Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A call for caution in the biological interpretation of viral auxiliary metabolic genes

Abstract

Virus-encoded auxiliary metabolic genes (AMGs) are non-essential genes that increase viral fitness by maintaining or manipulating host metabolism during infection. AMGs are intriguing from an evolutionary perspective, as most viral genomes are highly compact and have limited coding capacity for accessory genes. Advances in viral (meta)genomics have expanded the detection of putative AMGs from viruses in diverse environments. However, this has also led to many instances of misannotation due to the limitations of annotation tools, resulting in misinterpretations about the roles of some viral genes. Here, we highlight studies that support claims about AMGs with more than just function predictions for guidance on best practices. We then propose the adoption of an expanded, inclusive view of all genes auxiliary to core viral functions with the term ‘auxiliary viral genes’ (AVGs), alongside an associated eco-evolutionary framework for considering the types of analyses that can better support claims made about AVGs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Common limitations when studying viral AMGs.
Fig. 2: Limitations of semiautomated viral protein annotation.
Fig. 3: Eco-evolutionary forces driving AVG evolution.

Similar content being viewed by others

References

  1. Breitbart, M., Thompson, L., Suttle, C. & Sullivan, M. Exploring the vast diversity of marine viruses. Oceanography 20, 135–139 (2007).

    Article  Google Scholar 

  2. Koonin, E. V., Dolja, V. V. & Krupovic, M. The logic of virus evolution. Cell Host Microbe 30, 917–929 (2022).

    Article  PubMed  Google Scholar 

  3. Mann, N. H., Cook, A., Millard, A., Bailey, S. & Clokie, M. Bacterial photosynthesis genes in a virus. Nature 424, 741–741 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. Lindell, D., Jaffe, J. D., Johnson, Z. I., Church, G. M. & Chisholm, S. W. Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438, 86–89 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. Anantharaman, K. et al. Sulfur oxidation genes in diverse deep-sea viruses. Science 344, 757–760 (2014).

    Article  PubMed  CAS  Google Scholar 

  6. Ahlgren, N. A., Fuchsman, C. A., Rocap, G. & Fuhrman, J. A. Discovery of several novel, widespread and ecologically distinct marine Thaumarchaeota viruses that encode amoC nitrification genes. ISME J. 13, 618–631 (2019).

    Article  PubMed  CAS  Google Scholar 

  7. Zhong, Z.-P. et al. Viral potential to modulate microbial methane metabolism varies by habitat. Nat. Commun. 15, 1857 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Wu, Z. et al. Unveiling the unknown viral world in groundwater. Nat. Commun. 15, 6788 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Chen, L.-X. et al. Large freshwater phages with the potential to augment aerobic methane oxidation. Nat. Microbiol. 5, 1504–1515 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Tian, F. et al. Prokaryotic-virus-encoded auxiliary metabolic genes throughout the global oceans. Microbiome 12, 159 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Friedberg, I. Automated protein function prediction—the genomic challenge. Brief Bioinform. 7, 225–242 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Pratama, A. A. et al. Expanding standards in viromics: in silico evaluation of dsDNA viral genome identification, classification, and auxiliary metabolic gene curation. PeerJ 9, e11447 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8, 90 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cantarel, B. L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37, D233–D238 (2009).

    Article  PubMed  CAS  Google Scholar 

  16. ter Horst, A. M. et al. Minnesota peat viromes reveal terrestrial and aquatic niche partitioning for local and global viral populations. Microbiome 9, 233 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Smug, B. J., Szczepaniak, K., Rocha, E. P. C., Dunin-Horkawicz, S. & Mostowy, R. J. Ongoing shuffling of protein fragments diversifies core viral functions linked to interactions with bacterial hosts. Nat. Commun. 14, 7460 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Mistry, J. et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 49, D412–D419 (2021).

    Article  PubMed  CAS  Google Scholar 

  19. Venceslau, S. S., Stockdreher, Y., Dahl, C. & Pereira, I. A. C. The ‘bacterial heterodisulfide’ DsrC is a key protein in dissimilatory sulfur metabolism. Biochim. Biophys. Acta 1837, 1148–1164 (2014).

    Article  PubMed  CAS  Google Scholar 

  20. Ikeuchi, Y., Shigi, N., Kato, J., Nishimura, A. & Suzuki, T. Mechanistic insights into sulfur relay by multiple sulfur mediators involved in thiouridine biosynthesis at tRNA wobble positions. Mol. Cell 21, 97–108 (2006).

    Article  PubMed  CAS  Google Scholar 

  21. Nakayashiki, T. et al. The tRNA thiolation pathway modulates the intracellular redox state in Escherichia coli. J. Bacteriol. 195, 2039–2049 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Camargo, A. P. et al. IMG/VR v4: an expanded database of uncultivated virus genomes within a framework of extensive functional, taxonomic and ecological metadata. Nucleic Acids Res. 51, D733–D743 (2023).

    Article  PubMed  CAS  Google Scholar 

  23. Sazinas, P. et al. Comparative genomics of bacteriophage of the genus Seuratvirus. Genome Biol. Evol. 10, 72–76 (2017).

    Article  PubMed Central  Google Scholar 

  24. Han, Z. et al. Structural insights into a spindle-shaped archaeal virus with a sevenfold symmetrical tail. Proc. Natl Acad. Sci. USA 119, e2119439119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hughes, K. A., Sutherland, I. W. & Jones, M. V. Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 144, 3039–3047 (1998).

    Article  PubMed  CAS  Google Scholar 

  26. Piacente, F. et al. Giant DNA virus mimivirus encodes pathway for biosynthesis of unusual sugar 4-amino-4,6-dideoxy-d-glucose (Viosamine). J. Biol. Chem. 287, 3009–3018 (2012).

    Article  PubMed  CAS  Google Scholar 

  27. Cahill, J. & Young, R. Phage lysis: multiple genes for multiple barriers. Adv. Virus Res. 103, 33–70 (2019).

    Article  PubMed  CAS  Google Scholar 

  28. Holm, L. & Sander, C. Structural similarity of plant chitinase and lysozymes from animals and phage. FEBS Lett. 340, 129–132 (1994).

    Article  PubMed  CAS  Google Scholar 

  29. Monzingo, A. F., Marcotte, E. M., Hart, P. J. & Robertas, J. D. Chitinases, chitosanases and lysozymes can be divided into procaryotic and eucaryotic families sharing a conserved core. Nat. Struct. Mol. Biol. 3, 133–140 (1996).

    Article  CAS  Google Scholar 

  30. Boller, T., Gehri, A., Mauch, F. & Vögeli, U. Chitinase in bean leaves: induction by ethylene, purification, properties and possible function. Planta 157, 22–31 (1983).

    Article  PubMed  CAS  Google Scholar 

  31. Wu, R. et al. Structural characterization of a soil viral auxiliary metabolic gene product—a functional chitosanase. Nat. Commun. 13, 5485 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhang, H. et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46, W95–W101 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Graham, E. H. et al. The persistence and stabilization of auxiliary genes in the human skin virome. Virol. J. 20, 49 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Anderson, C. L., Sullivan, M. B. & Fernando, S. C. Dietary energy drives the dynamic response of bovine rumen viral communities. Microbiome 5, 155 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. He, Y. et al. Viral communities in a pH > 10 serpentinite-like environment: insight into diversity and potential roles in modulating the microbiomes by bioactive vitamin B9 synthesis. Appl. Environ. Microbiol. 90, e00850-24 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Thompson, L. R. et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc. Natl Acad. Sci. USA 108, E757–E764 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hurwitz, B. L., Hallam, S. J. & Sullivan, M. B. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 14, R123 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. ISME J. 14, 881–895 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schwartz, D. A. et al. Human-gut phages harbor sporulation genes. mBio 14, e00182-23 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kieft, K., Adams, A., Salamzade, R., Kalan, L. & Anantharaman, K. vRhyme enables binning of viral genomes from metagenomes. Nucleic Acids Res. 50, e83 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Rinke, C. et al. A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat. Microbiol. 6, 946–959 (2021).

    Article  PubMed  CAS  Google Scholar 

  42. Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).

    Article  PubMed  CAS  Google Scholar 

  43. Sullivan, M. B. et al. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol. 4, e234 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhao, J. et al. Macroalgal virosphere assists with host-microbiome equilibrium regulation and affects prokaryotes in surrounding marine environments. ISME J. 18, wrae083 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Wang, C., Zheng, R., Zhang, T. & Sun, C. Polysaccharides induce deep-sea Lentisphaerae strains to release chronic bacteriophages. eLife 13, RP92345 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lee, S., Sieradzki, E. T., Nicol, G. W. & Hazard, C. Propagation of viral genomes by replicating ammonia-oxidising archaea during soil nitrification. ISME J. 17, 309–314 (2023).

    Article  PubMed  CAS  Google Scholar 

  47. Lee, S., Hazard, C. & Nicol, G. W. Activity of novel virus families infecting soil nitrifiers is concomitant with host niche differentiation. ISME J. 18, wrae205 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Puxty, R. J., Evans, D. J., Millard, A. D. & Scanlan, D. J. Energy limitation of cyanophage development: implications for marine carbon cycling. ISME J. 12, 1273–1286 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Sharon, I. et al. Viral photosynthetic reaction center genes and transcripts in the marine environment. ISME J. 1, 492–501 (2007).

    Article  PubMed  CAS  Google Scholar 

  50. Fridman, S. et al. A myovirus encoding both photosystem I and II proteins enhances cyclic electron flow in infected Prochlorococcus cells. Nat. Microbiol. 2, 1350–1357 (2017).

    Article  PubMed  CAS  Google Scholar 

  51. Dammeyer, T., Bagby, S. C., Sullivan, M. B., Chisholm, S. W. & Frankenberg-Dinkel, N. Efficient phage-mediated pigment biosynthesis in oceanic cyanobacteria. Curr. Biol. 18, 442–448 (2008).

    Article  PubMed  CAS  Google Scholar 

  52. Needham, D. M. et al. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc. Natl Acad. Sci. USA 116, 20574–20583 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Monier, A. et al. Host-derived viral transporter protein for nitrogen uptake in infected marine phytoplankton. Proc. Natl Acad. Sci. USA 114, E7489–E7498 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Liang, J.-L. et al. Hidden diversity and potential ecological function of phosphorus acquisition genes in widespread terrestrial bacteriophages. Nat. Commun. 15, 2827 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Zhao, F. et al. Biochemical and structural characterization of the cyanophage-encoded phosphate-binding protein: implications for enhanced phosphate uptake of infected cyanobacteria. Environ. Microbiol. 24, 3037–3050 (2022).

    Article  PubMed  CAS  Google Scholar 

  56. Zheng, X. et al. Organochlorine contamination enriches virus-encoded metabolism and pesticide degradation associated auxiliary genes in soil microbiomes. ISME J. 16, 1397–1408 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Brüssow, H., Canchaya, C. & Hardt, W.-D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68, 560–602 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pfeifer, E., Bonnin, R. A. & Rocha, E. P. C. Phage-plasmids spread antibiotic resistance genes through infection and lysogenic conversion. mBio 13, e01851–22 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Luo, X.-Q. et al. Viral community-wide auxiliary metabolic genes differ by lifestyles, habitats and hosts. Microbiome 10, 190 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Anantharaman, Roux and Emerson laboratories for helpful discussions. C.M. was funded by a National Science Foundation Graduate Research Fellowship and by a UW-Madison SciMed Graduate Research Fellowship. This work was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award no. R35GM143024 (to K.A.), by the US Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research (BER), Genomic Science Program, award no. DE-SC0021198 (to J.B.E.), and by the US DOE, Office of Science, Biological and Environmental Research, Early Career Research Program awarded under UC-DOE prime contract DE-AC02-05CH11231 (to S.R.). The work conducted by the US DOE Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the US DOE operated under contract no. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceptualized the content and direction of the manuscript. C.M. and K.A. wrote the manuscript draft. J.B.E., S.R. and K.A. provided content feedback. All authors reviewed, edited and approved the manuscript.

Corresponding authors

Correspondence to Joanne B. Emerson, Simon Roux or Karthik Anantharaman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Rafal Mostowy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, C., Emerson, J.B., Roux, S. et al. A call for caution in the biological interpretation of viral auxiliary metabolic genes. Nat Microbiol 10, 2122–2129 (2025). https://doi.org/10.1038/s41564-025-02095-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41564-025-02095-4

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology