Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Moving from genome-scale to community-scale metabolic models for the human gut microbiome

Abstract

Metabolic models of individual microorganisms or small microbial consortia have become standard research tools in the bioengineering and systems biology fields. However, extending metabolic modelling to diverse microbial communities, such as those in the human gut, remains a practical challenge from both modelling and experimental validation perspectives. In complex communities, metabolic models accounting for community dynamics, or those that consider multiple objectives, may provide optimal predictions over simpler steady-state models, but require a much higher computational cost. Here we describe some of the strengths and limitations of microbial community-scale metabolic models and argue for a robust validation framework for developing personalized, mechanistic and accurate predictions of microbial community metabolic behaviours across environmental contexts. Ultimately, quantitatively accurate microbial community-scale metabolic models could aid in the design and testing of personalized prebiotic, probiotic and dietary interventions that optimize for translationally relevant outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Community-scale metabolic modelling.
Fig. 2: Example of community-scale metabolic modelling for the human gut microbiome.

Similar content being viewed by others

References

  1. Varma, A. & Palsson, B. O. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl. Environ. Microbiol. 60, 3724–3731 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Edwards, J. S. & Palsson, B. O. Systems properties of the Haemophilus influenzaeRd metabolic genotype. J. Biol. Chem. 274, 17410–17416 (1999).

    CAS  PubMed  Google Scholar 

  3. Raman, K. & Chandra, N. Flux balance analysis of biological systems: applications and challenges. Brief. Bioinform. 10, 435–449 (2009).

    CAS  PubMed  Google Scholar 

  4. Inwongwan, S., Pekkoh, J., Pumas, C. & Sattayawat, P. Metabolic network reconstruction of Euglena gracilis: current state, challenges, and applications. Front. Microbiol. 14, 1143770 (2023).

    PubMed  PubMed Central  Google Scholar 

  5. Edwards, J. S. & Palsson, B. O. The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc. Natl Acad. Sci. USA 97, 5528–5533 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Förster, J., Famili, I., Fu, P., Palsson, B. Ø. & Nielsen, J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244–253 (2003).

    PubMed  PubMed Central  Google Scholar 

  7. Duarte, N. C. et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl Acad. Sci. USA 104, 1777–1782 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. De Oliveira Dal’Molin, C. G., Quek, L.-E., Palfreyman, R. W., Brumbley, S. M. & Nielsen, L. K. AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol. 152, 579–589 (2010).

    PubMed  PubMed Central  Google Scholar 

  9. Feist, A. M., Scholten, J. C. M., Palsson, B. Ø., Brockman, F. J. & Ideker, T. Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri. Mol. Syst. Biol. 2, 2006.0004 (2006).

    PubMed  PubMed Central  Google Scholar 

  10. Karlsson, F. H. et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3, 1245 (2012).

    PubMed  Google Scholar 

  11. Hao, T. et al. In silico metabolic engineering of Bacillus subtilis for improved production of riboflavin, Egl-237, (R,R)-2,3-butanediol and isobutanol. Mol. Biosyst. 9, 2034–2044 (2013).

    CAS  PubMed  Google Scholar 

  12. Brochado, A. R. et al. Improved vanillin production in baker’s yeast through in silico design. Microb. Cell Fact. 9, 84 (2010).

    PubMed  PubMed Central  Google Scholar 

  13. Flahaut, N. A. L. et al. Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation. Appl. Microbiol. Biotechnol. 97, 8729–8739 (2013).

    CAS  PubMed  Google Scholar 

  14. Rosario, D. et al. Understanding the representative gut microbiota dysbiosis in metformin-treated type 2 diabetes patients using genome-scale metabolic modeling. Front. Physiol. 9, 775 (2018).

    PubMed  PubMed Central  Google Scholar 

  15. Kumar, M. et al. Gut microbiota dysbiosis is associated with malnutrition and reduced plasma amino acid levels: lessons from genome-scale metabolic modeling. Metab. Eng. 49, 128–142 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, W. J., Kim, H. U. & Lee, S. Y. Current state and applications of microbial genome-scale metabolic models. Curr. Opin. Syst. Biol. 2, 10–18 (2017).

    Google Scholar 

  17. Gu, C., Kim, G. B., Kim, W. J., Kim, H. U. & Lee, S. Y. Current status and applications of genome-scale metabolic models. Genome Biol. 20, 121 (2019).

    PubMed  PubMed Central  Google Scholar 

  18. Feist, A. M. & Palsson, B. Ø. The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat. Biotechnol. 26, 659–667 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Price, N. D., Reed, J. L. & Palsson, B. Ø. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol. 2, 886–897 (2004).

    CAS  PubMed  Google Scholar 

  20. Orth, J. D., Thiele, I. & Palsson, B. Ø. What is flux balance analysis? Nat. Biotechnol. 28, 245–248 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Segrè, D., Vitkup, D. & Church, G. M. Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl Acad. Sci. USA 99, 15112–15117 (2002).

    PubMed  PubMed Central  Google Scholar 

  22. Karlsson, F. H., Nookaew, I., Petranovic, D. & Nielsen, J. Prospects for systems biology and modeling of the gut microbiome. Trends Biotechnol. 29, 251–258 (2011).

    CAS  PubMed  Google Scholar 

  23. Diener, C. & Gibbons, S. M. More is different: metabolic modeling of diverse microbial communities. mSystems 8, e0127022 (2023).

    PubMed  Google Scholar 

  24. Zomorrodi, A. R. & Maranas, C. D. OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput. Biol. 8, e1002363 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chan, S. H. J., Simons, M. N. & Maranas, C. D. SteadyCom: predicting microbial abundances while ensuring community stability. PLoS Comput. Biol. 13, e1005539 (2017).

    PubMed  PubMed Central  Google Scholar 

  26. Diener, C., Gibbons, S. M. & Resendis-Antonio, O. MICOM: metagenome-scale modeling to infer metabolic interactions in the gut microbiota. mSystems 5, e00606-19 (2020).

    PubMed  PubMed Central  Google Scholar 

  27. Shoaie, S. et al. Quantifying diet-induced metabolic changes of the human gut microbiome. Cell Metab. 22, 320–331 (2015).

    CAS  PubMed  Google Scholar 

  28. Baldini, F. et al. The Microbiome Modeling Toolbox: from microbial interactions to personalized microbial communities. Bioinformatics 35, 2332–2334 (2019).

    CAS  PubMed  Google Scholar 

  29. Zorrilla, F., Buric, F., Patil, K. R. & Zelezniak, A. metaGEM: reconstruction of genome scale metabolic models directly from metagenomes. Nucleic Acids Res. 49, e126 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Scott, W. T. Jr et al. A structured evaluation of genome-scale constraint-based modeling tools for microbial consortia. PLoS Comput. Biol. 19, e1011363 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Karlsen, E., Schulz, C. & Almaas, E. Automated generation of genome-scale metabolic draft reconstructions based on KEGG. BMC Bioinformatics 19, 467 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Aite, M. et al. Traceability, reproducibility and wiki-exploration for “à-la-carte” reconstructions of genome-scale metabolic models. PLoS Comput. Biol. 14, e1006146 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Machado, D., Andrejev, S., Tramontano, M. & Patil, K. R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 46, 7542–7553 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hanemaaijer, M., Olivier, B. G., Röling, W. F. M., Bruggeman, F. J. & Teusink, B. Model-based quantification of metabolic interactions from dynamic microbial-community data. PLoS ONE 12, e0173183 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Wang, H. et al. RAVEN 2.0: a versatile toolbox for metabolic network reconstruction and a case study on Streptomyces coelicolor. PLoS Comput. Biol. 14, e1006541 (2018).

    PubMed  PubMed Central  Google Scholar 

  36. Henry, C. S. et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat. Biotechnol. 28, 977–982 (2010).

    CAS  PubMed  Google Scholar 

  37. Karp, P. D. et al. Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology. Brief. Bioinform. 17, 877–890 (2016).

    CAS  PubMed  Google Scholar 

  38. Dias, O., Rocha, M., Ferreira, E. C. & Rocha, I. Reconstructing genome-scale metabolic models with merlin. Nucleic Acids Res. 43, 3899–3910 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Arkin, A. P. et al. KBase: the United States department of energy systems biology knowledgebase. Nat. Biotechnol. 36, 566–569 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pitkänen, E. et al. Comparative genome-scale reconstruction of gapless metabolic networks for present and ancestral species. PLoS Comput. Biol. 10, e1003465 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. Pabinger, S. et al. MEMOSys 2.0: an update of the bioinformatics database for genome-scale models and genomic data. Database 2014, bau004 (2014).

    PubMed  PubMed Central  Google Scholar 

  42. Boele, J., Olivier, B. G. & Teusink, B. FAME, the flux analysis and modeling environment. BMC Syst. Biol. 6, 8 (2012).

    PubMed  PubMed Central  Google Scholar 

  43. Liao, Y.-C., Tsai, M.-H., Chen, F.-C. & Hsiung, C. A. GEMSiRV: a software platform for GEnome-scale metabolic model simulation, reconstruction and visualization. Bioinformatics 28, 1752–1758 (2012).

    CAS  PubMed  Google Scholar 

  44. Cottret, L. et al. MetExplore: collaborative edition and exploration of metabolic networks. Nucleic Acids Res. 46, W495–W502 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Thorleifsson, S. G. & Thiele, I. rBioNet: a COBRA toolbox extension for reconstructing high-quality biochemical networks. Bioinformatics 27, 2009–2010 (2011).

    CAS  PubMed  Google Scholar 

  46. Zimmermann, J., Kaleta, C. & Waschina, S. Gapseq: informed prediction of bacterial metabolic pathways and reconstruction of accurate metabolic models. Genome Biol. 22, 81 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mendoza, S. N., Olivier, B. G., Molenaar, D. & Teusink, B. A systematic assessment of current genome-scale metabolic reconstruction tools. Genome Biol. 20, 158 (2019).

    PubMed  PubMed Central  Google Scholar 

  48. Bernstein, D. B., Sulheim, S., Almaas, E. & Segrè, D. Addressing uncertainty in genome-scale metabolic model reconstruction and analysis. Genome Biol. 22, 64 (2021).

    PubMed  PubMed Central  Google Scholar 

  49. Becker, S. A. et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat. Protoc. 2, 727–738 (2007).

    CAS  PubMed  Google Scholar 

  50. Hari, A. & Lobo, D. Fluxer: a web application to compute, analyze and visualize genome-scale metabolic flux networks. Nucleic Acids Res. 48, W427–W435 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Klamt, S., Saez-Rodriguez, J. & Gilles, E. D. Structural and functional analysis of cellular networks with CellNetAnalyzer. BMC Syst. Biol. 1, 2 (2007).

    PubMed  PubMed Central  Google Scholar 

  52. Cardoso, J. G. R. et al. Cameo: a Python library for computer aided metabolic engineering and optimization of cell factories. ACS Synth. Biol. 7, 1163–1166 (2018).

    CAS  PubMed  Google Scholar 

  53. Thiele, I. & Palsson, B. Ø. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5, 93–121 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cuevas, D. A. et al. From DNA to FBA: how to build your own genome-scale metabolic model. Front. Microbiol. 7, 907 (2016).

    PubMed  PubMed Central  Google Scholar 

  55. Lachance, J.-C. et al. BOFdat: generating biomass objective functions for genome-scale metabolic models from experimental data. PLoS Comput. Biol. 15, e1006971 (2019).

    PubMed  PubMed Central  Google Scholar 

  56. Chen, C., Liao, C. & Liu, Y.-Y. Teasing out missing reactions in genome-scale metabolic networks through hypergraph learning. Nat. Commun. 14, 2375 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lieven, C. et al. MEMOTE for standardized genome-scale metabolic model testing. Nat. Biotechnol. 38, 272–276 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Marin de Mas, I., Herand, H., Carrasco, J., Nielsen, L. K. & Johansson, P. I.A protocol for the automatic construction of highly curated genome-scale models of human metabolism. Bioengineering 10, 576 (2023).

    PubMed  PubMed Central  Google Scholar 

  59. Renz, A. & Dräger, A. Curating and comparing 114 strain-specific genome-scale metabolic models of Staphylococcus aureus. npj Syst. Biol. Appl. 7, 30 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Becker, S. A. & Palsson, B. O. Context-specific metabolic networks are consistent with experiments. PLoS Comput. Biol. 4, e1000082 (2008).

    PubMed  PubMed Central  Google Scholar 

  61. Zur, H., Ruppin, E. & Shlomi, T. iMAT: an integrative metabolic analysis tool. Bioinformatics 26, 3140–3142 (2010).

    CAS  PubMed  Google Scholar 

  62. Agren, R. et al. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput. Biol. 8, e1002518 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Guo, W. & Feng, X. OM-FBA: integrate transcriptomics data with flux balance analysis to decipher the cell metabolism. PLoS ONE 11, e0154188 (2016).

    PubMed  PubMed Central  Google Scholar 

  64. Magnúsdóttir, S. et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 35, 81–89 (2017).

    PubMed  Google Scholar 

  65. Noronha, A. et al. The Virtual Metabolic Human database: integrating human and gut microbiome metabolism with nutrition and disease. Nucleic Acids Res. 47, D614–D624 (2019).

    CAS  PubMed  Google Scholar 

  66. Heinken, A. et al. Genome-scale metabolic reconstruction of 7,302 human microorganisms for personalized medicine. Nat. Biotechnol. 41, 1320–1331 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Martiny, A. C. High proportions of bacteria are culturable across major biomes. ISME J. 13, 2125–2128 (2019).

    PubMed  PubMed Central  Google Scholar 

  68. Lau, J. T. et al. Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling. Genome Med. 8, 72 (2016).

    PubMed  PubMed Central  Google Scholar 

  69. Norsigian, C. J. et al. BiGG Models 2020: multi-strain genome-scale models and expansion across the phylogenetic tree. Nucleic Acids Res. 48, D402–D406 (2020).

    CAS  PubMed  Google Scholar 

  70. Seaver, S. M. D. et al. The ModelSEED Biochemistry Database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. Nucleic Acids Res. 49, D575–D588 (2021).

    CAS  PubMed  Google Scholar 

  71. Hall, R. J. et al. Gene–gene relationships in an accessory genome are linked to function and mobility. Microb. Genom. 7, 000650 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Marinos, G., Kaleta, C. & Waschina, S. Defining the nutritional input for genome-scale metabolic models: a roadmap. PLoS ONE 15, e0236890 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Petrone, B. L. et al. Diversity of plant DNA in stool is linked to dietary quality, age, and household income. Proc. Natl Acad. Sci. USA 120, e2304441120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. West, K. A., Schmid, R., Gauglitz, J. M., Wang, M. & Dorrestein, P. C. foodMASST a mass spectrometry search tool for foods and beverages. npj Sci. Food 6, 22 (2022).

    PubMed  PubMed Central  Google Scholar 

  75. Diener, C. et al. Metagenomic estimation of dietary intake from human stool. Nat. Metab. 7, 617–630 (2025).

    PubMed  Google Scholar 

  76. Domenzain, I. et al. Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using GECKO 2.0. Nat. Commun. 13, 3766 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhou, J., Zhuang, Y. & Xia, J. Integration of enzyme constraints in a genome-scale metabolic model of Aspergillus niger improves phenotype predictions. Microb. Cell Fact. 20, 125 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen, Y. et al. Reconstruction, simulation and analysis of enzyme-constrained metabolic models using GECKO Toolbox 3.0. Nat. Protoc. 19, 629–667 (2024).

    CAS  PubMed  Google Scholar 

  79. Senne de Oliveira Lino, F., Bajic, D., Vila, J. C. C., Sánchez, A. & Sommer, M. O. A. Complex yeast–bacteria interactions affect the yield of industrial ethanol fermentation. Nat. Commun. 12, 1498 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Harcombe, W. R. et al. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep. 7, 1104–1115 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Noecker, C., Eng, A., Muller, E. & Borenstein, E. MIMOSA2: a metabolic network-based tool for inferring mechanism-supported relationships in microbiome-metabolome data. Bioinformatics 38, 1615–1623 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Dukovski, I. et al. A metabolic modeling platform for the computation of microbial ecosystems in time and space (COMETS). Nat. Protoc. 16, 5030–5082 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Bauer, E., Zimmermann, J., Baldini, F., Thiele, I. & Kaleta, C. BacArena: individual-based metabolic modeling of heterogeneous microbes in complex communities. PLoS Comput. Biol. 13, e1005544 (2017).

    PubMed  PubMed Central  Google Scholar 

  84. Khandelwal, R. A., Olivier, B. G., Röling, W. F. M., Teusink, B. & Bruggeman, F. J. Community flux balance analysis for microbial consortia at balanced growth. PLoS ONE 8, e64567 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lim, J. J. et al. Growth phase estimation for abundant bacterial populations sampled longitudinally from human stool metagenomes. Nat. Commun. 14, 5682 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ponomarova, O. et al. Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Syst. 5, 345–357.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Zelezniak, A. et al. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc. Natl Acad. Sci. USA 112, 6449–6454 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Blasche, S. et al. Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community. Nat. Microbiol. 6, 196–208 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Shoaie, S. et al. Understanding the interactions between bacteria in the human gut through metabolic modeling. Sci. Rep. 3, 2532 (2013).

    PubMed  PubMed Central  Google Scholar 

  90. Basile, A. et al. Longitudinal flux balance analyses of a patient with episodic colonic inflammation reveals microbiome metabolic dynamics. Gut Microbes 15, 2226921 (2023).

    PubMed  PubMed Central  Google Scholar 

  91. Marcelino, V. R. et al. Disease-specific loss of microbial cross-feeding interactions in the human gut. Nat. Commun. 14, 6546 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Watson, A. R. et al. Metabolic independence drives gut microbial colonization and resilience in health and disease. Genome Biol. 24, 78 (2023).

    PubMed  PubMed Central  Google Scholar 

  93. Quinn-Bohmann, N. et al. Microbial community-scale metabolic modelling predicts personalized short-chain fatty acid production profiles in the human gut. Nat. Microbiol. 9, 1700–1712 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Cantu-Jungles, T. M. et al. Dietary fiber hierarchical specificity: the missing link for predictable and strong shifts in gut bacterial communities. mBio 12, e0102821 (2021).

    PubMed  Google Scholar 

  95. Gurry, T., Nguyen, L. T. T., Yu, X. & Alm, E. J. Functional heterogeneity in the fermentation capabilities of the healthy human gut microbiota. PLoS ONE 16, e0254004 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Carr, A., Baliga, N. S., Diener, C. & Gibbons, S. M. Personalized Clostridioides difficile engraftment risk prediction and probiotic therapy assessment in the human gut. Preprint at bioRxiv https://doi.org/10.1101/2023.04.28.538771 (2024).

  97. Louie, T. et al. VE303, a defined bacterial consortium, for prevention of recurrent Clostridioides difficile infection: a randomized clinical trial. J. Am. Med. Assoc. 329, 1356–1366 (2023).

    CAS  Google Scholar 

  98. Khanijou, J. K. et al. Metabolomics and modelling approaches for systems metabolic engineering. Metab. Eng. Commun. 15, e00209 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Stolyar, S. et al. Metabolic modeling of a mutualistic microbial community. Mol. Syst. Biol. 3, 92 (2007).

    PubMed  PubMed Central  Google Scholar 

  100. Babaei, P., Shoaie, S., Ji, B. & Nielsen, J. Challenges in modeling the human gut microbiome. Nat. Biotechnol. 36, 682–686 (2018).

    CAS  PubMed  Google Scholar 

  101. Tu, P. et al. Gut microbiome toxicity: connecting the environment and gut microbiome-associated diseases. Toxics 8, 19 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Culp, E. J., Nelson, N. T., Verdegaal, A. A. & Goodman, A. L. Microbial transformation of dietary xenobiotics shapes gut microbiome composition. Cell 187, 6327–6345.e20 (2024).

    CAS  PubMed  Google Scholar 

  103. Garcia-Santamarina, S. et al. Emergence of community behaviors in the gut microbiota upon drug treatment. Cell 187, 6346–6357.e20 (2024).

    CAS  PubMed  Google Scholar 

  104. Yang, J. H. et al. Antibiotic-induced changes to the host metabolic environment inhibit drug efficacy and alter immune function. Cell Host Microbe 22, 757–765.e3 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Covert, M. W., Schilling, C. H. & Palsson, B. Regulation of gene expression in flux balance models of metabolism. J. Theor. Biol. 213, 73–88 (2001).

    CAS  PubMed  Google Scholar 

  106. Arrieta-Ortiz, M. L. et al. Predictive regulatory and metabolic network models for systems analysis of Clostridioides difficile. Cell Host Microbe 29, 1709–1723.e5 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Qiu, S., Yang, A. & Zeng, H. Flux balance analysis-based metabolic modeling of microbial secondary metabolism: current status and outlook. PLoS Comput. Biol. 19, e1011391 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Versluis, D. M. et al. A multiscale spatiotemporal model including a switch from aerobic to anaerobic metabolism reproduces succession in the early infant gut microbiota. mSystems 7, e0044622 (2022).

    PubMed  Google Scholar 

  109. McLaren, M. R., Willis, A. D. & Callahan, B. J.Consistent and correctable bias in metagenomic sequencing experiments. eLife 8, e46923 (2019).

    PubMed  PubMed Central  Google Scholar 

  110. Geng, J., Ji, B., Li, G., López-Isunza, F. & Nielsen, J. CODY enables quantitatively spatiotemporal predictions on in vivo gut microbial variability induced by diet intervention. Proc. Natl Acad. Sci. USA 118, e2019336118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hernández Medina, R. et al. Machine learning and deep learning applications in microbiome research. ISME Commun. 2, 98 (2022).

    PubMed  PubMed Central  Google Scholar 

  112. Li, P., Luo, H., Ji, B. & Nielsen, J. Machine learning for data integration in human gut microbiome. Microb. Cell Fact. 21, 241 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

    CAS  PubMed  Google Scholar 

  114. Rein, M. et al. Effects of personalized diets by prediction of glycemic responses on glycemic control and metabolic health in newly diagnosed T2DM: a randomized dietary intervention pilot trial. BMC Med. 20, 56 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Yang, J. H. et al. A white-box machine learning approach for revealing antibiotic mechanisms of action. Cell 177, 1649–1661.e9 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Jones, D., Snider, C., Nassehi, A., Yon, J. & Hicks, B. Characterising the digital twin: a systematic literature review. CIRP J. Manuf. Sci. Technol. 29, 36–52 (2020).

    Google Scholar 

  117. Stahlberg, E. A. et al. Exploring approaches for predictive cancer patient digital twins: opportunities for collaboration and innovation. Front. Digit. Health 4, 1007784 (2022).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health under award R01DK133468 (to S.M.G.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. C.D. acknowledges funding from the Austrian Science Fund, Cluster of Excellence COE7. The funders had no role in designing, carrying out or interpreting the work presented in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian Diener or Sean M. Gibbons.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Jens Nielsen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quinn-Bohmann, N., Carr, A.V., Diener, C. et al. Moving from genome-scale to community-scale metabolic models for the human gut microbiome. Nat Microbiol 10, 1055–1066 (2025). https://doi.org/10.1038/s41564-025-01972-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41564-025-01972-2

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research