 
transcriptomes showed downregulation of heavy constant of IgG 
(IGHG3) and heavy constant of IgA (IGHA1) genes in those with 
worse clinical outcome (Supplementary Table 6). We then used IPA 
to summarize differentially expressed genes across the three clinical 
outcome groups (Fig. 4b). The sirtuin signalling pathway (a path-
way known to be involved in ageing, gluconeogenesis/lipogenesis 
and host defence against viruses)29 and the ferroptosis pathway (an 
iron-dependent form of regulated cell death present in bronchial 
epithelium)30,31 were both upregulated in those with worse out-
come. Interestingly, there is evidence to support that STAT3 (ref. 32)  
and ACSL4 (ref. 33) alleviated ferroptosis-mediated acute lung 
injury dysregulation, which are both downregulated in COVID-19 
patients with worse clinical outcome. While this may reflect the host 

response to viral infection, other differences in the transcriptomic 
data showed downregulation of mitochondrial oxidative phosphor-
ylation, HIF1α, STAT3 and phospholipase C signalling. Additional 
canonical signalling pathways, including insulin secretion, multiple 
inositol-related pathways, noradrenaline/adrenaline degradation 
signalling and xenobiotic-related metabolism, were significantly 
downregulated when comparing the >28 day MV and ≤28 day MV 
groups. There is evidence that in the neonatal lung, inositol-related 
components exert an anti-inflammatory effect and can prevent 
acute lung injury34,35.

To determine if the abundance of immune cells varies between 
different clinical outcome groups, we estimated cell-type abundance 
from the host transcriptome with computational cell-type quantifi-
cation methods, including a deconvolution approach implemented 
in CIBERSORTx (ref. 36) and a cell-type signature enrichment 
approach implemented in xCell (ref. 37). As reported recently in 
other studies38, among the cell types detected in the BAL samples, 
we observed a consistent enrichment of mast cells and neutrophils 
in the >28 day MV and deceased groups compared with the ≤28 day 
MV group (Fig. 4c and Supplementary Table 7). We also identi-
fied significantly higher inflammatory macrophages (M1), innate 
T-cells and memory T-cells (CCR7+) among subjects with worse 
clinical outcome.

Cross-kingdom network analyses and SARS-CoV-2. To identify 
potential microbe–microbe and microbe–host interactions that 
could have an effect on outcome, we used a multiscale network anal-
ysis approach (multiscale embedded gene co-expression network 
analysis, MEGENA)39. We first used the relative abundance from the 
RNA-Seq data to capture co-expressing taxa in the metatranscrip-
tome network neighbourhood of SARS-CoV-2 (SARS2-NWN). 
We examined five such network neighbourhoods (constructed by 
including nodes with increasing distance 1 to 5 from SARS-CoV-2; 
that is, neighbourhood 1 to neighbourhood 5) that were signifi-
cantly enriched for taxa functionally active in the deceased group 
when compared with the ≤28-day MV group. Only the largest 
cluster, with 504 taxa, had significantly enriched taxa in both the 
deceased and the ≤28-day MV outcome groups (Extended Data Fig. 
10a) (Fisher’s exact test (FET) P value = 4.6 × 10−45, 4.0 fold enrich-
ment (FE)). Many of these taxa are among the top 50 most abundant 
microbes we had previously identified in the metatranscriptome 
dataset. Taxa present that are influenced by SARS-CoV-2 and sig-
nificantly differentially enriched in the deceased group include bac-
teria such as M. salivarium, Bifidobacterium breve and Lactobacillus 
rhamnosus (a gut commensal) that we had previously identified 
by differential expression analysis (Fig. 3e), but also taxa such as 
S. epidermis, Mycoplasma hominis (urogenital bacteria) and the 
phage VB_PmiS-Isfahan (also referred to as Proteus virus Isfahan) 
that we had previously picked up as being highly abundant but not 
necessarily differentially enriched in the deceased group. Most of 
the fungi, such as C. albicans, C. glabrata and Candida orthopsilosis 
were enriched in the ≤28 day MV group. Interestingly, our earlier 
analysis of the metagenome (Extended Data Fig. 5b) had identified 
C. glabrata as being enriched in the deceased group with no enrich-
ment in the metatranscriptome. This analysis indicates that some of 
these abundant taxa could be responding to SARS-CoV-2 disrup-
tion in a similar manner or indirectly interacting functionally.

We further investigated the association of the network neigh-
bourhood with host network modules using the host transcrip-
tome data to identify groups of host genes that are co-expressed 
in response to SARS-CoV-2 disruption. The three host modules 
with the most significant correlations to SARS2-NWN are M175, 
M277 and M718. M277 is the parent module of M718, and both 
are enriched with genes related to respiratory electron transport, 
while M175 is enriched for IFN-γ signalling (Extended Data Fig. 
10b). Module M175 is positively correlated with the SARS2-NWN 
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(ρ = 0.32, P = 2.1 × 10−3). While there was no collective enrichment 
of the module by differentially expressed genes in the deceased ver-
sus ≤28 day MV, there was for >28 day versus ≤28 day MV (FET 
P = 0.030, 4.5 FE). This module includes well-known antiviral IFN 
stimulated genes (ISGs), such as IRF7 and OASL.

Metatranscriptome and host transcriptome signatures can pre-
dict mortality. We evaluated the strength of the metatranscrip-
tomic, metagenomic and host transcriptomic profiles to predict 
mortality in this cohort of critically ill COVID-19 patients. To 
this end, we identified features in each of these datasets and con-
structed risk scores that best predicted mortality. Figure 5a shows 
that the metatranscriptome data, alone or combined with the other 

two datasets, were most predictive of mortality. Importantly, the 
predictive power (as estimated by the area under the curve) of the 
metatranscriptome data was improved by excluding probable con-
taminants and worsened when SARS-CoV-2 was removed from the 
modelling. The selected features we used to construct the meta-
transcriptome, metagenome and host transcriptome risk scores are 
reported in Supplementary Table 8. Using the means of the scores, 
we classified all subjects into high risk and low risk groups for mor-
tality. Figure 5b shows Kaplan–Meier survival curve comparisons 
evaluating the predictive power of risk score stratification based 
on metatranscriptome, metagenome and host transcriptome data. 
Combining risk scores from different datasets showed an opti-
mal identification of mortality when metatranscriptome and host 
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Fig. 4 | Lower airway host immune profiling in severely ill patients with COVID-19. a, Levels of anti-SARS-CoV-2 spike antibodies in BAL of 142 
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downregulation of pathway. c, Cell-type abundance quantification plots. Comparison of abundance of mast cells and neutrophils among outcome groups 
in the BAL fluids of 118 critically ill patients with COVID-19. Cell-type abundance was estimated from the host transcriptome with CIBERSORTx. Each 
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transcriptome were considered (Fig. 5c). We then used the gene sig-
nature found to be the most predictive of mortality to conduct IPA 
analyses (Supplementary Table 9). Among the upstream regulators, 
mortality was associated with predicted activation of IFN-α while 
chemotaxis and infection by RNA virus were predicted as activated 
in diseases and functions. These observations may be inconsistent 
with the current suggestion that, based on systemic levels, early 
interferon responses are associated with poor outcome in COVID19 
(refs. 40,41). Others have suggested that a robust interferon response 
may lead to a hyperinflammatory state that could be detrimental 
in the disease process, justifying the use of Janus kinase inhibitor 
inhibitors in patients with COVID-19 (ref. 42). Studies comparing 
transcriptomic signatures in BAL of patients with severe COVID-
19 and controls have shown activation of type 1 interferons43. While 
further longitudinal data will be needed to clarify the role of inter-
feron signalling on the disease, the data presented here suggest that 
combining microbial and host signatures could help understand 
the increased risk for mortality in critically ill COVID-19 patients. 
Overall, these data highlight the importance of SARS-CoV-2 abun-
dance in the lower airways as a predictor for mortality and the sig-
nificant contribution of the host cell transcriptome, which reflects 
the lower airway cell response to infection.

Discussion
The samples used in this investigation were obtained during the 
first surge of cases of COVID-19 in New York City, and manage-
ment reflected clinical practices at that time. Among the differences 
with current therapeutic approaches in COVID-19 patients, cor-
ticosteroids and remdesivir, two medications that likely affect the 
lower airway microbial landscape, were rarely used during the first 
surge. Other medications, such as antibiotics and anti-inflammatory 
drugs, could affect our findings, and we therefore considered them 
as potential confounders. However, the use of these medications 
was not found to be associated with clinical outcome. Of note is that 
although our institutions were responding in ‘surge mode’, both the 
Long Island and Manhattan campuses did not suffer from short-
ages in medical staff, supplies or equipment and the decision to start 
MV did not differ from the standard of care. The cross-sectional 
study design precluded evaluation of the temporal dynamics of the 
microbial community or the host immune response in this cohort, 
which could have provided important insights into the pathogenesis 
of this disease. Performing repeated bronchoscopies without a clini-
cal indication would be challenging in these patients, and other, less 
invasive, methods might need to be considered to study the lower 
airways at earlier time points and serially over time in patients with 
respiratory failure. It is important to note that there were no sta-
tistically significant differences in the timing of sample collection 
across the three outcome groups. Evaluation of microbial signals at 
earlier time points in the disease process might also be important 
to identify changes occurring prior to use of broad-spectrum anti-
microbials. Also, the presented data from lower airway samples are 
restricted to those subjects for whom bronchoscopy was performed 
as part of their clinical care. Thus, the culture-independent data are 
biased towards patients who, while critically ill with COVID-19, 
were not representative of the extremes in the spectrum of disease 
severity. Investigations focusing on early sample collection time 
points may be warranted to include subjects on MV with early mor-
tality or early successful discontinuation of MV.

In summary, we present here the first evaluation of the lower 
airway microbiome using a metagenomic and metatranscriptomic 
approach, along with host immune profiling, in critically ill patients 
with COVID-19 requiring invasive MV. The RNA metatranscrip-
tome analysis showed an association between the abundance of 
SARS-CoV-2 and mortality, consistent with the signal found when 
viral load was assessed by targeted rRT–PCR. These viral signa-
tures correlated with lower anti-SARS-CoV-2 spike IgG and host 

transcriptomic signatures in the lower airways associated with poor 
outcome. Importantly, both through culture and NGS data, we 
found no evidence for an association between untreated infections 
with secondary respiratory pathogens and mortality. Together, these 
data suggest that active lower airway SARS-CoV-2 replication and 
poor SARS-CoV-2-specific antibody responses are the main driv-
ers of increased mortality in COVID-19 patients requiring MV. The 
potential role of oral commensals such as M. salivarium needs to 
be explored further. It is possible that M. salivarium can impact key 
immune cells, and it has recently been reported at a high preva-
lence in patients with ventilator-acquired pneumonia44. Critically, 
our finding that SARS-CoV-2 evades and/or derails effective innate/
adaptive immune responses indicates that therapies aiming to con-
trol viral replication or induce a targeted antiviral immune response 
may be the most promising approach for hospitalized patients with 
SARS-CoV-2 infection requiring invasive MV.

Methods
Subjects. Enrolled subjects were 18 years or older and were admitted to the 
ICUs at NYU Langone Health from 10 March to 10 May 2020 with a nasal swab 
confirmed diagnosis of SARS-CoV-2 infection by RT–PCR assay and respiratory 
failure requiring invasive MV (see Table 1 for subject demographics). Research 
samples were obtained during clinically indicated bronchoscopies performed 
for airway clearance or for percutaneous tracheostomy placement, with verbal 
informed consent from legal authorized representative due to infection control 
measures that limited the presence of close contacts. All patients or their legal 
representative agreed to participate via our NYU IRB approved protocol (IRB no. 
s16-00122/01598). Signed consent was then obtained from patients upon recovery. 
For those that remained incapacitated, signed consent was obtained from legally 
authorized representative. All analyses were then performed in de-identified data. 
Comprehensive demographic and clinical data were collected. We also collected 
longitudinal data on clinical laboratory culture results and treatment. Extended 
Data Figure 1 shows the distribution of subjects and sampling strategy used for this 
study. The study protocol was approved by the Institutional Review Board of New 
York University.

Lower airway bronchoscopic sampling procedure. Both background and 
supraglottic (buccal) samples were obtained prior to the procedure, as previously 
described23. The background samples were obtained by passing sterile saline 
through the suctioning channel of the bronchoscope prior to the procedure. 
BAL samples were obtained from one lung segment as per discretion of the 
treating physician as clinically indicated. Samples were then transferred to a BSL3 
laboratory for processing. Once there, 2 ml of whole BAL was stored in a tube 
prefilled with 2 ml of Zymo Research’s DNA/RNA Shield (catalogue no. R1100-
250, https://www.zymoresearch.com/pages/covid-19-efforts) for RNA/DNA 
preservation and virus inactivation. In addition, background control samples 
(saline passed through the bronchoscope prior to bronchoscopy) and supraglottic 
aspirates were stored in the same RNA/DNA shield.

Viral load detection targeting the N gene. SARS-CoV-2 viral load was measured 
by quantitative rRT–PCR targeting the SARS-CoV-2 nucleocapsid (N) gene and an 
additional primer/probe set to detect the human RNase P gene (RP). Assays were 
performed using Thermo Fisher Scientific TaqPath 1-Step RT–qPCR Master Mix, 
CG (catalogue no. A15299) on the Applied Biosystems 7500 Fast Dx RealTime 
PCR Instrument. Using the positive controls provided by the CDC, which are 
normalized to 1,000 copies per ml, we converted the different Ct positive to copies 
per ml. This was done using the DDCT method, applying the formula Power (2, 
(CT (sample, N1 gene) − CT (PC, N1 gene)) − (CT (sample, RP gene) − CT (PC, RP 
gene)) × 1,000.

SARS-CoV-2 viral viability through measurement of subgenomic transcripts. 
Viral sgRNA is transcribed in infected cells and is not packaged into virions. Thus, 
presence of sgRNA is indicative of active infection of a mammalian cell in samples. 
We therefore measured sgRNA in all BAL samples obtained, targeting the E gene 
as previously described19,20. Briefly, 5 µl RNA was used in a one-step real-time RT–
PCR assay to sgRNA (forward primer 5′-CGATCTCTTGTAGATCTGTTCTC-3′, 
reverse primer 5′-ATATTGCAGCAGTACGCACACA-3′ and probe 
5′-FAM-ACACTAGCCATCCTTACTGCGCTTCG-ZEN-IBHQ-3′) and using 
the Quantifast Probe RT–PCR kit (Qiagen) according to instructions of the 
manufacturer. In each run, standard dilutions of counted RNA standards were run 
in parallel to calculate copy numbers in the samples.

Bacterial load assessment. We measured bacterial load in background, BAL and 
supraglottic samples using a QX200 Droplet Digital PCR System (Bio-Rad). 
For this, primers were 5′-GCAGGCCTAACACATGCAAGTC-3′ (63F) and 
5′-CTGCTGCCTCCCGTAGGAGT-3′ (355R). Cycling conditions included 1 cycle 
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at 95 °C for 5 minutes, 40 cycles at 95 °C for 15 seconds and 60 °C for 1 minute, 1 
cycle at 4 °C for 5 minutes and 1 cycle at 90 °C for 5 minutes, all at a ramp rate of 
2 °C s−1. PCR cycling was performed on the Bio-Rad C1000 Touch Thermal Cycler 
and droplets were quantified using the Bio-Rad Quantisoft software. Each sample 
was run in duplicate.

DNA/RNA isolation, library preparation and sequencing. DNA and RNA 
were isolated in parallel using zymoBIOMIC DNA/RNA Miniprep Kit (catalogue 
no. R2002) as per manufacturer’s instructions. DNA was then used for whole 
genome shotgun (WGS) sequencing, using it as input into the NexteraXT library 
preparation kit following the manufacturer’s protocol. Libraries were purified 
using the Agencourt AMPure XP beads (Beckman Coulter) to remove fragments 
below 200 base pairs. The purified libraries were quantified using the Qubit dsDNA 
High Sensitivity Assay kit (Invitrogen) and the average fragment length for each 
library was determined using a High Sensitivity D1000 ScreenTape Assay (Agilent). 
Samples were added in an equimolar manner to form two sequencing pools. The 
sequencing pools were quantified using the KAPA Library Quantification Kit 
for Illumina platforms. The pools were then sequenced on the Illumina Novaseq 
6000 in one single run. For RNA sequencing, RNA quantity and integrity were 
tested with a BioAnalyzer 2100 (Agilent). Among bronchoscope control (BKG) 
samples, only five yielded RNA with sufficient quality and quantity to undergo 
library preparation and sequencing. Further, in order to ensure sufficient depth on 
these background samples, we used an equimolar strategy to pool the background 
samples based on the concentrations of each individual library. Of note is that the 
same five BKG samples were selected to undergo WGS sequencing, and we used 
the same pooling strategy. The automated Nugen Ovation Trio Low Input RNA 
method was used for library prep with 3 ng total RNA input of each sample. After 
six amplification cycles, samples were sequenced using 2x Novaseq 6000 S4 200 
cycle Flowcells using PE100 sequencing.

Microbial community characterization using WGS sequencing and RNA 
metatranscriptome. For all metagenomic and metatranscriptomic reads, 
Trimmomatic v.0.36 (ref. 45), with leading and trailing values set to 3 and 
minimum length set to 36, was used to remove adaptor sequences. All 
rRNA reads were then removed from the metatranscriptomic reads using 
SortMeRNA v.4.2.0 (ref. 46) with default settings. Metagenomic and filtered 
metatranscriptomic reads were mapped to the human genome using Bowtie2 
v.2.3.4.1 (ref. 47) with default settings, and all mapping reads were excluded 
from subsequent microbiome, mycobiome and virome metagenomic and 
metatranscriptomic analysis. Technical replicates for each biological sample 
were pooled together for subsequent analyses. Taxonomic profiles for all 
metagenomic and metatranscriptomic samples were generated using Kraken 
v.2.0.7 (ref. 48) and Bracken v.2.5 (https://doi.org/10.7717/peerj-cs.104) run 
with default settings. The database used for quantifying taxonomic profiles 
was generated using a combined database containing human, bacterial, fungal, 
archaeal and viral genomes downloaded from NCBI RefSeq on 8 January 
2021. Additionally, genomes for Candida auris (Genbank accession nos. 
GCA_003013715.2, GCA_008275145.1) and Pneumocystic jirovecii (Genbank 
accession no. GCA_001477535.1) were manually added to the database. 
Supplementary Table 10 shows sequence depth and taxonomic richness per 
sample within sample types. Differentially abundant bacterial and viral taxa 
were identified for the BAL and UA samples groups individually using DESeq2 
v.1.28.1 (ref. 49) with the three group clinical outcome metadata readouts set 
as the sample groupings. Significantly differentially abundant taxa contained 
at a minimum an aggregate of five reads across samples and had an FDR < 0.2 
(refs. 50,51). The specificity of the top hits identified as being enriched by DESeq 
analysis was confirmed by mapping metagenomic and metatranscriptomics 
reads against whole genome references. In this manner, we confirmed that 
sequence reads that were annotated to M. salivarium, B. breve, L. rhamnosus, 
M. hominis and Streptococcus oralis (Fig. 3e) mapped along the length of the 
genomes and were not spurious matches (Supplementary Fig. 3).

For functional microbial profiling, processed sequencing reads were 
further depleted of human-mapping reads by removing all reads classified as 
human by Kraken v.2.0.7 (ref. 48) using KrakenTools v0.1-alpha (https://github.
com/jenniferlu717/KrakenTools). FMAP v.0.15 (ref. 52) was run on both the 
metagenomic and metatranscriptomic reads to profile the metabolic pathways 
present in each sample. FMAP_mapping.pl paired with diamond v.0.9.24 (ref. 53)  
and FMAP_quantification.pl were used with default settings to identify and 
quantify proteins in the Uniref90 database. Using DESeq2 v.1.28.1 (ref. 49), 
differentially expressed genes were identified for the BAL samples individually 
using the three group clinical outcome metadata readouts for all genes that had an 
aggregate five reads across all samples.

Antibiotic resistance genes were quantified in all metagenome and 
metatranscriptome samples using Salmon v.1.3.0 (refs. 54) run with flags 
--keepDuplicates for indexing and --libtype A --allowDovetail --meta for 
quantification. Genes were filtered such that only genes that actively conferred 
antibiotic resistance were kept. To assess differentially expressed classes of 
antibiotic resistance genes, gene counts for individual antibiotic resistance genes 
were collapsed by their conferred antibiotic resistance.

Extended Data Figure 1 shows a summary of depth achieved with the parallel 
WGS and metatranscriptome approach across sample types and the number of 
reads assigned to different microbial subfractions (bacteria, fungi, DNA viruses, 
RNA viruses and phages). Further analysis was also done to identify possible 
contaminants in the metatranscriptome and metagenome datasets. To this end, 
we compared the relative abundance of taxa between background bronchoscope 
control and BAL samples. Taxa with median relative abundance greater in 
background than in BAL were identified as probable contaminants and listed in 
Supplementary Table 4. None of the taxa identified as possible contaminants were 
removed from the analysed data, but the data are shown for comparison with 
signatures identified in the rest of the analyses.

Anti-spike SARS-CoV-2 antibody profiling in BAL. BAL samples were 
heat-treated at 56 °C for one hour and centrifuged at 14,000 g for 5 min. The 
supernatant was collected and diluted 50-fold in PBST containing 1% skim milk. 
The diluted samples were incubated at room temperature for 30 min with QBeads 
DevScreen: SAv (Streptavidin) (Sartorius catalogue no. 90792) that had been 
loaded with biotinylated spike, biotinylated RBD or biotin (negative control) in 
wells of a 96-well HTS filter plate (MSHVN4550). As positive controls, we used 
CR3022 antibody, which recognizes SARS-CoV-2 spike and RBD, in human IgG, 
IgA and IgM formats (Absolute Antibody; dilutions 1:1,120, 1:1,300 and 1:258, 
respectively). After washing the beads, bound antibodies were labelled with 
anti IgG-DyLight488, anti IgA-PE and anti IgM-PECy7, and the fluorescence 
intensities were measured in Intellicyt IQue3 (Sartorius). The acquired data 
(median fluorescence intensity (MFI)) were normalized using the MFI values of 
the CR3022 antibodies to compensate for variations across plates. Extended Data 
Figure 8 shows that the levels of these antibodies were higher in BAL samples 
of patients with SARS-CoV-2 than in BAL samples from ten uninfected healthy 
smokers recruited for research bronchoscopy. Details of method development and 
validation will be described elsewhere (Koide et al., in preparation).

SARS-CoV-2 preparation and neutralization assay. icSARS-CoV-2-mNG (isolate 
USA/WA/1/2020, obtained from the UTMB World Reference Center for Emerging 
Viruses and Arboviruses) was amplified once in Vero E6 cells (P1 from the original 
stock). Briefly, 90–95% confluent T175 flask (Thomas Scientific) of Vero E6 
(1 × 107 cells) was inoculated with 50 μl of icSARS-CoV-2-mNG in 5 ml of infection 
media (DMEM, 2% FBS, 1% NEAA and 10 mM HEPES) for 1 hour. After 1 hour, 
20 ml of infection media were added to the inoculum, and cells were incubated 
72 hours at 37 °C and 5% CO2. After 72 hours, the supernatant was collected, 
and the monolayer was frozen and thawed once. Both supernatant and cellular 
fractions were combined, centrifuged for 5 min at 500 g and filtered using a 0.22 μm 
Steriflip (Millipore). Viral titres were determined by plaque assay in Vero E6 cells. 
In brief, 220,000 Vero E6 cells per well were seeded in a 24-well plate, 24 hours 
before inoculation. Tenfold dilutions of the virus in DMEM (Corning) were added 
to the Vero E6 monolayers for 1 hour at 37 °C. Following incubation, cells were 
overlaid with 0.8% agarose in DMEM containing 2% FBS (Atlanta Biologicals) and 
incubated at 37 °C for 72 h. The cells were fixed with 10% formalin, the agarose 
plug removed and plaques visualized by crystal violet staining. All procedures 
including icSARS-CoV-2-mNG virus were performed using Biosafety Level 3 
laboratory conditions.

For SARS-CoV-2 neutralization assays, Vero E6 cells (30,000 cells per well) 
were seeded in a 96-well plate 24 h before infection. Two-fold serial dilutions 
of BAL lysates were mixed with mixed 1:1 (vol/vol) with SARS-CoV-2 mNG 
virus (multiplicity of infection (MOI) 0.5) and incubated for 1 h at 37 °C. After 
incubation, 100 μl of the mixtures of the antibody and SARS-CoV-2 mNG 
were added to the Vero E6 monolayers, and cells were incubated at 37 °C. After 
20 h, cells were fixed with 4% formaldehyde (Electron Microscopy Sciences) at 
room temperature for 1 h. After fixation, cells were washed twice with PBS and 
permeabilized with 0.25% triton-100, stained with DAPI (Thermo) and quantified 
on a CellInsight CX7 High Content microscope (Thermo) using a cut-off for three 
standard deviations from negative to be scored as an infected cell.

Transcriptome of BAL samples. Using data from the Hi-seq/Illumina55–57 platform 
at the NYU Langone Genomic Technology Center (data available at Sequence 
Read Archive accession no. PRJNA592149) KEGG (refs. 58,59) annotation was 
summarized at levels 1 to 3. Genes with an FDR-corrected adjusted P value <0.25 
were considered significantly differentiated unless otherwise specified. Pathway 
analysis using differentially regulated genes (FDR < 0.25) was done using Ingenuity 
Pathway Analysis, RRID: SCR_008653 (Qiagen)60. GSEA was performed with 
differential genes (FDR < 0,25) for dataset comparison using R package fgsea 
v1.4.1 (ref. 61). Normalized host transcriptome data as transcript per million (TPM) 
from the BAL metatranscriptome was subjected to digital cell-type quantification 
with CIBERSORTx36 and xCell37 separately. Genes with at least 1 count per million 
in at least two samples were retained. For digital cytometry with CIBERSORTx, a 
signature matrix derived from single-cell transcriptome of BAL cells collected from 
patients with COVID-19 (ref. 38) was first generated with the ‘Create Signature 
Matrix’ module in the CIBERSORTx online tool. A maximum of 10 cells per cell 
type per patient were initially sampled from the original data and 20 cells per cell 
type were then used to build the single-cell reference with the default parameters. 
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Then, the ‘Impute Cell Fractions’ module was used to estimate the absolute cell 
fraction score of different cell types in bulk transcriptomes using the single-cell 
signatures with ‘S-mode’ batch correction and 100 permutations in the absolute 
mode. Bulk transcriptomes with a significant deconvolution P value (≤0.05) were 
retained. For xCell cell-type signature enrichment analysis, the enrichment scores 
were inferred with built-in signature of cell types detected in the BAL samples as 
reported previously38. The two-tailed Wilcoxon rank sum test with Benjamini–
Hochberg correction was computed between groups of samples for comparison.

Microbial and host predictive modelling. Cox proportional hazards model was 
used for investigating the association between the time to death and the relative 
abundance of each taxon quantified using metatranscriptomic and metagenomic 
data separately. We first performed the univariate screening test to identify 
significant features associated with the time to death using the Cox proportion 
hazards regression model for the relative abundance of taxa from the RNA and 
DNA data and log-transformed count of host transcriptome data, respectively. 
Within each type of data, given the P value cut-off, the features with a P value 
less than the cut-off were selected and integrated as a sub-community. For the 
RNA and DNA data, the α-diversity (Shannon index) was calculated for each 
sample on the selected sub-community and the negative of the value was defined 
as the microbial risk score, because high α-diversity indicates low risk of death. 
For the host transcriptome data, the log-transformed total count of all selected 
candidate transcriptome for each sample was defined as the risk score, since most 
selected candidate transcriptomes increased the risk of death. The leave-one-out 
cross-validation was used for the predictions. The P value cut-off was set at the 
value that produces the largest area under the receiver operating characteristic 
curve in predicting the death/survival status using the risk score we constructed 
over these features. The additive model was used to integrate when more than one 
score is used for the prediction.

Multiscale and co-expression network analyses. Raw counts from the human 
transcriptome were normalized and converted to log2 counts per million using the 
R packages limma (ref. 60) and voom (ref. 61) (v.3.44.1 with R v.4.0.0) with standard 
parameters. Microbiome abundance information was converted to relative 
abundance. Low abundance taxa were removed based on average abundance across 
all samples to yield a minimum of 1,000 taxa for each metatranscriptome dataset. 
All datasets were batch adjusted. Differentially expressed genes and differentially 
abundant taxa were called using the DESeq2 package49 (v.1.28.1), based on the 
negative binomial (that is, Gamma–Poisson) distribution. According to the 
recommendation by the authors of the package, we used non-normalized data 
(that is, raw gene counts and abundance data), as DESeq2 internally corrects data 
and performs normalization steps. For this purpose, raw microbiome abundance 
data were converted to DESeq2 dds objects using the phyloseq R library (v.1.32.0). 
Contrasts are based on outcome groups (≤28 day MV, >28 day MV or death). 
Differentially expressed genes and differentially abundant tax with FDR of 0.2 or 
less are considered significant.

MEGENA39 was performed to identify host modules of highly co-expressed 
genes in SARS-CoV-2 infection. The MEGENA workflow comprises four major 
steps: (1) fast planar filtered network construction (FPFNC), (2) multiscale 
clustering analysis (MCA), (3) multiscale hub analysis (MHA) and (4) cluster–trait 
association analysis (CTA). The total relevance of each module to SARS-CoV-2 
infection was calculated by using the rank product method with the combined 
enrichment of the differentially expressed gene signatures as implemented: 
Gj =

∏

i
gji, where gji is the relevance of a consensus j to a signature i and gji 

is defined as (maxj(rji) + 1 − rji)/
∑

j
rji, where rji is the ranking order of the 

significance level of the overlap between the module j and the signature.
To functionally annotate gene signatures and gene modules derived from the 

host transcriptome data, we performed an enrichment analysis of the established 
pathways and signatures, including the gene ontology categories and MSigDB. 
The hub genes in each subnetwork were identified using the adopted Fisher’s 
inverse chi-square approach in MEGENA; Bonferroni-corrected P values smaller 
than 0.05 were set as the threshold to identify significant hubs. The calculation 
of correlations between modules, between modules and clinical traits as well as 
between modules and individual taxa was performed using Spearman correlation. 
Other correlation measures, such as Pearson correlation or the maximal 
information coefficient (MIC)62 proved to be inferior for this task. Categorical trait 
data were converted to numerical values as suitable.

Statistics and reproducibility. Specific statistical analysis is described in detail  
for each subsection of the methods above. For association with discrete factors,  
we used non-parametric tests (Mann–Whitney or Kruskal–Wallis analysis of  
variance (ANOVA)). We used the ade4 package in R to construct PCoA based  
on Bray–Curtis distances63–66. No statistical method was used to predetermine  
sample size. No data were excluded from the analyses. The experiments were 
not randomized. The investigators were not blinded to allocation during 
experiments and outcome assessment.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All sequencing data used for this analysis are available in the NCBI Sequence Read 
Archive under project numbers PRJNA688510 and PRJNA687506 (RNA and DNA 
sequencing, respectively).

Code availability
Code used for the analyses presented in the current manuscript is available at 
https://github.com/segalmicrobiomelab/SARS_CoV2.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Description of patient cohort, samples obtained, analyses performed and sequencing depth. Schematic representation of the 
measurements obtained in this cohort of 589 critically ill COVID-19 patients. Top barplots summarize median number of reads obtained per sample of 142 
independent subjects prior to filtering (Pre) and after filtering (Post). Bottom barplots show the median number of reads annotated to different microbial 
kingdoms in each sample. *SARS-CoV-2, Human with Lungs, RNA and DNA images were created with BioRender.com. **NYU Langone Health is the 
official brand from NYU Langone Health.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Identification of top taxa found in background samples as compared with BAL and upper airway samples. Boxplots showing the 
relative abundance values in log10 relative abundance of taxa ranked ordered based on dominance of Background bronchoscope control samples and 
compared to abundances in BAL and Upper Airway samples within metatranscriptome (a) and metagenome (b) data. Red labels indicate taxa where 
relative abundance is higher in background samples than in BAL and therefore considered possible contaminant.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Topographical analyses of metatranscriptome data. a, Comparison of alpha diversity (Shannon Index, each dot denotes the 
Shannon diversity of a sample while box inter-quartile range with median at the center and whiskers represent maximum and minimum value) and b) 
beta diversity (Bray Curtis Dissimilarity index, across 5 background negative controls (bronchoscope), 118 bronchoalveolar lavage (BAL) and 64 upper 
airway (UA) samples (Kruskal-Wallis p value =0.0006 and PERMANOVA p-values = 0.001, without multiple comparisons, respectively). c, Boxplots 
showing the relative abundance values in log10 across all metatranscriptome samples for the 118 BAL and 64 Upper Airway samples. The 50 taxa with 
the highest relative abundance values in the BAL metatranscriptome data are displayed; the top 10 in the BAL are highlighted in bold. Each column 
consists of four plots displaying in decreasing order of abundance the top RNA vertebrate viruses, DNA phages, bacteria, and fungi identified (from top to 
bottom). Numbers in parentheses next to the taxa labels display the ranking in relative abundance for either the BAL or UA metatranscriptome samples, 
respectively. Each dot denotes the relative abundance of a taxa per sample while the box inter-quartile range with median at the center and whiskers 
represent maximum and minimum value.
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Extended Data Fig. 4 | Topographical analyses of metagenome data. Comparison of a) alpha diversity (Shannon Index, each dot denotes the Shannon 
diversity of a sample while the box inter-quartile range with median at the center and whiskers represent maximum and minimum value) and b) beta 
diversity (Bray Curtis Dissimilarity index, across 5 background negative controls (bronchoscope), 118 bronchoalveolar lavage (BAL) and 64 upper airway 
(UA) samples (Kruskal-Wallis p-value = 0.00000000000000022 and PERMANOVA p-value= 0.001, without multiple comparisons, respectively). (c) 
Boxplots showing the relative abundance values in log10 across all metagenome samples for the 118 BAL and 64 Upper Airway samples. The 50 taxa with 
the highest relative abundance values in the BAL metagenome are displayed; the top 10 in the BAL are highlighted in bold. Each column consists of two 
plots displaying the most abundant bacteria and fungi identified. Numbers in parentheses next to the taxa labels displays its ranking in relative abundance 
for either the BAL or UA metagenome samples, respectively. Each dot denotes the relative abundance of a taxa per sample while the box inter-quartile 
range with median at the center and whiskers represent maximum and minimum value.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Evaluation of associations between the lower airway mycobiome and clinical outcome. Fungal taxonomic data was subtracted 
from metagenome and metatranscriptome data from 5 background negative controls (bronchoscope), 118 bronchoalveolar lavage (BAL) and 64 upper 
airway (UA) samples. a, Comparisons between the three clinical outcome groups was performed for α diversity (Shannon Index, each dot denotes the 
Shannon diversity of a sample while the box inter-quartile range with median at the center and whiskers represent maximum and minimum value, left 
panel), β diversity (based on Bray Curtis Dissimilarity Index, right panel); Kruskal-Wallis p-value and PERMANOVA p-value respectively; on metagenome 
data. b, Bubble plot showing DESeq results of fungi enriched in each clinical outcome comparisons based on metagenome data (bubble size based on 
median relative abundance for those found to be statistically significant). c, Comparisons between the three clinical outcome groups was performed 
for α diversity (Shannon Index, each dot denotes the Shannon diversity of a sample while the box inter-quartile range with median at the center and 
whiskers represent maximum and minimum value, left panel), β diversity (based on Bray Curtis Dissimilarity Index, right panel); Kruskal-Wallis p-value 
and PERMANOVA p-value respectively; on metatranscriptome data. d, Bubble plot showing DESeq results of fungi enriched in each clinical outcome 
comparisons based on metatranscriptome data (bubble size based on median relative abundance for those found to be statistically significant).
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Extended Data Fig. 6 | Functional microbial compositional analyses. KOs were summarized to associated pathways and differential expression 
was calculated based on DESeq2 analysis. a, Gene Set Enrichment Analysis (GSEA) was used to compare the functional signatures identified in BAL 
metagenome and metatranscriptome as distinctly enriched for comparisons between clinical outcome groups. b, Bubble plot showing DESeq results of 
microbial functions found concordantly differentially enriched between clinical outcome groups (bubble size based on median relative abundance for those 
found statistically significant).
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Extended Data Fig. 7 | Evaluation of associations between the lower airway antibiotic resistance genes and clinical outcome. Bubble plot showing DESeq 
results of summarized categories of antibiotic resistant microbial genes taken from MEGARes for the metagenome (top) and metatranscriptome (bottom) 
data sets for each clinical outcome comparison (bubble size based on median relative abundance for those found to be statistically significant). Colored 
bubbles indicate significantly enriched antibiotic resistance groups.
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Extended Data Fig. 8 | Measurement of anti-SARS-CoV-2 Immunoglobulin levels and neutralization activity. Levels of anti-SARS-CoV-2 Spike (a) and 
anti-SARS-CoV-2 receptor binding domain (RBD, b) antibodies in from 20 non-SARS-CoV-2 infected smoker controls and 142 severely ill COVID-19 
intubated patients. Note that the signals for different isotypes cannot be compared because they are detected with different reagents. c, Comparisons of 
anti-SARS-CoV-2 RBD antibody levels in 142 BAL samples across subjects in different clinical outcome groups (*= Two-sided Mann–Whitney U p < 0.05). 
d, Neutralizing activity in BAL samples across subjects in different clinical outcome groups.
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Extended Data Fig. 9 | Evaluation for associations between the lower airway host transcriptome and clinical outcome. a, PCoA (based on Bray Curtis 
Dissimilarity Index, PERMANOVA p-value) comparing the three clinical outcome groups. b, c, d, Volcano plots comparing lower airway host transcriptome 
between the three clinical outcome groups.
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Extended Data Fig. 10 | Multi-scale cross-kingdom and co-expression networks. The neighborhood 5 cross-kingdom metatranscriptome network 
centered around SARS-CoV-2 is shown. Nodes refer to taxa, edges denote co-abundance after MEGENA. The size of the nodes indicates abundance. 
Taxa with large nodes are highly abundant. Node shapes are according to the legend and refer to different microbial kingdoms. The differential abundance 
of taxa in log2(fold change) between the deceased group and the ≤28-day MV groups is shown by node color - red nodes are taxa abundant in the 
deceased group compared to the ≤28-day MV group, blue colored nodes denote the opposite. b, Modules M175 and M718 of the host transcriptome are 
shown. The node size refers to the absolute gene expression value. Nodes with wide node border refer to key regulators/hub genes (see Methods). The 
differential gene expression of taxa in log2(fold change) between the deceased group and the ≤28-day MV groups is shown by node color - red nodes are 
up-regulated in the deceased group compared to the ≤28-day MV group, blue colored nodes denote the opposite.
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Software and code
Policy information about availability of computer code

Data collection All data collection instruments and analytical pipelines are detailed in the methods and in the description of the data analyses available below.

Data analysis Available at https://github.com/segalmicrobiomelab/SARS_CoV2

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Sequencing data are available in NCBI’s Sequence Read Archive under project numbers PRJNA688510 and PRJNA687506 (RNA and DNA sequencing, respectively).
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Sample size The sample size was based on data available on a cohort of critically ill patients during the first surge of the COVID-19 pandemic where lower 
airway samples were collected. This is a convenience sample dataset and the largest cohort of patients with lower airway samples published 
with virome, metatranscriptome and metagenome data.

Data exclusions There was no data or data point obtained that was excluded

Replication In the paper we described multiple different methods used to replicate the results for key findings, such as the use of SARS-CoV-2 genomic 
RNA detection, subgenomic SARS-CoV-2 detection and RNA virome sequencing. Technical replicates were also used and indicated.

Randomization All experiments were run using multiplexing approaches for what all samples were run at the same time

Blinding None of the investigators performing the experiments and obtaining data were aware of the outcomes analyzed. Investigators were blinded 
to group allocation during data collection and/or upstream analysis. Downstream analysis including evaluation of variables associated with 
clinical outcome require unblinding that outcome
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Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Described in the methods in page 39: SAv (Streptavidin) (Sartorius 90792) that had been loaded with biotinylated Spike, biotinylated 

RBD or biotin (negative control) in wells of a 96 well HTS filter plate (MSHVN4550). As positive controls, we used CR3022 antibody, 
that recognizes SARS-CoV-2 Spike and RBD, in human IgG, IgA and IgM formats (Absolute Antibody; dilutions 1:1120, 1:1300 and 
1:258, respectively). After washing the beads, bound antibodies were labeled with anti IgG-DyLight488, anti IgA-PE and anti IgM-
PECy7, and the fluorescence intensities were measured in Intellicyt IQue3 (Sartorius)

Validation Described in the methods

Human research participants
Policy information about studies involving human research participants

Population characteristics The population characteristics collected and reported are extensive. These can be find in Table 1, Supplementary Tables 1-3

Recruitment We included all subjects where lower airway samples were obtained during the first wave of the COVID-19 pandemic. As 
discussed in the manuscript, the presented data from lower airway samples are restricted to those subjects for whom 
bronchoscopy was performed as part of their clinical care. Thus, the culture independent data is biased towards patients 
that, while critically ill with COVID-19, may not be representative of the extremes in the spectrum of disease severity. 
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Ethics oversight The study protocol was approved by the Institutional Review Board of New York University

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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