Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Within-host bacterial evolution and the emergence of pathogenicity

Abstract

The use of whole-genome sequencing to monitor bacterial pathogens has provided crucial insights into their within-host evolution, revealing mutagenic and selective processes driving the emergence of antibiotic resistance, immune evasion phenotypes and adaptations that enable sustained human-to-human transmission. Deep genomic and metagenomic sequencing of intra-host pathogen populations is also enhancing our ability to track bacterial transmission, a key component of infection control. This Review discusses the major processes driving bacterial evolution within humans, including both pathogenic and commensal species. Initially, mutational processes, including how mutational signatures reveal pathogen biology, and the selective pressures driving evolution are considered. The dynamics of horizontal gene transfer and intra-host pathogen competition are also examined, followed by a focus on the emergence of bacterial pathogenesis. Finally, the Review focuses on the importance of within-host genetic diversity in tracking bacterial transmission and its implications for infectious disease control and public health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mutation and selection within the host.
Fig. 2: Mechanisms and factors influencing HGT and competition within the host.
Fig. 3: Factors driving the evolution and emergence of human pathogens.
Fig. 4: Impact of within-host diversity on transmission inference.

Similar content being viewed by others

References

  1. Bryant, J. M. et al. Stepwise pathogenic evolution of Mycobacterium abscessus. Science 372, eabb8699 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lieberman, T. D. et al. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat. Genet. 43, 1275–1280 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ruis, C. et al. Mutational spectra are associated with bacterial niche. Nat. Commun. 14, 7091 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Key, F. M. et al. On-person adaptive evolution of Staphylococcus aureus during treatment for atopic dermatitis. Cell Host Microbe 31, 593–603 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Duchêne, S. et al. Genome-scale rates of evolutionary change in bacteria. Microb. Genom. 2, e000094 (2016).

    PubMed  PubMed Central  Google Scholar 

  6. Moura de Sousa, J., Lourenço, M. & Gordo, I. Horizontal gene transfer among host-associated microbes. Cell Host Microbe 31, 513–527 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Valles-Colomer, M. et al. The person-to-person transmission landscape of the gut and oral microbiomes. Nature 614, 125–135 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wozniak, K. J. & Simmons, L. A. Bacterial DNA excision repair pathways. Nat. Rev. Microbiol. 20, 465–477 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jorth, P. et al. Regional isolation drives bacterial diversification within cystic fibrosis lungs. Cell Host Microbe 18, 307–319 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mahrt, N. et al. Bottleneck size and selection level reproducibly impact evolution of antibiotic resistance. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01511-2 (2021).

  12. Didelot, X. et al. Genomic evolution and transmission of Helicobacter pylori in two South African families. Proc. Natl Acad. Sci. USA 110, 13880–13885 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rocha, E. P. C. et al. Comparisons of dN/dS are time dependent for closely related bacterial genomes. J. Theor. Biol. 239, 226–235 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Smith, E. E. et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl Acad. Sci. USA 103, 8487–8492 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weimann, A. et al. Evolution and host-specific adaptation of Pseudomonas aeruginosa. Science 385, eadi0908 (2024).

    Article  CAS  PubMed  Google Scholar 

  16. Marvig, R. L., Sommer, L. M., Molin, S. & Johansen, H. K. Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat. Genet. 47, 57–64 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Lieberman, T. D. et al. Genomic diversity in autopsy samples reveals within-host dissemination of HIV-associated Mycobacterium tuberculosis. Nat. Med. 22, 1470–1474 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao, S. et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe https://doi.org/10.1016/j.chom.2019.03.007 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ailloud, F. et al. Within-host evolution of Helicobacter pylori shaped by niche-specific adaptation, intragastric migrations and selective sweeps. Nat. Commun. 10, 2273 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kennemann, L. et al. Helicobacter pylori genome evolution during human infection. Proc. Natl Acad. Sci. USA 108, 5033–5038 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sassone-Corsi, M. et al. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 540, 280–283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Forsyth, J. H. et al. Decolonizing drug-resistant E. coli with phage and probiotics: breaking the frequency-dependent dominance of residents. Microbiology 169, 001352 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ruis, C. et al. A lung-specific mutational signature enables inference of viral and bacterial respiratory niche. Micro. Genom. 9, mgen001018 (2023).

    Google Scholar 

  24. Ruis, C. et al. Dissemination of Mycobacterium abscessus via global transmission networks. Nat. Microbiol. 6, 1279–1288 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alexandrov, L. B. et al. Mutational signatures associated with tobacco smoking in human cancer. Science 354, 618–622 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kucab, J. E. et al. A compendium of mutational signatures of environmental agents. Cell 177, 821–836 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Endutkin, A. V. & Zharkov, D. O. GO system, a DNA repair pathway to cope with oxidative damage. Mol. Biol. 55, 193–210 (2021).

    Article  CAS  Google Scholar 

  29. Tonkin-Hill, G. et al. Pneumococcal within-host diversity during colonization, transmission and treatment. Nat. Microbiol. 7, 1791–1804 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pleguezuelos-Manzano, C. et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature 580, 269–273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Couce, A., Guelfo, J. R. & Blázquez, J. Mutational spectrum drives the rise of mutator bacteria. PLoS Genet. 9, e1003167 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, H., Popodi, E., Tang, H. & Foster, P. L. Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc. Natl Acad. Sci. USA 109, E2774–E2783 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Waine, D. J., Honeybourne, D., Smith, E. G., Whitehouse, J. L. & Dowson, C. G. Association between hypermutator phenotype, clinical variables, mucoid phenotype, and antimicrobial resistance in Pseudomonas aeruginosa. J. Clin. Microbiol. 46, 3491–3493 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ferroni, A. et al. Effect of mutator P. aeruginosa on antibiotic resistance acquisition and respiratory function in cystic fibrosis. Pediatr. Pulmonol. 44, 820–825 (2009).

    Article  PubMed  Google Scholar 

  35. Jee, J. et al. Rates and mechanisms of bacterial mutagenesis from maximum-depth sequencing. Nature 534, 693–696 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Abascal, F. et al. Somatic mutation landscapes at single-molecule resolution. Nature 593, 405–410 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Schmitt, M. W. et al. Detection of ultra-rare mutations by next-generation sequencing. Proc. Natl Acad. Sci. USA 109, 14508–14513 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bhawsinghka, N., Burkholder, A. & Schaaper, R. M. Detection of DNA replication errors and 8-oxo-dGTP-mediated mutations in E. coli by duplex DNA sequencing. DNA Repair 123, 103462 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dapa, T., Ramiro, R. S., Pedro, M. F., Gordo, I. & Xavier, K. B. Diet leaves a genetic signature in a keystone member of the gut microbiota. Cell Host Microbe 30, 183–199 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Zafar, M. A., Kono, M., Wang, Y., Zangari, T. & Weiser, J. N. Infant mouse model for the study of shedding and transmission during Streptococcus pneumoniae monoinfection. Infect. Immun. 84, 2714–2722 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vasquez, K. S. et al. Quantifying rapid bacterial evolution and transmission within the mouse intestine. Cell Host Microbe 29, 1454–1468 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Barroso-Batista, J. et al. The first steps of adaptation of Escherichia coli to the gut are dominated by soft sweeps. PLoS Genet. 10, e1004182 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ghalayini, M. et al. Evolution of a dominant natural isolate of Escherichia coli in the human gut over the course of a year suggests a neutral evolution with reduced effective population size. Appl. Environ. Microbiol. 84, e02377-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Barroso-Batista, J., Demengeot, J. & Gordo, I. Adaptive immunity increases the pace and predictability of evolutionary change in commensal gut bacteria. Nat. Commun. 6, 8945 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Barreto, H. C., Sousa, A. & Gordo, I. The landscape of adaptive evolution of a gut commensal bacteria in aging mice. Curr. Biol. 30, 1102–1109 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Cowley, L. A. et al. Evolution via recombination: cell-to-cell contact facilitates larger recombination events in Streptococcus pneumoniae. PLoS Genet. 14, e1007410 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Coluzzi, C., Garcillán-Barcia, M. P., de la Cruz, F. & Rocha, E. P. C. Evolution of plasmid mobility: origin and fate of conjugative and nonconjugative plasmids. Mol. Biol. Evol. 39, msac115 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Weinert, L. A., Werren, J. H., Aebi, A., Stone, G. N. & Jiggins, F. M. Evolution and diversity of Rickettsia bacteria. BMC Biol. 7, 6 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Suchland, R. J. et al. Chromosomal recombination targets in chlamydia interspecies lateral gene transfer. J. Bacteriol. 201, e00365-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chiner-Oms, Á. et al. Genomic determinants of speciation and spread of the Mycobacterium tuberculosis complex. Sci. Adv. 5, eaaw3307 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Falush, D. et al. Recombination and mutation during long-term gastric colonization by Helicobacter pylori: estimates of clock rates, recombination size, and minimal age. Proc. Natl Acad. Sci. USA 98, 15056–15061 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nguyen, A. N. T. et al. Recombination resolves the cost of horizontal gene transfer in experimental populations of Helicobacter pylori. Proc. Natl Acad. Sci. USA 119, e2119010119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

  54. Conwill, A. et al. Anatomy promotes neutral coexistence of strains in the human skin microbiome. Cell Host Microbe 30, 171–182 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shkoporov, A. N. et al. Viral biogeography of the mammalian gut and parenchymal organs. Nat. Microbiol. 7, 1301–1311 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lourenço, M. et al. The spatial heterogeneity of the gut limits predation and fosters coexistence of bacteria and bacteriophages. Cell Host Microbe 28, 390–401 (2020).

    Article  PubMed  Google Scholar 

  57. Im, H. et al. Anatomical site-specific carbohydrate availability impacts Streptococcus pneumoniae virulence and fitness during colonization and disease. Infect. Immun. 90, e0045121 (2022).

    Article  PubMed  Google Scholar 

  58. Kaspar, J. et al. A unique open reading frame within the comX gene of Streptococcus mutans regulates genetic competence and oxidative stress tolerance. Mol. Microbiol. 96, 463–482 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pinilla-Redondo, R., Riber, L. & Sørensen, S. J. Fluorescence recovery allows the implementation of a fluorescence reporter gene platform applicable for the detection and quantification of horizontal gene transfer in anoxic environments. Appl. Environ. Microbiol. 84, e02507-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Smillie, C. S. et al. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480, 241–244 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Carter, M. M. et al. Ultra-deep sequencing of Hadza hunter-gatherers recovers vanishing gut microbes. Cell 186, 3111–3124 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Groussin, M. et al. Elevated rates of horizontal gene transfer in the industrialized human microbiome. Cell 184, 2053–2067 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Sonnenburg, J. L. & Sonnenburg, E. D. Vulnerability of the industrialized microbiota. Science 366, eaaw9255 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Sheinman, M. et al. Identical sequences found in distant genomes reveal frequent horizontal transfer across the bacterial domain. eLife 10, e62719 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Redondo-Salvo, S. et al. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids. Nat. Commun. 11, 3602 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hawkey, J. et al. ESBL plasmids in Klebsiella pneumoniae: diversity, transmission and contribution to infection burden in the hospital setting. Genome Med. 14, 97 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Evans, D. R. et al. Systematic detection of horizontal gene transfer across genera among multidrug-resistant bacteria in a single hospital. eLife 9, e53886 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hall, J. P. J., Harrison, E. & Baltrus, D. A. Introduction: the secret lives of microbial mobile genetic elements. Philos. Trans. R. Soc. Lond. B 377, 20200460 (2022).

    Article  CAS  Google Scholar 

  69. Hawlena, H., Bashey, F. & Lively, C. M. Bacteriocin-mediated interactions within and between coexisting species. Ecol. Evol. 2, 2521–2526 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hertzog, B. B. et al. A sub-population of group A streptococcus elicits a population-wide production of bacteriocins to establish dominance in the host. Cell Host Microbe 23, 312–323 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Machado, D. et al. Polarization of microbial communities between competitive and cooperative metabolism. Nat. Ecol. Evol. 5, 195–203 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Stubbendieck, R. M. & Straight, P. D. Multifaceted interfaces of bacterial competition. J. Bacteriol. 198, 2145–2155 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xavier, K. B. & Bassler, B. L. Interference with AI-2-mediated bacterial cell–cell communication. Nature 437, 750–753 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. D’Souza, G. et al. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat. Prod. Rep. 35, 455–488 (2018).

    Article  PubMed  Google Scholar 

  76. Bashey, F. Within-host competitive interactions as a mechanism for the maintenance of parasite diversity. Philos. Trans. R. Soc. Lond. B 370, 20140301 (2015).

    Article  Google Scholar 

  77. Davies, N. G., Flasche, S., Jit, M. & Atkins, K. E. Within-host dynamics shape antibiotic resistance in commensal bacteria. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0786-x (2019).

  78. Lo, S. W. et al. Pneumococcal lineages associated with serotype replacement and antibiotic resistance in childhood invasive pneumococcal disease in the post-PCV13 era: an international whole-genome sequencing study. Lancet Infect. Dis. 19, 759–769 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Croucher, N. J. et al. Population genomics of post-vaccine changes in pneumococcal epidemiology. Nat. Genet. 45, 656–663 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Croucher, N. J. et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 43, e15 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Didelot, X. & Wilson, D. J. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput. Biol. 11, e1004041 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yaffe, E. & Relman, D. A. Tracking microbial evolution in the human gut using Hi-C reveals extensive horizontal gene transfer, persistence and adaptation. Nat. Microbiol. 5, 343–353 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Grodner, B. et al. Spatial mapping of mobile genetic elements and their bacterial hosts in complex microbiomes. Nat. Microbiol. https://doi.org/10.1038/s41564-024-01735-5 (2024).

  84. Chen, L. et al. Short- and long-read metagenomics expand individualized structural variations in gut microbiomes. Nat. Commun. 13, 3175 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pearson, T. et al. Pathogen to commensal? Longitudinal within-host population dynamics, evolution, and adaptation during a chronic >16-year Burkholderia pseudomallei infection. PLoS Pathog. 16, e1008298 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Golubchik, T. et al. Within-host evolution of Staphylococcus aureus during asymptomatic carriage. PLoS ONE 8, e61319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yang, Y. et al. Within-host evolution of a gut pathobiont facilitates liver translocation. Nature https://doi.org/10.1038/s41586-022-04949-x (2022).

  88. Parkhill, J. et al. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat. Genet. 35, 32–40 (2003).

    Article  PubMed  Google Scholar 

  89. Vissa, V. D. & Brennan, P. J. The genome of Mycobacterium leprae: a minimal mycobacterial gene set. Genome Biol. 2, reviews1023.1 (2001).

    Article  Google Scholar 

  90. Giulieri, S. G. et al. Niche-specific genome degradation and convergent evolution shaping Staphylococcus aureus adaptation during severe infections. eLife 11, e77195 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Klemm, E. J. et al. Emergence of host-adapted Salmonella Enteritidis through rapid evolution in an immunocompromised host. Nat. Microbiol. 1, 15023 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Norris, S. J. vls antigenic variation systems of Lyme disease Borrelia: eluding host immunity through both random, segmental gene conversion and framework heterogeneity. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.MDNA3-0038-2014 (2014).

  93. Ohnishi, J., Piesman, J. & de Silva, A. M. Antigenic and genetic heterogeneity of Borrelia burgdorferi populations transmitted by ticks. Proc. Natl Acad. Sci. USA 98, 670–675 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gatt, Y. E. & Margalit, H. Common adaptive strategies underlie within-host evolution of bacterial pathogens. Mol. Biol. Evol. 38, 1101–1121 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Lovewell, R. R. et al. Step-wise loss of bacterial flagellar torsion confers progressive phagocytic evasion. PLoS Pathog. 7, e1002253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Martin, D. W. et al. Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc. Natl Acad. Sci. USA 90, 8377–8381 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Leid, J. G. et al. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J. Immunol. 175, 7512–7518 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Vargas, R. et al. In-host population dynamics of Mycobacterium tuberculosis complex during active disease. eLife 10, e61805 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen, Y. et al. Lesion heterogeneity and long-term heteroresistance in multidrug-resistant tuberculosis. J. Infect. Dis. 224, 889–893 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Nimmo, C. et al. Correction to: Whole genome sequencing Mycobacterium tuberculosis directly from sputum identifies more genetic diversity than sequencing from culture. BMC Genomics 20, 433 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Operario, D. J. et al. Prevalence and extent of heteroresistance by next generation sequencing of multidrug-resistant tuberculosis. PLoS ONE 12, e0176522 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Nimmo, C. et al. Dynamics of within-host Mycobacterium tuberculosis diversity and heteroresistance during treatment. EBioMedicine 55, 102747 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Djidjou-Demasse, R., Sofonea, M. T., Choisy, M. & Alizon, S. Within-host evolutionary dynamics of antimicrobial quantitative resistance. Math. Model. Nat. Phenom. 18, 24 (2023).

    Article  Google Scholar 

  104. Chung, H. et al. Rapid expansion and extinction of antibiotic resistance mutations during treatment of acute bacterial respiratory infections. Nat. Commun. 13, 1231 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vallée, M., Harding, C., Hall, J., Aldridge, P. D. & Tan, A. Exploring the in situ evolution of nitrofurantoin resistance in clinically derived uropathogenic Escherichia coli isolates. J. Antimicrob. Chemother. 78, 373–379 (2023).

    Article  PubMed  Google Scholar 

  106. Pečerska, J. et al. Quantifying transmission fitness costs of multi-drug resistant tuberculosis. Epidemics 36, 100471 (2021).

    Article  PubMed  Google Scholar 

  107. Lythgoe, K. A., Gardner, A., Pybus, O. G. & Grove, J. Short-sighted virus evolution and a germline hypothesis for chronic viral infections. Trends Microbiol. 25, 336–348 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Eckartt, K. A. et al. Compensatory evolution in NusG improves fitness of drug-resistant M. tuberculosis. Nature 628, 186–194 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Goig, G. A. et al. Effect of compensatory evolution in the emergence and transmission of rifampicin-resistant Mycobacterium tuberculosis in Cape Town, South Africa: a genomic epidemiology study. Lancet Microbe 4, e506–e515 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Loiseau, C. et al. The relative transmission fitness of multidrug-resistant Mycobacterium tuberculosis in a drug resistance hotspot. Nat. Commun. 14, 1988 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Harris, S. R. et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 327, 469–474 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kantele, A. et al. Dynamics of intestinal multidrug-resistant bacteria colonisation contracted by visitors to a high-endemic setting: a prospective, daily, real-time sampling study. Lancet Microbe 2, e151–e158 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hall, M., Woolhouse, M. & Rambaut, A. Epidemic reconstruction in a phylogenetics framework: transmission trees as partitions of the node set. PLoS Comput. Biol. 11, e1004613 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wymant, C. et al. PHYLOSCANNER: inferring transmission from within- and between-host pathogen genetic diversity. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msx304 (2017).

    Article  PubMed Central  Google Scholar 

  115. Lee, R. S., Proulx, J.-F., McIntosh, F., Behr, M. A. & Hanage, W. P. Previously undetected super-spreading of Mycobacterium tuberculosis revealed by deep sequencing. eLife 9, e53245 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ianiro, G. et al. Variability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseases. Nat. Med. 28, 1913–1923 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Schmidt, T. S. B. et al. Drivers and determinants of strain dynamics following fecal microbiota transplantation. Nat. Med. 28, 1902–1912 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Olm, M. R. et al. inStrain profiles population microdiversity from metagenomic data and sensitively detects shared microbial strains. Nat. Biotechnol. 39, 727–736 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. van Dijk, L. R. et al. StrainGE: a toolkit to track and characterize low-abundance strains in complex microbial communities. Genome Biol. 23, 74 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  120. De Maio, N., Wu, C.-H. & Wilson, D. J. SCOTTI: efficient reconstruction of transmission within outbreaks with the structured coalescent. PLoS Comput. Biol. 12, e1005130 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Bush, S. J. et al. Genomic diversity affects the accuracy of bacterial single-nucleotide polymorphism–calling pipelines. Gigascience 9, giaa007 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Worby, C. J., Lipsitch, M. & Hanage, W. P. Within-host bacterial diversity hinders accurate reconstruction of transmission networks from genomic distance data. PLoS Comput. Biol. 10, e1003549 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Frost, S. D. W. et al. Eight challenges in phylodynamic inference. Epidemics 10, 88–92 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  124. McCrone, J. T. & Lauring, A. S. Measurements of intrahost viral diversity are extremely sensitive to systematic errors in variant calling. J. Virol. 90, 6884–6895 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. McCrone, J. T. et al. Stochastic processes constrain the within and between host evolution of influenza virus. eLife 7, e35962 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Lythgoe, K. A. et al. SARS-CoV-2 within-host diversity and transmission. Science https://doi.org/10.1126/science.abg0821 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Hall, M. D. et al. Improved characterisation of MRSA transmission using within-host bacterial sequence diversity. eLife 8, e46402 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Kono, M. et al. Single cell bottlenecks in the pathogenesis of Streptococcus pneumoniae. PLoS Pathog. 12, e1005887 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Diaz Caballero, J. et al. Mixed strain pathogen populations accelerate the evolution of antibiotic resistance in patients. Nat. Commun. 14, 4083 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cele, S. et al. SARS-CoV-2 prolonged infection during advanced HIV disease evolves extensive immune escape. Cell Host Microbe 30, 154–162 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Scherer, E. M. et al. SARS-CoV-2 evolution and immune escape in immunocompromised patients. N. Engl. J. Med. 386, 2436–2438 (2022).

    Article  PubMed  Google Scholar 

  132. Zlitni, S. et al. Strain-resolved microbiome sequencing reveals mobile elements that drive bacterial competition on a clinical timescale. Genome Med. 12, 50 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Comas, I. et al. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat. Genet. 44, 106–110 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Chaguza, C. et al. Within-host microevolution of Streptococcus pneumoniae is rapid and adaptive during natural colonisation. Nat. Commun. 11, 3442 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Bryant, J. M. et al. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science 354, 751–757 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Buenestado-Serrano, S. et al. Microevolution, reinfection and highly complex genomic diversity in patients with sequential isolates of Mycobacterium abscessus. Nat. Commun. 15, 2717 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Hall, M. B. et al. Benchmarking reveals superiority of deep learning variant callers on bacterial nanopore sequence data. eLife https://doi.org/10.7554/elife.98300.2 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Wang, B. et al. Single-cell massively-parallel multiplexed microbial sequencing (M3-seq) identifies rare bacterial populations and profiles phage infection. Nat. Microbiol. 8, 1846–1862 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. McNulty, R. et al. Probe-based bacterial single-cell RNA sequencing predicts toxin regulation. Nat. Microbiol. 8, 934–945 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ma, P. et al. Bacterial droplet-based single-cell RNA-seq reveals antibiotic-associated heterogeneous cellular states. Cell 186, 877–893 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Pensar, J. et al. Genome-wide epistasis and co-selection study using mutual information. Nucleic Acids Res. 47, e112 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kuchina, A. et al. Microbial single-cell RNA sequencing by split-pool barcoding. Science 371, eaba5257 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. Lötstedt, B., Stražar, M., Xavier, R., Regev, A. & Vickovic, S. Spatial host-microbiome sequencing reveals niches in the mouse gut. Nat. Biotechnol. 42, 1394–1403 (2024).

    Article  PubMed  Google Scholar 

  145. Didelot, X., Walker, A. S., Peto, T. E., Crook, D. W. & Wilson, D. J. Within-host evolution of bacterial pathogens. Nat. Rev. Microbiol. 14, 150–162 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lee, K. A. et al. Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nat. Med. 28, 535–544 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Perault, A. I. et al. Host adaptation predisposes Pseudomonas aeruginosa to type VI secretion system-mediated predation by the Burkholderia cepacia complex. Cell Host Microbe 28, 534–547 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kerr, B., Riley, M. A., Feldman, M. W. & Bohannan, B. J. M. Local dispersal promotes biodiversity in a real-life game of rock–paper–scissors. Nature 418, 171–174 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the drafting, writing and editing of the paper.

Corresponding authors

Correspondence to Gerry Tonkin-Hill, Christopher Ruis or Josephine M. Bryant.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Daria Van Tyne and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonkin-Hill, G., Ruis, C., Bentley, S.D. et al. Within-host bacterial evolution and the emergence of pathogenicity. Nat Microbiol 10, 1829–1840 (2025). https://doi.org/10.1038/s41564-025-02036-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41564-025-02036-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing