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A global atlas of soil viruses reveals 
unexplored biodiversity and potential 
biogeochemical impacts

Emily B. Graham    1,2  , Antonio Pedro Camargo    3, Ruonan Wu    1, 
Russell Y. Neches    3,4, Matt Nolan3, David Paez-Espino3, Nikos C. Kyrpides    3, 
Janet K. Jansson1, Jason E. McDermott    1,5, Kirsten S. Hofmockel    1,6 & the Soil 
Virosphere Consortium*

Historically neglected by microbial ecologists, soil viruses are now thought 
to be critical to global biogeochemical cycles. However, our understanding 
of their global distribution, activities and interactions with the soil 
microbiome remains limited. Here we present the Global Soil Virus Atlas, 
a comprehensive dataset compiled from 2,953 previously sequenced soil 
metagenomes and composed of 616,935 uncultivated viral genomes and 
38,508 unique viral operational taxonomic units. Rarefaction curves from 
the Global Soil Virus Atlas indicate that most soil viral diversity remains 
unexplored, further underscored by high spatial turnover and low rates 
of shared viral operational taxonomic units across samples. By examining 
genes associated with biogeochemical functions, we also demonstrate 
the viral potential to impact soil carbon and nutrient cycling. This study 
represents an extensive characterization of soil viral diversity and provides 
a foundation for developing testable hypotheses regarding the role of the 
virosphere in the soil microbiome and global biogeochemistry.

Viral contributions to soil ecology are largely unknown due to the 
extreme diversity of the soil virosphere. Despite variation in esti-
mates of soil viral abundances (107 to 1010 viruses per gram of soil), it 
is clear that soils are among the largest viral reservoirs on Earth1–3. Early 
metagenomics investigations have revealed high genetic diversity in 
soil viruses, with putative impacts on global biogeochemistry1,2,4,5. 
Still, less than 1% of publicly available viral metagenomic sequences 
are from soil6, reflecting the lack of knowledge about soil viruses and 
their ecological roles4,7.

High soil viral diversity may be due to the structural and/or 
physico-chemical heterogeneity of soils compared with other eco-
systems1,8–10, as well as the high diversity of soil microbial hosts. Indeed, 

viral abundance and composition vary with factors such as soil pH, 
temperature, moisture, chemistry and habitat10–12. Much of this viral 
diversity is contained within DNA viruses, though RNA viruses also have 
the potential to influence soil processes13,14. While less is known about 
soil viral activity, a recent study of peatlands reported that close to 60% 
of soil viral genomes may be involved in active infections15, consistent 
with high activity observed in marine and other systems4,16–18.

Whether common macroecological patterns apply to the soil viro-
sphere remains an open question; initial studies of the soil virosphere 
indicate that the ecology of viruses is at least partially decoupled from 
other microorganisms8,10,19. A major finding is that soil viral community 
turnover may occur over shorter spatial and temporal scales than 
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(range 1–1,651) and 24.91 (range 1–896) unique viral clusters per sam-
ple at the species, genus and family levels. A total of 38,278 out of 
38,508 vOTUs (99.4%) had at least one member assigned to a taxon 
by geNomad.

We identified 1,432,147 viral genes, of which only 260,258 (~18%) 
were found in at least one annotation database (1,022, 3,634 and 145 
unique KO, Pfam and CAZy annotations, Fig. 2). After filtering to puta-
tive AMGs (Methods)30, we found 5,043 genes that mapped to 83 Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways (1,941 KO and 
3,357 CAZyme, some genes were associated with both KO and CAZyme). 
The median per sample putative AMG abundance (gene copies per 
sample) was ~19 genes (median 4, reflecting skewing from a few samples 
with high AMG abundance).

Some KEGG pathways represented by the most putative AMGs 
were associated with major soil carbon cycling processes (galactose 
metabolism and starch and sucrose metabolism). Likewise, at the level 
of gene annotations, the most common putative AMGs suggested a role 
for viruses in soil carbon cycles; including CAZymes like glycosyltrans-
ferase 4 (GT4), glycosylhydrolase 73 (GH73) and carbohydrate-binding 
module 50 (CBM50). Other abundant KEGG pathways and gene annota-
tions (Fig. 2c,d) included glycosaminoglycan degradation (map00531), 
N-glycan biosynthesis (map00510), folate biosynthesis (map00790), 
6-pyruvoyltetrahydropterin/6-carboxytetrahydropterin synthase 
(K01737) and 7-carboxy-7-deazaguanine synthase (K10026).

Finally, in contrast to the saturation observed in rarefaction curves 
for microbial taxonomy and microbial genes annotated by Pfam, rar-
efaction curves of soil viruses for individual samples (vOTUs and and 
viral clusters) and their genes (annotated by Pfams) did not reach an 
asymptote (Extended Data Fig. 1). The number of new and unique 
vOTUs and viral clusters at the family level (Extended Data Fig. 1b,c) 
was linearly related to sequencing depth, while viral Pfams displayed 
slight curvature. These linear relationships were observed when con-
sidering 2 TB of metagenomic sequencing––4-fold more sequencing 
depth than any other soil metagenome in this study and 40-fold more 
than the JGI recommended sequencing depth for soil samples (45 GB). 
When considering cumulative unique attributes versus sequencing 
depth (Extended Data Fig. 2), relationships in vOTUs and viral clusters 
displayed slight curvature, while viral Pfams neared saturation.

Microbial hosts of soil viruses
We connected 1,450 viruses to putative hosts of 82 different bacterial 
and archaeal orders with clustered regularly interspaced short pal-
indromic repeats (CRISPR) spacers. This equates to 2.78% of quality 
controlled and assured viral contigs that were associated with CRISPR 
spacer hits, roughly 70% more host assignments than in another recent 
assessment4,36. While we observed a maximum of 73 vOTUs per host 
(that is, CRISPR spacer), the mean overall vOTU per host ratio was  
0.42 (median 0), reflecting the predominance of unique host associa-
tions for individual vOTUs.

Out of 1,223 samples with at least one vOTUs assigned to a host, 
only 72 samples had an average of more than one host sequence per 
vOTU, underscoring the low abundance of detected hosts across all 
soils. An average of 0.64 unique host orders were detected per sample, 
with a maximum ratio of CRISPR spacer hits to viral sequences of 73. 
Further, samples with a high ratio of vOTU:host almost exclusively 
were matched to host sequences from a single microbial order, reflect-
ing high phylogenetic conservation of host associations. Of the ten 
samples with the highest CRISPR spacer sequence to viral sequence 
ratio, only one contained a CRISPR spacer matching more than one 
microbial order.

The most prevalent host taxa were distributed across distantly 
related phyla, including members of prominent soil orders such as 
Pseudomonadales, Burkholderiales, Acidobacteriales and Bacteroidales 
(Fig. 3b). The frequency of CRISPR hits associated with Acidobacteri-
ales, Oscillospirales, Pedosphaerales and Geobacterales was positively 

microbial communities8,10,19. For instance, spatial viral turnover has 
been shown to be over five times higher than microbial community 
turnover across an 18 m soil transect8, and only 4% of peatland ‘viral 
operational taxonomic units’ (vOTUs) are shared across continents20. 
Other studies note the possibility for long-distance soil viral disper-
sal through atmospheric21 or aquatic transport22 consistent with low 
turnover. These contrasting results indicate a lack of consensus sur-
rounding the spatial and temporal patterns of soil viruses and the need 
for large-scale surveys of the soil virosphere.

Importantly, soil viruses can influence biogeochemical cycling, 
antibiotic resistance and other critical soil functions by releasing 
carbon and nutrients during host infection and/or by altering host 
metabolism via auxiliary metabolic genes (AMGs)9,15,18,23–28. While soil 
AMG characterization is nascent14, marine systems demonstrate the 
breadth of functions ripe for discovery in soil24. More than 200 viral 
AMGs encoding functions related to carbon and nutrient cycling, stress 
tolerance, toxin resistance and other processes have been detected in 
marine systems24. In contrast, only a handful of these functions have 
been identified as soil viral AMGs12,14,15,22,29,30. AMGs encoding carbohy-
drate metabolism in particular may be present in soils, including a few 
that have been experimentally validated9,10,15,29–31.

Accordingly, understanding the role of viruses in soil ecosystems 
is one of the most pressing current challenges in microbial ecology32. 
Despite the expansion of studies characterizing soil viruses4,12,29,30, 
a comprehensive description of the global soil virosphere has yet to 
be performed. Such a description is necessary to begin to address 
questions regarding the spatiotemporal dynamics, physico-chemical 
interactions, host organisms and food web implications of the soil 
virosphere. In this Resource, we present a meticulous compilation of 
the Global Soil Virus (GSV) Atlas based on previous metagenomic inves-
tigations of worldwide soils. This atlas represents the most extensive 
collection of soil viral metagenomes so far, encompassing contribu-
tions from prominent repositories, ecological networks and individual 
collaborators.

Results
GSV Atlas
For a description of the files contained by the GSV Atlas, please see 
‘Data availability’ section. We amassed 1.25 × 1012 of assembled base 
pairs (bp) across 2,953 soil samples, including 1,552 samples that were 
not previously available in the US Department of Energy (DOE), Joint 
Genome Institute ( JGI) Integrated Microbial Genomes and Microbi-
omes (IMG/M) database (Figs. 1 and 2). These samples were screened 
for viruses, yielding 616,935 uncultivated virus genomes (UViGs) of 
which 49,649 were of sufficiently high quality for further investigation 
(Methods). To quantify the extent of new viral diversity encompassed 
by the GSV Atlas, we compared sequences from samples not already in 
IMG/VR with those that were previously deposited. Newly contributed 
sequences clustered into 3,613 vOTUs of which only 317 clustered with 
existing viral sequences in IMG/VR. The vast majority associations 
with IMG/VR were with sequences previously uncovered from soil  
habitats (Fig. 2b).

We also collected associated environmental parameters describ-
ing each sample from the SoilGrids250m database33. We assayed a wide 
variety of soils that ranged from bulk density of 0.24–1.56 kg dm−3, 
cation exchange capacity (CEC) of 6.8–71 cmolc kg−1, nitrogen content 
of 0.19–22.4 g kg−1, pH of 4.3–8.5, soil organic C (SOC) of 1.9–510.9 g kg−1 
and clay content of 2.7–57.1% (Fig. 1).

The 49,649 UViGs of sufficient quality for downstream analysis 
clustered into 38,508 vOTUs at the species-like level34, of which 3,296 
were previously unrepresented in IMG/VR (Fig. 2a,b). Only 13.9% of 
the GSV Atlas’ vOTUs appeared in more than one sample, and less 
than 1% were present in more than five samples. At higher taxonomic 
levels, we found 21,160 and 7,598 clusters at the genus and family levels, 
respectively35. This equates to an average of 40.01 (range 1–2,124), 35.48  

http://www.nature.com/naturemicrobiology
https://www.ncbi.nlm.nih.gov/nuccore/K01737
https://www.ncbi.nlm.nih.gov/nuccore/K10026


Nature Microbiology | Volume 9 | July 2024 | 1873–1883 1875

Resource https://doi.org/10.1038/s41564-024-01686-x

correlated to soil nitrogen, organic carbon and CEC, while Enterobac-
terales, Obscuribacterales, Mycobacteriales, Pseudomonadales and 
Streptomycetales were positively correlated to soil bulk density and, 
to a lesser extent, pH and clay.

Metabolic potential encoded by the soil virosphere
Because viral gene annotations were sparsely distributed across many 
functions, we screened all viral genes (regardless of assignment by the 
AMG pipeline) against KEGG pathways to understand relationships 
among genes in the context of known metabolic processes. Across 
the entire soil virosphere, we uncovered portions of KEGG pathways 
that were mostly complete, including functions involved in amino 
acid and sugar metabolism and biosynthesis, antibacterial mecha-
nisms, nucleotide synthesis and other viral functions (for example, 
infection strategies; Extended Data and Fig. 4). For instance, genes 
associated with DNA mismatch repair (map03430), homologous 
recombination (map03440) and base excision repair (map03410) 
were prevalent (Extended Data Fig. 3). Folate biosynthesis was also 
common in the soil virosphere (map00670 and map00790; Fig. 4). 
Bacterial secretion systems (map03070; Extended Data Fig. 4), which 
may be evolutionarily derived from phages37, and the Caulobacter cell 
cycle (map04112; Extended Data Fig. 5), which has a distinct division 
pattern38, were rife across soils. The GSV Atlas also contained many viral 
amino acid biosynthesis/degradation pathways that could be critical 
in viral life cycles (for example, map00250, map00260, map00270, 
map00330 and map00340; Extended Data Fig. 6). Finally, we found 

nearly complete portions of energy-generating pathways including the 
pentose phosphate pathway and F-type ATPase-mediated portions of 
photosynthesis. Lipopolysaccharide (LPS) pathway-related genes that 
may be important as host receptors for bacteriophage and prevention 
of superinfection were also prevelant39,40.

Discussion
The GSV Atlas demonstrates the immense, unexplored taxonomic and 
functional diversity of the soil virosphere. Viral diversity in the GSV Atlas 
appeared to be largely distinct from other global habitats. Nearly 80% 
of GVS Atlas sequences that clustered with existing sequences in IMG/
VR were attributed to soil or soil-like habitats (that is, ‘other terrestrial’ 
or ‘plant-associated’ (rhizosphere)), underscoring the unique compo-
sition of the soil virosphere relative to more well-studied marine and 
human environments. Additionally, few shared vOTUs and viral clusters 
between samples may indicate high spatial turnover (that is, changes 
in soil virosphere composition through space). Recent studies have 
estimated that soil viral diversity is high, both relative to other viral 
habitats and relative to soil microbial diversity7,8,10,22. However, these 
estimates have been limited by copious viral and microbial ‘dark mat-
ter’ for which no functional or taxonomic assignment is known14,23,32. 
Towards this end, the diversity encompassed by the GSV Atlas can serve 
as a community resource for characterizing this unknown fraction of 
the soil virosphere.

Analysis of the GSV Atlas suggests that extreme spatial hetero-
geneity may be a key feature of the soil virosphere at the global scale. 

Fr
eq

ue
nc

y

0.2 0.6 1.0 1.4 10 30 50 70 0 10 20 30 40 50 60

Fr
eq

ue
nc

y

0 5 10 15 20 4 5 6 7 8 0 100 300 500

0

200

400

600

0

200

400

600

0

200

400

600

800

0
100

300

500

0

200

400

600

800

0

200

600

1,000

ba

Bulk density (kg dm−3) Clay content (%)

Total N (g kg−1) pH

−50

50

Lo
ng

itu
de

Latitude
−100 0 100 200

SOC (g kg−1)

Cation exchange
capacity (cmolC kg−1)

c

3.59 × 104

1.22 × 1010

2.74 × 1010

6.99 × 1010

1.48 × 1011

MGV detection
geNomad
CheckV

IMG
Viral
sequence
detection

NEON

EMP

GLUSEEN

JGI-IMG

Individuals

MG-RAST

Viral
sequence
detection

Host
assignment

Putative
auxiliary
metabolic
gene
identi�cation

Pfam
KEGG

CAZy
geNomad
markers

Functional
annotation

Global Soil Virus Atlas

Fig. 1 | Data collection and workflow. a, The global distribution of samples, scaled by assembled base pairs. b, In order horizontally, histograms of mean soil bulk 
density (kg dm−3), CEC (cmolc kg−1), clay content (%), total nitrogen content (g kg−1), pH and SOC (g kg−1) associated with our samples from the SoilGrids250 database 
(0–5 cm). c, The sequence processing workflow.

http://www.nature.com/naturemicrobiology


Nature Microbiology | Volume 9 | July 2024 | 1873–1883 1876

Resource https://doi.org/10.1038/s41564-024-01686-x

While rapid viral spatial turnover was recently observed across short 
spatial scales (<10–20 m)8,10, there has been no such demonstration 
of viral biogeography across the world. We propose that high rates 
of spatial turnover could result from low dispersal rates or distinct 
temporal dynamics of viral communities relative to other organ-
isms. For example, while dormant microorganisms and relic DNA 
can persist for months or more41–43, the burst of viral cells associated 
with active infections may generate short-lived pulses of distinct 
viral communities that do not contribute to relic DNA due to their 
comparatively small genome sizes versus microorganisms. Addition-
ally, the apparent discrepancies between microbial and viral dispersal 
processes could be due to the presence of free viruses that are not 
actively involved in microbial infection14, smaller viral genomes that 
could facilitate physical protection, differences in traits that facilitate 
dispersal between viruses and microorganisms, variation in bioinfor-
matic pipelines and/or other ecological differences between viruses 
and microorganisms.

Together, these factors make characterizing the soil virosphere 
a challenge for the coming decade. When examining individual soil 
samples, the number of new and unique viral attributes (for exam-
ple, vOTUs, clusters and Pfams) was linearly related to sequencing 
depth, suggesting that new viral discoveries are likely to continue 
with increasingly deep sequencing (Extended Data Fig. 1). This con-
trasts with rarefaction curves of the soil microbiome and of microbial 

hosts of soil viruses, which both asymptoted well before sequencing 
depths of typical soil microbial investigations. Still, when looking at the 
cumulative number of unique viral attributes detected in all samples 
collectively (Extended Data Fig. 2), many viral attributes began to 
saturate with sequencing depth. This suggests that, while individual 
samples do not capture soil viral diversity, we can begin to constrain 
the extent of diversity when sequences from thousands of existing 
samples are aggregated.

Functional diversity encoded by the GSV Atlas revealed the poten-
tial for soil viruses to impact biogeochemical cycles, in particular by 
supporting organic matter decomposition. KEGG pathways and gene 
annotations represented by the most putative AMGs were related to 
the metabolism and/or production of sugars common to soils including 
sucrose, mannose, glucosamine and maltose44,45, as well as the decom-
position of chitin—one of the most abundant carbon molecules in soil46. 
Our results are consistent with previous work from single locations that 
have hinted at a wide range of possible soil viral AMGs, including gly-
coside hydrolases, carbohydrate esterases and carbohydrate-binding 
modules15,23,31. Given that a large proportion of soil microorganisms are 
infected by viruses at any given time47, AMGs encoded by soil viruses 
have the potential to impact global biogeochemical cycles15,22,23,31. 
The thousands of putative AMGs identified here represent the most 
extensive survey so far and further impress the importance of the soil 
virosphere as a reservoir for biogeochemical potential.
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Unravelling relationships between viruses and their host commu-
nities is imperative to understanding the impact of the virosphere on 
soil processes. Host presence should be tightly coupled to viral abun-
dance, and in turn, these linkages are mediated by spatial, temporal 
and environmental factors15,48,49. These linkages are also dependent on 
viral host range (that is, host specificity); higher host specificity should 
lead to stronger coupling between microbial and viral abundance and 
community composition. Viral host specificity is also associated with 
ecological factors that impact microbial community composition and 
may result in trade-offs between viral growth and the breadth of the 
host range11,50–52. Across the GSV Atlas, there were few hosts per vOTU 
on average (mean 0.42), and of vOTUs associated with multiple host 
sequences, the vast majority were linked to multiple hosts of the same 
phylogenetic clade. While high host specificity has historically been 
the prevailing paradigm, our work contrasts recent studies suggest-
ing that some soil viruses may have broader host ranges than viruses 
in other habitats53,54.

The ultimate impact of viral predation on soil functions is at least 
partially associated with the taxonomic distribution of hosts and 
their variation across soil habitats. Host sequences spanned nearly 
every major soil microbial clade, consistent with other recent studies 
(Fig. 3)22,23,31. This taxonomic breadth suggests a role for the soil viro-
sphere in most soil habitats. Moreover, some hosts were susceptible to 
changes in the environment, which may reflect environmental filter-
ing on host communities (which, in turn, determines the amount and 
type of viruses present) or on viruses directly, which subsequently 

impacts host community composition15,27,55,56. Viral infections have 
been previously linked to soil parameters including moisture12,30 and 
carbon and nitrogen content9. In our analysis, bulk density may serve 
as a proxy for hydrologic connectivity in the soil matrix. For example, 
low hydrologic connectivity may create ‘spatial refuges’ for soil bacteria 
from viral infections8, influence the virus–host encounter rates and, 
thus, structure the soil virosphere and its hosts. Nutrient amendments 
are also considered to be drivers of the soil virosphere, supporting the 
relationship we observed between carbon, nitrogen and host taxa.

When examining the functional potential of the soil virosphere, we 
detected many hallmarks of viral activity––including genes associated 
with cell lysis, DNA repair/replication and other infection signatures––
and viral amino acid biosynthesis/degradation pathways that could 
be critical in viral life cycles (Fig. 4 and Extended Data Figs. 3–6). The 
prevalence of viral genes associated with central microbial functions 
highlights the potential importance of viral activity in soils and the 
need for targeted approaches to quantify the extent and impact of 
viral gene expression. For instance, folate and other B vitamins may 
be logical targets for pathogens as they are key to bacterial growth 
(map00670 and map00790; Fig. 4)57,58. Type IV secretion systems can 
be used by bacteria to secrete toxins59 or as a method for DNA transfer 
through membranes60. The Caulobacter cell cycle (map04112; Extended 
Data Fig. 5) is another promising indicator of viral infections due to its 
distinct cell division process38. Finally, amino acids are building blocks 
for cellular material and also support soil biogeochemical cycles, 
as they can enhance carbon cycling through priming effects and/or 
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Fig. 3 | Relationships between soil viruses and their hosts. a, A cumulative 
distribution function plot showing the ratio of CRISPR spacer hits to viral 
sequences per sample. The inset shows a zoomed portion of the plot from 0 
to 0.08 along the y axis. b, A phylogenetic tree of bacterial hosts at the order 
level. Phylum level taxonomy is shown in the inner circle, and the abundance 
of CRISPR spacer hits to each order is shown in the outer circle. Two archaeal 

orders (Nitrososphaerales and Halobacteriales) of hosts are not shown. c, The 
correlation between the frequency of CRISPR hits (defined as total CRISPR spacer 
hits per microbial order) and environmental parameters from SoilGrids250m. 
Colour denotes Spearman’s rho. Only host orders present in more than five 
samples are shown in the heatmap.
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enhanced nutrient availability61,62 (for example, map00500, map00052 
and map00051; Fig. 4). Collectively, these pathways demonstrate sev-
eral possibilities for soil viral impacts on processes that are central to 
microbial metabolism and biogeochemical cycling of elements in soil.

Beyond these pathways, we highlight three KEGG pathways with 
near-complete portions represented in the GVS Atlas: F-type ATPase 
(map00190), pentose phosphate pathway (map00030) and LPS bio-
synthesis (map00540). Five of seven subcomponents of the F-type 
ATPase were detected in the soil virosphere, while no V- or A-type 
ATPases were found. Given the evolutionary similarities between V- 
and F-type ATPase in particular63, the lack of any V- or A-type ATPase 
components is notable in light of the near-complete F-type ATPase. 
Though there is some basis for F-type ATPases in viral replication64, we 
also note the possible involvement of F-type ATPase in photosynthetic 
energy generation65. Given the prominence of photosynthetic marine 
AMGs26,66, we highlight the possibility of a viral F-type ATPase as a soil 
AMG. The pentose phosphate pathway is also a prevalent and important 
AMG found in marine ecosystems, where viral infection diverts carbon 
towards the pentose phosphate pathway as an ‘express route’ of energy 
generation, at the expense of host carbon metabolism (reviewed in ref. 
66). Finally, we observed nearly complete LPS-related pathways in the 
GSV Atlas. Phages often carry depolymerases and other enzymes that 
target LPS or similar outer membrane components to facilitate bind-
ing and entry39. However, the representation of the LPS biosynthesis 
pathway by putative soil AMGs indicates that phage may work to change 
the function of the pathway post-infection, potentially to prevent 
superinfection40. Collectively, we propose that F-type ATPase, pentose 
phosphate pathway and LPS biosynthesis may be interesting pathways 
for more targeted investigations into the role of the virosphere in soil 
microbiome function.

The field of soil viral ecology is poised for rapid expansion, yet 
several challenges remain in fully characterizing soil viral diversity 
and function. Overcoming these methodological and ecological 
hurdles will require broad participation from global researchers. 
Below, we present a summary of issues, from our perspective, facing 
the current generation of soil viral ecologists and suggestions for 
surmounting them.

First, we propose methodological investments to improve viral 
detection and resolve genomic ‘dark matter’. Metagenomic sequenc-
ing can enable the detection of thousands of viruses per soil sample, 
but the number of viruses detected in soil metagenomes has remained 
relatively flat over time4. In part, this is because soil metagenomic 
sequences from shotgun sequencing are highly fragmented, lead-
ing to lower-quality UViGs67,68. Identifying novel viral sequences and 
assigning viruses to microbial hosts are also limited by the extent of our 
knowledge of viral diversity; thus, expansion of the known virosphere 
is needed. Technical advances may improve soil virus identification 
and host-linkage predictions from shotgun metagenomics, long-read 
sequencing and/or targeted sequencing approaches. Promising new 
methods include experimental verification of viral activity29, size frac-
tionation (‘viromics’)7,8,15, viral isolation69, optimized viral nucleic acid 
extraction70, microscopy29, combined metagenomic assembly4 and 
long-read and/or single-cell sequencing71,72.

Knowledge about soil viral diversity and function is also limited by 
gaps in field and laboratory experiments. The GSV Atlas demonstrates 
that extensive, spatially explicit sampling is needed to capture the 
high spatial turnover of the soil virosphere. The spatial coverage of 
most ‘global’ ecological studies, including this one, often suffers from 
large data gaps73. Concerted efforts are needed to sample wide spatial 
domains, including historically undersampled regions, given the high 
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viral diversity uncovered by the GSV Atlas. Expansion of the known 
virosphere in this way will also help to facilitate tool development. 
Although we did not assess temporal dynamics, temporally explicit 
approaches are likewise needed to characterize temporal dynamics 
in soil viral communities. Further, our functional annotation of viral 
contigs revealed diverse genes associated with functions relevant to 
both viral and microbial communities, and it is impossible to know 
the true functions of viral genes without targeted functional assays. 
We therefore propose that experiments targeting the expression and 
auxiliary metabolic function of viral genes are needed to properly 
assess AMGs in viral communities.

Finally, we still know relatively little about the ecological drivers 
of soil virus distribution or how to represent these mechanisms in 
process-based models. Extreme soil virosphere diversity renders some 
common microbial ecology statistical methods unfeasible, including 
those often used to test ecological principles (for example, ordina-
tions, distance decay, richness and so on). This highlights the need 
for innovative statistical approaches to interpret the soil virosphere 
and to develop new theories surrounding their ecological roles. These 
advances can help aid development of process-based models, which 
have made tremendous improvements in representing soil carbon 
cycles but are missing dynamics involving the soil virosphere.

The GSV Atlas is a new public resource that can help generate 
hypotheses and provide insight into some of the most pressing chal-
lenges in soil viral ecology. We uncovered 616,935 UViGs from global 
soil samples to show the extreme diversity, spatial turnover and func-
tional potential of the soil virosphere. This includes a wide taxonomic 
array of microbial hosts of soil viruses, key functions associated with 
soil carbon cycles and an assortment of viral metabolisms that may 
be critical to deciphering viral ecological principles in the soil ecosys-
tem. We specifically highlight F-type ATPase, the pentose phosphate 
pathway and LPS-related genes, as well as enzymes involved in carbo-
hydrate metabolism, as fruitful areas for further investigation. Our 
work scratches the surface of the soil virosphere and serves as a basis 
for tool, theory and model development to further advance soil ecol-
ogy, biogeochemistry, ecology and evolution.

Methods
Data collection and curation
We collected a total of 2,953 soil metagenomic samples from major 
repositories and ecological networks including the JGI IMG/M platform, 
MG-RAST metagenomics analysis server, Global Urban Soil Ecological 
Education Network, Earth Microbiome Project and National Ecological 
Observatory Network plus submissions from individual collaborators. 
This included 1,552 samples not previously included in IMG/M (Figs. 1 
and 2). All dataset authors were contacted for data re-use permissions.

For samples collected via JGI IMG/M, we retrieved all studies 
with GOLD74 ecosystem type of ‘Soil’ as of August 2020. We manually 
curated metagenomic sequences to remove misclassified data as fol-
lows. We removed samples from studies with the following: (1) GOLD 
ecosystem types: rock-dwelling, deep subsurface, plant litter, geologic, 
oil reservoir, volcanic and contaminated; (2) GOLD ecosystem sub-
types: wetlands, aquifer, tar, sediment, fracking water and soil crust;  
(4) words in title: wetland, sediment, acid mine, cave wall surface, mine 
tailings, rock biofilm, beach sand, petroleum, stalagmite, subsurface 
hydrocarbon microbial communities, vadose zone, mud volcano, 
fumarolic, enriched, composted filter cake, ice psychrophilic, oil sands, 
groundwater, contaminated, rock biofilm, deep mine, coal mine fire, 
hydrocarbon resource environments, marine, enrichment, groundwa-
ter, mangrove, saline desert, hydroxyproline, rifle, coastal, compost, 
biocrust, crust, creosote, soil warming, testing DNA extraction and/or 
agave; (5) GOLD geographic location of wetland; and (6) GOLD project 
type of Metagenome - Cell Enrichment. Additionally, sample names that 
indicated experimental manipulation (for example, CO2 enrichment 
or nitrogen fertilization) or were located in permafrost layers were 

manually excluded. This resulted in 1,480 curated metagenomes from 
publicly available data in IMG/M.

After collating samples from JGI IMG/M and the newly collected 
samples from external networks and collaborators, the final dataset 
consisted of 2,953 soils with 2,015,688,128 contigs, representing 1.2 
terabases of assembled DNA sequences.

In parallel, we retrieved mean values for soil parameters from 
the SoilGrids250m database from 0–5 cm (ref. 33). SoilGrids250m is 
a spatial interpolation of global soil parameters using ~150,000 soil 
samples and 158 remote sensing-based products. Here, we focus on 
six parameters often associated with soil microbial communities: 
bulk density, CEC, nitrogen, pH, SOC and clay content. Because we 
focused on spatial dynamics and soils were collected at various times, 
we did not include temporally dynamic variables such as soil moisture 
or temperature in our set of environmental parameters, though we 
acknowledge they may have profound impacts on the soil virosphere.

Assembly and annotation of samples added to IMG/M
To standardize data analysis across all samples, the 1,552 soil metagen-
omic samples not collected from IMG/M were analysed using the JGI’s 
Metagenome Workflow75. In brief, samples were individually assembled 
using MetaSpades v3.1. A total of 1,476 of the 1,552 assembled soil sam-
ples passed default quality control thresholds76, yielding 133 gigabases 
of assembled DNA in 241,465,924 contigs. Additionally, three very large 
metagenomes (>1 TB each) were assembled separately due to compu-
tational limitations in standard workflows77. The resulting assemblies 
were assigned GOLD identification numbers and imported into IMG/M 
and processed using IMG/M Metagenome Annotation Pipeline v5.0.0 
to align with data obtained directly from IMG/M75.

Virus identification, clustering, and host prediction
We performed an initial identification of viral contigs using a modified 
version of the IMG/VR v3’s virus identification pipeline (code avail-
able at ref. 78)35,36. The pipeline identifies viruses on the basis of the 
presence of 23,841 virus protein families, 16,260 protein families of 
microbial origin from the Pfam database79 and VirFinder80 to identify 
putative viral genomes in contigs that were at least 1 kb long. During 
the course of this study, geNomad v1.3.3 (ref. 81), a tool for virus iden-
tification with improved classification performance was released and 
incorporated into our pipeline to improve prediction confidence and 
perform taxonomic assignment. We further processed predicted viral 
sequences using CheckVv1.0.1 (database version 1.5)82 to assess the 
quality of the viral genomes. As this study focused on non-integrated 
virus genomes, contigs that were flagged by either geNomad or CheckV 
as proviral were discarded. From the remaining contigs, virus genomes 
were selected using the following rules: (1) contigs of at least 1 kb with 
high similarity to genomes in the CheckV database (that is, that had 
high- or medium-quality completeness estimates) or that contained 
direct terminal repeats were automatically selected; (2) contigs longer 
than 10 kb were required to have a geNomad virus score higher than 
0.8 and to either encode one virus hallmark (for example, terminase, 
capsid proteins, portal protein and so on), as determined by geNomad, 
or to have a geNomad virus marker of at least 5.0; (3) contigs shorter 
than 10 kb and longer than 5 kb were required to have a geNomad virus 
score higher than 0.9, to encode at least one virus hallmark and to have 
a virus marker enrichment higher than 2.0. This resulted in 49,649 
viral contigs that we used for downstream analysis. All viral contigs 
are available at ref. 83.

Viral genomes were clustered into vOTUs following MIUViG 
guidelines (95% average nucleotide identity, 85% aligned fraction34). 
In brief, we performed an all-versus-all BLAST (v2.13.0+, ‘-task megab-
last -evalue 1e-5 -max_target_seqs 20000’) search to estimate pairwise 
average nucleotide identities and aligned fractions (AFs), as described 
in Nayfach et al.82 and employed pyLeiden (available at ref. 84) to 
cluster genomes, using as input a graph where pairs of genomes that 
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satisfied the MIUViG criteria were connected by edges. Viruses were 
also grouped at approximate genus level (40% average amino acid 
identity, 20% shared genes) and family level (20% average amino acid 
identity, 10% shared genes) clusters using DIAMOND85 for protein 
alignment and Markov Cluster Process86 for clustering35.

Viral sequences were assigned to putative host (bacterial and 
archaeal) taxa through matches to a previously described database 
of CRISPR spacers of 1.6 million bacterial and archaeal genomes from 
NCBI GenBank and MAGs (release 242; 15 February 2021)87–91. Sequences 
of viral genomes were queried against the spacer database92 using 
blastn (v2.9.0+, parameters: ‘-max_target_seqs = 1000 -word_size = 8 
-dust = no’). Only alignments with at least 25 bp and fewer than two mis-
matches, and that covered ≥95% of the spacer length, were considered. 
Viral sequences were assigned to the host taxon at the lowest taxonomic 
rank that had at least two spacers matched and that represented >70% 
of all matches.

Potential AMG prediction
We leveraged an intermediate output of geNomad (v1.3.3)81 (‘genes.
tsv’) to screen putative AMGs on the detected viral contigs. Proteins 
of the viral contigs were annotated by virus- and host-specific markers 
implemented in geNomad. The identified viral hallmark (for example, 
terminase and major capsid protein) and non-hallmark proteins were 
labelled as ‘VV-1’ and ‘V*-0’ in geNomad output, respectively. The rest 
of the viral proteins of the detected viral contigs that were annotated 
as non-virus-specific or unclassified were then classified into five cat-
egories of putative AMGs based on the presence of viral hallmark or 
non-hallmarks up- or downstream as mentioned previously30. The 
AMGs with both virus-specific genes (‘VV-1’ or ‘V*-0’) were retained 
for the following analysis. To improve the functional annotations of 
the putative AMGs and highlight the viral potentials of metaboliz-
ing carbohydrates and glycoconjugates, the AMG proteins were also 
annotated by Carbohydrate-Active enZYmes (CAZy) Database and 
KEGG database using the default settings in addition to the functional 
annotation databases implemented in geNomad. The putative AMG was 
assigned to the functional annotation with the highest bitscore (for 
example, duplicate annotations were not allowed). Following Hurwitz 
and U’Ren66 and Hurwitz et al.93, we further screened putative AMGs to 
remove genes not found in KEGG pathways. Additionally, in recognition 
of the ambiguity in distinguishing genes encoding auxiliary metabolic 
functions versus core metabolic processes66, we discuss the resulting 
set of genes presented here as ‘putative AMGs’.

Statistical analysis
All statistical analyses and data visualizations were performed using R 
v4.1.0 (ref. 94). We used the following packages for data manipulation 
and visualization: ggplot2 (ref. 95), reshape2 (ref. 96), pheatmap97, 
Hmisc98, ggpubr99, RColorBrewer100, maps101, stats geosphere102, plyr103, 
dplyr104 and stringr105. Additional packages pertaining to specific analy-
ses are listed below.

We generated rarefaction curves for individual samples and for 
cumulative sequencing depth (Extended Data Figs. 1 and 2) using the 
‘phyloseq’ package106 and custom R plots, respectively. Samples con-
taining fewer than five vOTUs, viral clusters or viral Pfams; or fewer than 
100 CRISPR-spacer-based host taxa, microbial Pfams or microbial taxa 
were removed for visual clarity. Removed samples followed the same 
general trends as shown in Extended Data Fig. 1. To visualize satura-
tion across cumulative sequencing depth (Extended Data Fig. 2), we 
ordered samples from lowest to highest total assembled base pairs 
and progressively added them along the x axis. On the y axis, we plot 
the associated cumulative number of unique attributes.

A phylogenetic tree of CRISPR-spaced-based host taxa was gener-
ated at the order-level using phyloT v2 (https://phylot.biobyte.de/), an 
online tree generator based on the Genome Taxonomy Database. Then, 
we visualized the tree in R using the packages ‘ggtree’107, ‘treeio’108 and 

‘ggnewscale’109. To examine relationships between common microbial 
hosts of soil viruses and soil properties, we first downloaded data 
describing bulk density, CEC, nitrogen, pH, SOC and clay content from 
the SoilGrids250m database33 using the ‘soilDB’ package110. Mean values 
of soil properties from 0 to 5 cm were correlated to the total number of 
CRISPR spacer hits per microbial order using Spearman correlation.

Finally, we mapped genes detected across the entire soil viro-
sphere (that is, all samples combined) to their corresponding KEGG 
pathways using the ‘pathview’ package in R111. Gene abundances were 
converted by log base 10 for visualization.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The GSV Atlas is available for download at https://doi.
org/10.25584/2229733 (ref. 83). It includes all UViGs regardless of qual-
ity (File 1, 616,935 UViGs), data associated with each contig that passed 
QA/QC (File 2, 49,649 contigs), predicted viral protein sequences (File 3, 
402,882 predicted protein sequences), data associated with each gene 
(File 4, 1,432,147 genes), geographic and physico-chemical data of the 
curated soil samples (File 5, 2,953 samples) and a readme file (File 6).

Code availability
Code for sequence processing is described in Nayafch et al.35 and is 
available in the materials associated with those publications. Github 
repositories associated with this publication are available at https://
github.com/snayfach/MGV/tree/master/viral_detection_pipeline  
(ref. 78), https://github.com/apcamargo/pyleiden (ref. 84) and  
https://github.com/apcamargo/genomad (ref. 81).
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Extended Data Fig. 1 | Rarefaction curves. a, Taxonomy from whole metagenomic sequences, b, vOTUs at the species level, c, viral clusters at the family level,  
d, Pfams from whole metagenomic sequences, e, Pfams from UViGs, f, CRISPR spacer-based host assignment of UViGs.
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Extended Data Fig. 2 | Total sequencing depth versus cumulative unique attributes. a, Taxonomy from whole metagenomic sequences, b, vOTUs at the species 
level, c, viral clusters at the family level, d, Pfams from whole metagenomic sequences, e, Pfams from UViGs, f, CRISPR spacer-based host assignment of UViGs.
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Extended Data Fig. 3 | Metabolic potential encoded by the soil virosphere, 
hallmarks of viral activity. a, Base excision repair (map03410), b, (prokaryotic) 
homologous recombination (map03440), and c, (prokaryotic) DNA mismatch 
repair (map03430). KEGG pathways are cropped and/or simplified to enhance 

visualization. Graphics are adapted from visualizations rendered by  
Pathview. Color scale denotes the log10 of the total abundance across the entire 
soil virosphere.
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Extended Data Fig. 4 | Metabolic potential encoded by the soil virosphere, bacterial secretion systems (map03070). KEGG pathways are cropped and/or 
simplified to enhance visualization. Graphics are adapted from visualizations rendered by Pathview. Color scale denotes the log10 of the total abundance across the 
entire soil virosphere.

http://www.nature.com/naturemicrobiology


Nature Microbiology

Resource https://doi.org/10.1038/s41564-024-01686-x

Extended Data Fig. 5 | Metabolic potential encoded by the soil virosphere, Caulobacter cell cycle (map04112). KEGG pathways are cropped and/or simplified  
to enhance visualization. Graphics are adapted from visualizations rendered by Pathview. Color scale denotes the log10 of the total abundance across the entire  
soil virosphere.
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Extended Data Fig. 6 | Metabolic potential encoded by the soil virosphere, 
hallmarks of viral activity. Portions of galactose metabolism (map00052), 
starch and sucrose metabolism (map00500), and fructose and mannose 
metabolism (map00051) are depicted. KEGG pathways are cropped and/or 

simplified to enhance visualization. Graphics are adapted from visualizations 
rendered by Pathview. Color scale denotes the log10 of the total abundance 
across the entire soil virosphere.

http://www.nature.com/naturemicrobiology







	A global atlas of soil viruses reveals unexplored biodiversity and potential biogeochemical impacts

	Results

	GSV Atlas

	Microbial hosts of soil viruses

	Metabolic potential encoded by the soil virosphere


	Discussion

	Methods

	Data collection and curation

	Assembly and annotation of samples added to IMG/M

	Virus identification, clustering, and host prediction

	Potential AMG prediction

	Statistical analysis

	Reporting summary


	Acknowledgements

	Fig. 1 Data collection and workflow.
	Fig. 2 Data description.
	Fig. 3 Relationships between soil viruses and their hosts.
	Fig. 4 Metabolic potential encoded by the soil virosphere.
	Extended Data Fig. 1 Rarefaction curves.
	Extended Data Fig. 2 Total sequencing depth versus cumulative unique attributes.
	Extended Data Fig. 3 Metabolic potential encoded by the soil virosphere, hallmarks of viral activity.
	Extended Data Fig. 4 Metabolic potential encoded by the soil virosphere, bacterial secretion systems (map03070).
	Extended Data Fig. 5 Metabolic potential encoded by the soil virosphere, Caulobacter cell cycle (map04112).
	Extended Data Fig. 6 Metabolic potential encoded by the soil virosphere, hallmarks of viral activity.




