Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

How nutrient starvation impacts the gut microbiome

Abstract

Even when the gut is rich in nutrients, microorganisms can experience nutrient deprivation owing to factors such as fluctuations in host feeding patterns, microbial competition and selective nutrient uptake by the host. Nutrient starvation affects microbial survival, microbiome dynamics and intestinal stability, yet remains underexplored. This Perspective explains how nutrient deprivation shapes microbial physiology, ecology and evolution to drive complex interactions both among microbial species and between microorganisms and their host. We discuss host lifestyles that can result in microbial starvation, including diet shifts, fasting and hibernation. We also highlight critical gaps in our understanding of how starvation affects microbial community assembly, stress responses and cross-feeding from lysed cells, with implications for chronic infections and therapeutic strategies. We outline technological developments needed to unravel microbial survival strategies under nutrient deprivation. Understanding how starvation in all its forms shapes the gut ecosystem will be important to ultimately advance microbiome engineering and health interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bacterial strategies to cope with nutrient starvation.
Fig. 2: How bacteria experience nutrient starvation in a host.
Fig. 3: Effect of dietary perturbations on host-associated microbiomes.

Similar content being viewed by others

References

  1. Kjelleberg, S. Starvation in Bacteria (Springer, 1993).

  2. Finkel, S. E. Long-term survival during stationary phase: evolution and the GASP phenotype. Nat. Rev. Microbiol. 4, 113–120 (2006).

    CAS  PubMed  Google Scholar 

  3. Bernhardt, J., Weibezahn, J., Scharf, C. & Hecker, M. Bacillus subtilis during feast and famine: visualization of the overall regulation of protein synthesis during glucose starvation by proteome analysis. Genome Res. 13, 224–237 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Schofield, W. B., Zimmermann-Kogadeeva, M., Zimmermann, M., Barry, N. A. & Goodman, A. L. The stringent response determines the ability of a commensal bacterium to survive starvation and to persist in the gut. Cell Host Microbe 24, 120–132 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Townsend, G. E. et al. A master regulator of Bacteroides thetaiotaomicron gut colonization controls carbohydrate utilization and an alternative protein synthesis factor. mBio https://doi.org/10.1128/mbio.03221-19 (2020).

  6. Ontai-Brenning, A., Hamchand, R., Crawford, J. M. & Goodman, A. L. Gut microbes modulate (p)ppGpp during a time-restricted feeding regimen. mBio 14, e0190723 (2023).

    PubMed  Google Scholar 

  7. Groisman, E. A., Han, W. & Krypotou, E. Advancing the fitness of gut commensal bacteria. Science 382, 766–768 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Han, W. et al. Gut colonization by Bacteroides requires translation by an EF-G paralog lacking GTPase activity. EMBO J. 42, e112372 (2023).

    CAS  PubMed  Google Scholar 

  9. Liu, B. et al. Starvation responses impact interaction dynamics of human gut bacteria Bacteroides thetaiotaomicron and Roseburia intestinalis. ISME J. 17, 1940–1952 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Watson, S. P., Clements, M. O. & Foster, S. J. Characterization of the starvation-survival response of Staphylococcus aureus. J. Bacteriol. 180, 1750–1758 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Berney, M. & Cook, G. M. Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia. PLoS ONE 5, e8614 (2010).

    PubMed  PubMed Central  Google Scholar 

  12. Zeng, X. et al. Gut bacterial nutrient preferences quantified in vivo. Cell 185, 3441–3456 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20, 1006–1017 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    CAS  PubMed  Google Scholar 

  15. Koropatkin, N. M., Cameron, E. A. & Martens, E. C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10, 323–335 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Monod, J. The growth of bacterial cultures. Annu. Rev. Microbiol. https://doi.org/10.1146/annurev.mi.03.100149.002103 (1949).

  17. Dworkin, J. & Harwood, C. S. Metabolic reprogramming and longevity in quiescence. Annu. Rev. Microbiol. 76, 91–111 (2022).

    CAS  PubMed  Google Scholar 

  18. Kramer, J., Özkaya, Ö & Kümmerli, R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 18, 152–163 (2020).

    CAS  PubMed  Google Scholar 

  19. Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9, 119–130 (2011).

    CAS  PubMed  Google Scholar 

  20. Avrani, S., Katz, S. & Hershberg, R. Adaptations accumulated under prolonged resource exhaustion are highly transient. mSphere https://doi.org/10.1128/msphere.00388-20 (2020).

  21. Shoemaker, W. R. et al. Microbial population dynamics and evolutionary outcomes under extreme energy limitation. Proc. Natl Acad. Sci. USA 118, e2101691118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Katz, S. et al. Dynamics of adaptation during three years of evolution under long-term stationary phase. Mol. Biol. Evol.38, 2778–2790 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ratib, N. R., Seidl, F., Ehrenreich, I. M. & Finkel, S. E. Evolution in long-term stationary-phase batch culture: emergence of divergent Escherichia coli lineages over 1,200 days. mBio https://doi.org/10.1128/mbio.03337-20 (2021).

  24. Boutte, C. C. & Crosson, S. Bacterial lifestyle shapes stringent response activation. Trends Microbiol. 21, 174–180 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Irving, S. E., Choudhury, N. R. & Corrigan, R. M. The stringent response and physiological roles of (pp)pGpp in bacteria. Nat. Rev. Microbiol. 19, 256–271 (2021).

    CAS  PubMed  Google Scholar 

  26. Battesti, A., Majdalani, N. & Gottesman, S. The RpoS-mediated general stress response in Escherichia coli. Annu. Rev. Microbiol. 65, 189–213 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Boutte, C. C. & Crosson, S. The complex logic of stringent response regulation in Caulobacter crescentus: starvation signalling in an oligotrophic environment. Mol. Microbiol. 80, 695–714 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hallgren, J., et al. Phosphate starvation decouples cell differentiation from DNA replication control in the dimorphic bacterium Caulobacter crescentus. PLoS Genet. 19, e1010882 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Krypotou, E. et al. Bacteria require phase separation for fitness in the mammalian gut. Science 379, 1149–1156 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Browne, H. P., et al. Host adaptation in gut Firmicutes is associated with sporulation loss and altered transmission cycle. Genome Biol. 22, 204 (2021).

    PubMed  PubMed Central  Google Scholar 

  31. Egan, M., Dempsey, E., Ryan, C. A., Ross, R. P. & Stanton, C. The sporobiota of the human gut. Gut Microbes 13, 1863134 (2021).

    PubMed  PubMed Central  Google Scholar 

  32. Lawley, T. D. et al. Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect. Immun. 77, 3661–3669 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Browne, H. P. et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533, 543–546 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cesar, S., Willis, L. & Huang, K. C. Bacterial respiration during stationary phase induces intracellular damage that leads to delayed regrowth. iScience 25, 103765 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Şimşek, E. & Kim, M. Power-law tail in lag time distribution underlies bacterial persistence. Proc. Natl Acad. Sci. USA 116, 17635–17640 (2019).

    PubMed  PubMed Central  Google Scholar 

  36. Kaplan, Y. et al. Observation of universal ageing dynamics in antibiotic persistence. Nature 600, 290–294 (2021).

    CAS  PubMed  Google Scholar 

  37. Moreno-Gámez, S. et al. Wide lag time distributions break a trade-off between reproduction and survival in bacteria. Proc. Natl Acad. Sci. USA 117, 18729–18736 (2020).

    PubMed  PubMed Central  Google Scholar 

  38. Schink, S. J. et al. MetA is a “thermal fuse” that inhibits growth and protects Escherichia coli at elevated temperatures. Cell Rep. 40, 111290 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Brauer, A. M., Shi, H., Levin, P. A. & Huang, K. C. Physiological and regulatory convergence between osmotic and nutrient stress responses in microbes. Curr. Opin. Cell Biol. 81, 102170 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zimmerman, C. A. et al. A gut-to-brain signal of fluid osmolarity controls thirst satiation. Nature 568, 98–102 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tagkopoulos, I., Liu, Y.-C. & Tavazoie, S. Predictive behavior within microbial genetic networks. Science 320, 1313–1317 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Schwartz, D. A., Shoemaker, W. R., Măgălie, A., Weitz, J. S. & Lennon, J. T. Bacteria–phage coevolution with a seed bank. ISME J. 17, 1315–1325 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Murdoch, C. C. & Skaar, E. P. Nutritional immunity: the battle for nutrient metals at the host–pathogen interface. Nat. Rev. Microbiol. 20, 657–670 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Liang, Q. et al. Sialic acid plays a pivotal role in licensing Citrobacter rodentium’s transition from the intestinal lumen to a mucosal adherent niche. Proc. Natl Acad. Sci. USA 120, e2301115120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Pal, R. R. et al. Pathogenic E. coli extracts nutrients from infected host cells utilizing injectisome components. Cell 177, 683–696 (2019).

    CAS  PubMed  Google Scholar 

  46. van der Meer-Janssen, Y. P., van Galen, J., Batenburg, J. J. & Helms, J. B. Lipids in host–pathogen interactions: pathogens exploit the complexity of the host cell lipidome. Prog. Lipid Res. 49, 1–26 (2010).

    PubMed  Google Scholar 

  47. Kuhn, H. W., et al. BB0562 is a nutritional virulence determinant with lipase activity important for Borrelia burgdorferi infection and survival in fatty acid deficient environments. PLoS Pathog. 17, e1009869 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Abu Kwaik, Y. & Bumann, D. Microbial quest for food in vivo: ‘nutritional virulence’ as an emerging paradigm. Cell. Microbiol. 15, 882–890 (2013).

    CAS  PubMed  Google Scholar 

  49. Kaiser, J. C. & Heinrichs, D. E. Branching out: alterations in bacterial physiology and virulence due to branched-chain amino acid deprivation. mBio https://doi.org/10.1128/mbio.01188-18 (2018).

  50. Caballero-Flores, G., Pickard, J. M. & Núñez, G. Microbiota-mediated colonization resistance: mechanisms and regulation. Nat. Rev. Microbiol. 21, 347–360 (2023).

    CAS  PubMed  Google Scholar 

  51. Aranda-Díaz, A. et al. Establishment and characterization of stable, diverse, fecal-derived in vitro microbial communities that model the intestinal microbiota. Cell Host Microbe 30, 260–272 (2022).

    PubMed  PubMed Central  Google Scholar 

  52. Spragge, F. et al. Microbiome diversity protects against pathogens by nutrient blocking. Science 382, eadj3502 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ho, P.-Y., Nguyen, T. H., Sanchez, J. M., DeFelice, B. C. & Huang, K. C. Resource competition predicts assembly of gut bacterial communities in vitro. Nat. Microbiol. 9, 1036–1048 (2024).

    CAS  PubMed  Google Scholar 

  54. Hammarlund, S. P., Chacón, J. M. & Harcombe, W. R. A shared limiting resource leads to competitive exclusion in a cross-feeding system. Environ. Microbiol. 21, 759–771 (2019).

    PubMed  PubMed Central  Google Scholar 

  55. Olsen, L., Thum, E. & Rohner, N. Lipid metabolism in adaptation to extreme nutritional challenges. Dev. Cell 56, 1417–1429 (2021).

    CAS  PubMed  Google Scholar 

  56. Carey, H. V., Walters, W. A. & Knight, R. Seasonal restructuring of the ground squirrel gut microbiota over the annual hibernation cycle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R33–R42 (2013).

    CAS  PubMed  Google Scholar 

  57. Dill-McFarland, K. A. et al. Hibernation alters the diversity and composition of mucosa-associated bacteria while enhancing antimicrobial defence in the gut of 13-lined ground squirrels. Mol. Ecol. 23, 4658–4669 (2014).

    CAS  PubMed  Google Scholar 

  58. Sonoyama, K. et al. Response of gut microbiota to fasting and hibernation in Syrian hamsters. Appl. Environ. Microbiol. 75, 6451–6456 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14, 1655–1661 (2016).

    CAS  PubMed  Google Scholar 

  60. Ho, P.-Y., Good, B. H. & Huang, K. C. Competition for fluctuating resources reproduces statistics of species abundance over time across wide-ranging microbiotas. eLife 11, e75168 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Costello, E. K., Gordon, J. I., Secor, S. M. & Knight, R. Postprandial remodeling of the gut microbiota in Burmese pythons. ISME J. 4, 1375–1385 (2010).

    CAS  PubMed  Google Scholar 

  62. Di Francesco, A., Di Germanio, C., Bernier, M. & De Cabo, R. A time to fast. Science 362, 770–775 (2018).

    PubMed  PubMed Central  Google Scholar 

  63. Maifeld, A. et al. Fasting alters the gut microbiome reducing blood pressure and body weight in metabolic syndrome patients. Nat. Commun. 12, 1970 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Mesnage, R., Grundler, F., Schwiertz, A., Le Maho, Y. & de Toledo, F. W. Changes in human gut microbiota composition are linked to the energy metabolic switch during 10 d of Buchinger fasting. J. Nutr. Sci. 8, e36 (2019).

    PubMed  PubMed Central  Google Scholar 

  65. Paukkonen, I., Törrönen, E.-N., Lok, J., Schwab, U. & El-Nezami, H. The impact of intermittent fasting on gut microbiota: a systematic review of human studies. Front. Nutr. 11, 1342787 (2024).

    PubMed  PubMed Central  Google Scholar 

  66. Li, G. et al. Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metab. 26, 672–685 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. von Schwartzenberg, R. J. et al. Caloric restriction disrupts the microbiota and colonization resistance. Nature 595, 272–277 (2021).

    Google Scholar 

  68. Depommier, C. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25, 1096–1103 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Sonnenburg, J. L. et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307, 1955–1959 (2005).

    CAS  PubMed  Google Scholar 

  70. Kohl, K. D., Amaya, J., Passement, C. A., Dearing, M. D. & McCue, M. D. Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts. FEMS Microbiol. Ecol. 90, 883–894 (2014).

    CAS  PubMed  Google Scholar 

  71. Leeming, E. R., Johnson, A. J., Spector, T. D. & Le Roy, C. I. Effect of diet on the gut microbiota: rethinking intervention duration. Nutrients 11, 2862 (2019).

    PubMed  PubMed Central  Google Scholar 

  72. Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter–gatherers of Tanzania. Science 357, 802–806 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Desai, M. S. et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature 529, 212–215 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Shin, N.-R., Whon, T. W. & Bae, J.-W. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 33, 496–503 (2015).

    CAS  PubMed  Google Scholar 

  76. Fusco, W. et al. Short-chain fatty-acid-producing bacteria: key components of the human gut microbiota. Nutrients 15, 2211 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Sonnenburg, E. D. & Sonnenburg, J. L. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 20, 779–786 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Windey, K., De Preter, V. & Verbeke, K. Relevance of protein fermentation to gut health. Mol. Nutr. Food Res. 56, 184–196 (2012).

    CAS  PubMed  Google Scholar 

  79. Atkinson, C., Frankenfeld, C. L. & Lampe, J. W. Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health. Exp. Biol. Med. 230, 155–170 (2005).

    CAS  Google Scholar 

  80. Beam, A., Clinger, E. & Hao, L. Effect of diet and dietary components on the composition of the gut microbiota. Nutrients 13, 2795 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Martin-Gallausiaux, C., Marinelli, L., Blottière, H. M., Larraufie, P. & Lapaque, N. SCFA: mechanisms and functional importance in the gut. Proc. Nutr. Soc. 80, 37–49 (2021).

    CAS  PubMed  Google Scholar 

  82. Armstrong, H. K. et al. Unfermented β-fructan fibers fuel inflammation in select inflammatory bowel disease patients. Gastroenterology 164, 228–240 (2023).

    CAS  PubMed  Google Scholar 

  83. McNulty, N. P., et al. Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 11, e1001637 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Dapa, T. et al. Within-host evolution of the gut microbiome. Curr. Opin. Microbiol. 71, 102258 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Dapa, T., Ramiro, R. S., Pedro, M. F., Gordo, I. & Xavier, K. B. Diet leaves a genetic signature in a keystone member of the gut microbiota. Cell Host Microbe 30, 183–199 (2022).

    CAS  PubMed  Google Scholar 

  86. Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487, 104–108 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Singh, P. et al. Taurine deficiency as a driver of aging. Science 380, eabn9257 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Aranda-Díaz, A., et al. Assembly of stool-derived bacterial communities follows “early-bird” resource utilization dynamics. Cell Syst. 16, 101240 (2025).

    PubMed  Google Scholar 

  89. Kolb, H., et al. Ketone bodies: from enemy to friend and guardian angel. BMC Med. 19, 313 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Regan, M. D. et al. Nitrogen recycling via gut symbionts increases in ground squirrels over the hibernation season. Science 375, 460–463 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Start, C. C., Anderson, C. M. H., Gatehouse, A. M. R. & Edwards, M. G. Dynamic response of essential amino acid biosynthesis in Buchnera aphidicola to supplement sub-optimal host nutrition. J. Insect Physiol. 158, 104683 (2024).

    CAS  PubMed  Google Scholar 

  92. Akman Gündüz, E. & Douglas, A. Symbiotic bacteria enable insect to use a nutritionally inadequate diet. Proc. R. Soc. B Biol. Sci. 276, 987–991 (2009).

    Google Scholar 

  93. Lum, G. R., et al. Ketogenic diet therapy for pediatric epilepsy is associated with alterations in the human gut microbiome that confer seizure resistance in mice. Cell Rep. 42, 113521 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Gehrig, J. L. et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science 365, eaau4732 (2019).

    PubMed  PubMed Central  Google Scholar 

  95. Chen, R. Y. et al. A microbiota-directed food intervention for undernourished children. N. Engl. J. Med. 384, 1517–1528 (2021).

    PubMed  PubMed Central  Google Scholar 

  96. Musat, N., Foster, R., Vagner, T., Adam, B. & Kuypers, M. M. Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol. Rev. 36, 486–511 (2012).

    CAS  PubMed  Google Scholar 

  97. Stevenson, T. J., Duddleston, K. N. & Buck, C. L. Effects of season and host physiological state on the diversity, density, and activity of the arctic ground squirrel cecal microbiota. Appl. Environ. Microbiol. 80, 5611–5622 (2014).

    PubMed  PubMed Central  Google Scholar 

  98. Shi, H. et al. Highly multiplexed spatial mapping of microbial communities. Nature 588, 676–681 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Villa, M. M. et al. Interindividual variation in dietary carbohydrate metabolism by gut bacteria revealed with droplet microfluidic culture. mSystems https://doi.org/10.1128/msystems.00864-19 (2020).

  100. Wang, B. et al. Single-cell massively-parallel multiplexed microbial sequencing (M3-seq) identifies rare bacterial populations and profiles phage infection. Nat. Microbiol. 8, 1846–1862 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Chia, H. E., Marsh, E. N. G. & Biteen, J. S. Extending fluorescence microscopy into anaerobic environments. Curr. Opin. Chem. Biol. 51, 98–104 (2019).

    CAS  PubMed  Google Scholar 

  102. Müller, A. L. et al. Bacterial interactions during sequential degradation of cyanobacterial necromass in a sulfidic arctic marine sediment. Environ. Microbiol. 20, 2927–2940 (2018).

    PubMed  PubMed Central  Google Scholar 

  103. Geesink, P., et al. Bacterial necromass is rapidly metabolized by heterotrophic bacteria and supports multiple trophic levels of the groundwater microbiome. Microbiol. Spectr. 10, e0043722 (2022).

    PubMed  Google Scholar 

  104. Coyne, M. J. & Comstock, L. E. Type VI secretion systems and the gut microbiota. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.psib-0009-2018 (2019).

  105. Troselj, V., Treuner-Lange, A., Søgaard-Andersen, L. & Wall, D. Physiological heterogeneity triggers sibling conflict mediated by the type VI secretion system in an aggregative multicellular bacterium. mBio https://doi.org/10.1128/mbio.01645-17 (2018).

  106. Mashruwala, A. A., Qin, B. & Bassler, B. L. Quorum-sensing- and type VI secretion-mediated spatiotemporal cell death drives genetic diversity in Vibrio cholerae. Cell 185, 3966–3979 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Folz, J. et al. Human metabolome variation along the upper intestinal tract. Nat. Metab. 5, 777–788 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Shalon, D. et al. Profiling the human intestinal environment under physiological conditions. Nature 617, 581–591 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Baker, J. L. et al. Klebsiella and Providencia emerge as lone survivors following long-term starvation of oral microbiota. Proc. Natl Acad. Sci. USA 116, 8499–8504 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Cheng, A. G. et al. Design, construction, and in vivo augmentation of a complex gut microbiome. Cell 185, 3617–3636 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Huang Laboratory for helpful discussions. This work was funded by NSF Award EF-2125383 (to K.C.H.) and NIH Award RM1 GM135102 (to K.C.H.). K.C.H. is a Chan Zuckerberg Biohub Investigator.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: S.E. and K.C.H. Writing original draft: all authors. Writing, review and editing: all authors. Funding acquisition: K.C.H.

Corresponding authors

Correspondence to Sylvie Estrela or Kerwyn Casey Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Hannah Carey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estrela, S., Long, J.Z. & Huang, K.C. How nutrient starvation impacts the gut microbiome. Nat Microbiol 10, 2663–2672 (2025). https://doi.org/10.1038/s41564-025-02139-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41564-025-02139-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing