Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Interactions between diet and gut microbiota in cancer

Abstract

Dietary patterns and specific dietary components, in concert with the gut microbiota, can jointly shape susceptibility, resistance and therapeutic response to cancer. Which diet–microbial interactions contribute to or mitigate carcinogenesis and how they work are important questions in this growing field. Here we interpret studies of diet–microbial interactions to assess dietary determinants of intestinal colonization by opportunistic and oncogenic bacteria. We explore how diet-induced expansion of specific gut bacteria might drive colonic epithelial tumorigenesis or create immuno-permissive tumour milieus and introduce recent findings that provide insight into these processes. Additionally, we describe available preclinical models that are widely used to study diet, microbiome and cancer interactions. Given the rising clinical interest in dietary modulations in cancer treatment, we highlight promising clinical trials that describe the effects of different dietary alterations on the microbiome and cancer outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dietary modulation of colonization resistance to opportunistic gut microbes.
Fig. 2: Diet-mediated production of oncomicrobe toxins.
Fig. 3: Synergy between diet-derived metabolites and oncomicrobes.
Fig. 4: Diet–microbial interactions in ISC pathophysiology and tumorigenesis.

Similar content being viewed by others

References

  1. Cordain, L. et al. Origins and evolution of the Western diet: health implications for the 21st century. Am. J. Clin. Nutr. 81, 341–354 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Yang, J. et al. High-fat diet promotes colorectal tumorigenesis through modulating gut microbiota and metabolites. Gastroenterology 162, 135–149.e2 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Schulz, M. D. et al. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature 514, 508–512 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Newsome, R., Yang, Y. & Jobin, C. Western diet influences on microbiome and carcinogenesis. Semin. Immunol. 67, 101756 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Beyaz, S. et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531, 53–58 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Byndloss, M. X. et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 357, 570–575 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee, J.-Y. et al. High-fat diet and antibiotics cooperatively impair mitochondrial bioenergetics to trigger dysbiosis that exacerbates pre-inflammatory bowel disease. Cell Host Microbe 28, 273–284.e6 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cevallos, S. A. et al. Increased epithelial oxygenation links colitis to an expansion of tumorigenic bacteria. mBio 10, e02244-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cao, Y. et al. Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. Science 378, eabm3233 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. He, Z. et al. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut 68, 289–300 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Van Elsland, D. M. et al. Repetitive non-typhoidal Salmonella exposure is an environmental risk factor for colon cancer and tumor growth. Cell Rep. Med. 3, 100852 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. El Tekle, G. & Garrett, W. S. Bacteria in cancer initiation, promotion and progression. Nat. Rev. Cancer 23, 600–618 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Lee, J.-Y., Tsolis, R. M. & Bäumler, A. J. The microbiome and gut homeostasis. Science 377, eabp9960 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Greten, F. R. & Grivennikov, S. I. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 51, 27–41 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. O’Keefe, S. J. D. et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun. 6, 6342 (2015).

    Article  PubMed  Google Scholar 

  16. Mehta, R. S. et al. Association of dietary patterns with risk of colorectal cancer subtypes classified by Fusobacterium nucleatum in tumor tissue. JAMA Oncol. 3, 921–927 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu, L. et al. Diets that promote colon inflammation associate with risk of colorectal carcinomas that contain Fusobacterium nucleatum. Clin. Gastroenterol. Hepatol. 16, 1622–1631.e3 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Arima, K. et al. Western-style diet, pks island-carrying Escherichia coli, and colorectal cancer: analyses from two large prospective cohort studies. Gastroenterology 163, 862–874 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Wilson, M. R. et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science 363, eaar7785 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120–123 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pleguezuelos-Manzano, C. et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature 580, 269–273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Buc, E. et al. High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS ONE 8, e56964 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guidi, R. et al. Chronic exposure to the cytolethal distending toxins of Gram-negative bacteria promotes genomic instability and altered DNA damage response: bacterial toxin and genomic instability. Cell Microbiol. 15, 98–113 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Warren, R. L. et al. Co-occurrence of anaerobic bacteria in colorectal carcinomas. Microbiome 1, 16 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nakatsu, G. et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat. Commun. 6, 8727 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, Y. et al. Bacterial genotoxin accelerates transient infection-driven murine colon tumorigenesis. Cancer Discov. 12, 236–249 (2022).

    Article  PubMed  Google Scholar 

  27. Ferrere, G. et al. Ketogenic diet and ketone bodies enhance the anticancer effects of PD-1 blockade. JCI Insight 6, e145207 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nagpal, R., Neth, B. J., Wang, S., Craft, S. & Yadav, H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine 47, 529–542 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhu, W. et al. Editing of the gut microbiota reduces carcinogenesis in mouse models of colitis-associated colorectal cancer. J. Exp. Med. 216, 2378–2393 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu, W. et al. Precision editing of the gut microbiota ameliorates colitis. Nature 553, 208–211 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Holscher, H. D. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8, 172–184 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Reynolds, A. et al. Carbohydrate quality and human health: a series of systematic reviews and meta-analyses. Lancet 393, 434–445 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Wastyk, H. C. et al. Gut-microbiota-targeted diets modulate human immune status. Cell 184, 4137–4153.e14 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kunzmann, A. T. et al. Dietary fiber intake and risk of colorectal cancer and incident and recurrent adenoma in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Am. J. Clin. Nutr. 102, 881–890 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gonzalez, D. & Mavridou, D. A. I. Making the best of aggression: the many dimensions of bacterial toxin regulation. Trends Microbiol. 27, 897–905 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Sears, C. L., Geis, A. L. & Housseau, F. Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. J. Clin. Invest. 124, 4166–4172 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Casterline, B. W., Hecht, A. L., Choi, V. M. & Bubeck Wardenburg, J. The Bacteroides fragilis pathogenicity island links virulence and strain competition. Gut Microbes 8, 374–383 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brennan, C. A. et al. Aspirin modulation of the colorectal cancer-associated microbe Fusobacterium nucleatum. mBio 12, e00547-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Brennan, C. A. & Garrett, W. S. Fusobacterium nucleatum—symbiont, opportunist and oncobacterium. Nat. Rev. Microbiol. 17, 156–166 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Martin, P. et al. Interplay between siderophores and colibactin genotoxin biosynthetic pathways in Escherichia coli. PLoS Pathog. 9, e1003437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oliero, M. et al. Oligosaccharides increase the genotoxic effect of colibactin produced by pks+ Escherichia coli strains. BMC Cancer 21, 172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Oliero, M. et al. Inulin impacts tumorigenesis promotion by colibactin-producing Escherichia coli in ApcMin/+ mice. Front. Microbiol. 14, 1067505 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Moen, B. et al. Effect of dietary fibers on cecal microbiota and intestinal tumorigenesis in azoxymethane treated A/J Min/+ mice. PLoS ONE 11, e0155402 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Muñoz-Esparza, N. C. et al. Polyamines in food. Front. Nutr. 6, 108 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chagneau, C. V. et al. The polyamine spermidine modulates the production of the bacterial genotoxin colibactin. mSphere 4, e00414-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Boling, L. et al. Dietary prophage inducers and antimicrobials: toward landscaping the human gut microbiome. Gut Microbes 11, 721–734 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Minot, S. et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 21, 1616–1625 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Riboli, E. et al. Carcinogenicity of aspartame, methyleugenol, and isoeugenol. Lancet Oncol. 24, 848–850 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Oh, J.-H. et al. Dietary fructose and microbiota-derived short-chain fatty acids promote bacteriophage production in the gut symbiont Lactobacillus reuteri. Cell Host Microbe 25, 273–284.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Silpe, J. E., Wong, J. W. H., Owen, S. V., Baym, M. & Balskus, E. P. The bacterial toxin colibactin triggers prophage induction. Nature 603, 315–320 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Balasubramanian, S., Osburne, M. S., BrinJones, H., Tai, A. K. & Leong, J. M. Prophage induction, but not production of phage particles, is required for lethal disease in a microbiome-replete murine model of enterohemorrhagic E. coli infection. PLoS Pathog. 15, e1007494 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dumitrescu, D. G. et al. A microbial transporter of the dietary antioxidant ergothioneine. Cell 185, 4526–4540.e18 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Borodina, I. et al. The biology of ergothioneine, an antioxidant nutraceutical. Nutr. Res. Rev. 33, 190–217 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ba, D. M. et al. Higher mushroom consumption is associated with lower risk of cancer: a systematic review and meta-analysis of observational studies. Adv. Nutr. 12, 1691–1704 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  55. D’Onofrio, N. et al. Diet‐derived ergothioneine induces necroptosis in colorectal cancer cells by activating the SIRT3/MLKL pathway. FEBS Lett. 596, 1313–1329 (2022).

    Article  PubMed  Google Scholar 

  56. Wang, H. et al. The microbial metabolite trimethylamine N-oxide promotes antitumor immunity in triple-negative breast cancer. Cell Metab. 34, 581–594.e8 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Mirji, G. et al. The microbiome-derived metabolite TMAO drives immune activation and boosts responses to immune checkpoint blockade in pancreatic cancer. Sci. Immunol. 7, eabn0704 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li, D. et al. Gut microbiota-derived metabolite trimethylamine-N-oxide and multiple health outcomes: an umbrella review and updated meta-analysis. Am. J. Clin. Nutr. 116, 230–243 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Haikonen, R., Kärkkäinen, O., Koistinen, V. & Hanhineva, K. Diet- and microbiota-related metabolite, 5-aminovaleric acid betaine (5-AVAB), in health and disease. Trends Endocrinol. Metab. 33, 463–480 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Goedert, J. J. et al. Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis 35, 2089–2096 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zeller, G. et al. Potential of fecal microbiota for early‐stage detection of colorectal cancer. Mol. Syst. Biol. 10, 766 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sakanaka, A. et al. Fusobacterium nucleatum metabolically integrates commensals and pathogens in oral biofilms. mSystems 7, e00170-22 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Aymeric, L. et al. Colorectal cancer specific conditions promote Streptococcus gallolyticus gut colonization. Proc. Natl Acad. Sci. USA 115, E283–E291 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Queen, J. et al. Comparative analysis of colon cancer-derived Fusobacterium nucleatum subspecies: inflammation and colon tumorigenesis in murine models. mBio 13, e02991-21 (2022).

    Article  PubMed Central  Google Scholar 

  65. Dejea, C. M. et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl Acad. Sci. USA 111, 18321–18326 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Missiaglia, E. et al. Distal and proximal colon cancers differ in terms of molecular, pathological, and clinical features. Ann. Oncol. 25, 1995–2001 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Goodwin, A. C. et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc. Natl Acad. Sci. USA 108, 15354–15359 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ding, N. et al. Fusobacterium nucleatum infection induces malignant proliferation of esophageal squamous cell carcinoma cell by putrescine production. Microbiol. Spectr. 11, e02759-22 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Farriol, M., Segovia-Silvestre, T., Castellanos, J. M., Venereo, Y. & Orta, X. Role of putrescine in cell proliferation in a colon carcinoma cell line. Nutrition 17, 934–938 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Galeano Niño, J. L. et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature 611, 810–817 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Shipitsin, M. & Polyak, K. The cancer stem cell hypothesis: in search of definitions, markers, and relevance. Lab. Invest. 88, 459–463 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kaiko, G. E. et al. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell 165, 1708–1720 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xing, P. Y., Pettersson, S. & Kundu, P. Microbial metabolites and intestinal stem cells tune intestinal homeostasis. Proteomics 20, 1800419 (2020).

    Article  CAS  Google Scholar 

  75. Wu, S. et al. Microbiota-derived metabolite promotes HDAC3 activity in the gut. Nature 586, 108–112 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Donohoe, D. R. et al. A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner. Cancer Discov. 4, 1387–1397 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Belcheva, A. et al. Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells. Cell 158, 288–299 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Yang, W. et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat. Commun. 11, 4457 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gronke, K. et al. Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature 566, 249–253 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chun, E. et al. Metabolite-sensing receptor Ffar2 regulates colonic group 3 innate lymphoid cells and gut immunity. Immunity 51, 871–884.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Huber, S. et al. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 491, 259–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dupraz, L. et al. Gut microbiota-derived short-chain fatty acids regulate IL-17 production by mouse and human intestinal γδ T cells. Cell Rep. 36, 109332 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Lee, Y.-S. et al. Microbiota-derived lactate accelerates intestinal stem-cell-mediated epithelial development. Cell Host Microbe 24, 833–846.e6 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Hou, Y. et al. A diet–microbial metabolism feedforward loop modulates intestinal stem cell renewal in the stressed gut. Nat. Commun. 12, 271 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Taylor, S. R. et al. Dietary fructose improves intestinal cell survival and nutrient absorption. Nature 597, 263–267 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kadosh, E. et al. The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. Nature 586, 133–138 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Simpson, R. C. et al. Diet-driven microbial ecology underpins associations between cancer immunotherapy outcomes and the gut microbiome. Nat. Med. 28, 2344–2352 (2022).

    Article  CAS  PubMed  Google Scholar 

  88. Bender, M. J. et al. Dietary tryptophan metabolite released by intratumoral Lactobacillus reuteri facilitates immune checkpoint inhibitor treatment. Cell 186, 1846–1862.e26 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Park, E. M. et al. Targeting the gut and tumor microbiota in cancer. Nat. Med. 28, 690–703 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Mager, L. F. et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369, 1481–1489 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Ji, M. et al. Methionine restriction-induced sulfur deficiency impairs antitumour immunity partially through gut microbiota. Nat. Metab. 5, 1526–1543 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Spencer, C. N. et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 374, 1632–1640 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Matson, V. & Gajewski, T. F. Dietary modulation of the gut microbiome as an immunoregulatory intervention. Cancer Cell 40, 246–248 (2022).

    Article  CAS  PubMed  Google Scholar 

  94. Messaoudene, M. et al. A natural polyphenol exerts antitumor activity and circumvents anti-PD-1 resistance through effects on the gut microbiota. Cancer Discov. 12, 1070–1087 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lee, K. A. et al. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nat. Med. 28, 535–544 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nomura, M. et al. Association of short-chain fatty acids in the gut microbiome with clinical response to treatment with nivolumab or pembrolizumab in patients with solid cancer tumors. JAMA Netw. Open 3, e202895 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Bachem, A. et al. Microbiota-derived short-chain fatty acids promote the memory potential of antigen-activated CD8+ T cells. Immunity 51, 285–297.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Coutzac, C. et al. Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nat. Commun. 11, 2168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Goncalves, M. D. et al. High-fructose corn syrup enhances intestinal tumor growth in mice. Science 363, 1345–1349 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ferrer, M. et al. Ketogenic diet promotes tumor ferroptosis but induces relative corticosterone deficiency that accelerates cachexia. Cell Metab. 35, 1147–1162.e7 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dmitrieva-Posocco, O. et al. β-Hydroxybutyrate suppresses colorectal cancer. Nature 605, 160–165 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Satoh, T. New prebiotics by ketone donation. Trends Endocrinol. Metab. 34, 414–425 (2023).

    Article  CAS  PubMed  Google Scholar 

  103. Sasaki, K., Sasaki, D., Hannya, A., Tsubota, J. & Kondo, A. In vitro human colonic microbiota utilises d-β-hydroxybutyrate to increase butyrogenesis. Sci. Rep. 10, 8516 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ferrer, M. et al. Cachexia: a systemic consequence of progressive, unresolved disease. Cell 186, 1824–1845 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Han, J.-X. et al. Microbiota-derived tryptophan catabolites mediate the chemopreventive effects of statins on colorectal cancer. Nat. Microbiol. 8, 919–933 (2023).

    Article  CAS  PubMed  Google Scholar 

  106. Zhang, Y.-G. et al. Vitamin D receptor protects against dysbiosis and tumorigenesis via the JAK/STAT pathway in intestine. Cell. Mol. Gastroenterol. Hepatol. 10, 729–746 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Sun, L. et al. Bile salt hydrolase in non-enterotoxigenic Bacteroides potentiates colorectal cancer. Nat. Commun. 14, 755 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pang, J. et al. Resveratrol intervention attenuates chylomicron secretion via repressing intestinal FXR-induced expression of scavenger receptor SR-B1. Nat. Commun. 14, 2656 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mishra, A., Giuliani, G. & Longo, V. D. Nutrition and dietary restrictions in cancer prevention. Biochim. Biophys. Acta Rev. Cancer 1879, 189063 (2024).

    Article  CAS  PubMed  Google Scholar 

  110. Collins, N. & Belkaid, Y. Control of immunity via nutritional interventions. Immunity 55, 210–223 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Rangan, P. et al. Fasting-mimicking diet modulates microbiota and promotes intestinal regeneration to reduce inflammatory bowel disease pathology. Cell Rep. 26, 2704–2719.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gordon, J. I., Dewey, K. G., Mills, D. A. & Medzhitov, R. M. The human gut microbiota and undernutrition. Sci. Transl. Med. 4, 137ps12 (2012).

    Article  PubMed  Google Scholar 

  113. Chang, H.-W. et al. Prevotella copri and microbiota members mediate the beneficial effects of a therapeutic food for malnutrition. Nat. Microbiol. 9, 922–937 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tan-Shalaby, J. L. et al. Modified Atkins diet in advanced malignancies—final results of a safety and feasibility trial within the Veterans Affairs Pittsburgh Healthcare System. Nutr. Metab. 13, 52 (2016).

    Article  Google Scholar 

  115. Longo, V. D. & Fontana, L. Calorie restriction and cancer prevention: metabolic and molecular mechanisms. Trends Pharmacol. Sci. 31, 89–98 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Hibberd, A. A. et al. Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ Open Gastroenterol. 4, e000145 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Frugé et al. Primary outcomes of a randomized controlled crossover trial to explore the effects of a high chlorophyll dietary intervention to reduce colon cancer risk in adults: the Meat and Three Greens (M3G) Feasibility Trial. Nutrients 11, 2349 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Aronson, W. J. et al. Growth inhibitory effect of low fat diet on prostate cancer cells: results of a prospective, randomized dietary intervention trial in men with prostate cancer. J. Urol. 183, 345–350 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kucherlapati, M. H. Mouse models in colon cancer, inferences, and implications. iScience 26, 106958 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Roper, J. et al. Colonoscopy-based colorectal cancer modeling in mice with CRISPR–Cas9 genome editing and organoid transplantation. Nat. Protoc. 13, 217–234 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Arnesen, H. et al. Induction of colorectal carcinogenesis in the C57BL/6J and A/J mouse strains with a reduced DSS dose in the AOM/DSS model. Lab. Anim. Res. 37, 19 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Saam, J. R. & Gordon, J. I. Inducible gene knockouts in the small intestinal and colonic epithelium. J. Biol. Chem. 274, 38071–38082 (1999).

    Article  CAS  PubMed  Google Scholar 

  124. El Marjou, F. et al. Tissue‐specific and inducible Cre‐mediated recombination in the gut epithelium. Genesis 39, 186–193 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by a National Institutes of Health grant (R01CA154426) and the Cancer Research UK Grand Challenges Initiative (C10674/A27140) to W.S.G. We thank all W.S.G. laboratory members for helpful discussions and contributions.

Author information

Authors and Affiliations

Authors

Contributions

G.N., N.A. and W.S.G. wrote and edited the paper. M.H.M. generated the figures.

Corresponding author

Correspondence to Wendy S. Garrett.

Ethics declarations

Competing interests

W.S.G. is on the scientific advisory board of Empress Therapeutics, Freya Biosciences, Seres Therapeutics, Scipher Medicine and Sail Biosciences, all unrelated to this review article. W.S.G.’s laboratory receives funding from Merck and Astellas. The other authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Melek Arkan, K. Leigh Greathouse and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakatsu, G., Andreeva, N., MacDonald, M.H. et al. Interactions between diet and gut microbiota in cancer. Nat Microbiol 9, 1644–1654 (2024). https://doi.org/10.1038/s41564-024-01736-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41564-024-01736-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer