Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gasdermins against intracellular bacterial pathogens

Abstract

Intracellular bacterial pathogens can cause high levels of morbidity and mortality in humans. Host immune responses that protect against these infections include pyroptosis, a form of lytic cell death caused by the insertion of large gasdermin (GSDM) pores into the host plasma membrane. Here we review recent advances in our understanding of how the five GSDM proteins, GSDMA–E, are activated by distinct signalling pathways. Pyroptosis can both eliminate intracellular niches and release cytosolic interleukin-1 family cytokines that further prime host immune responses against the invading pathogen. Because pyroptosis targets microbes, host-adapted intracellular pathogens have evolved strategies to efficiently subvert it. However, environmental pathogens fail to evade, making pyroptosis a potent barrier against infection. We summarize recent findings for the host-adapted bacterial pathogens Shigella flexneri, Salmonella enterica serovar Typhimurium and Mycobacterium tuberculosis, contrasted with the environmental bacteria Burkholderia thailandensis and Chromobacterium violaceum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The gasdermin pore causes pyroptosis.
Fig. 2: Mechanisms of gasdermin activation and inhibition.
Fig. 3: Host-adapted pathogens inhibit pyroptosis.

Similar content being viewed by others

References

  1. Kerr, J. F., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Park, W. et al. Diversity and complexity of cell death: a historical review. Exp. Mol. Med. 55, 1573–1594 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Zychlinsky, A., Prevost, M. C. & Sansonetti, P. J. Shigella flexneri induces apoptosis in infected macrophages. Nature 358, 167–169 (1992).

    Article  PubMed  CAS  Google Scholar 

  4. Cookson, B. T. & Brennan, M. A. Pro-inflammatory programmed cell death. Trends Microbiol. 9, 113–114 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. Remick, B. C., Gaidt, M. M. & Vance, R. E. Effector-triggered immunity. Annu. Rev. Immunol. 41, 453–481 (2023).

    Article  PubMed  CAS  Google Scholar 

  6. Kayagaki, N. et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591, 131–136 (2021).

    Article  PubMed  CAS  Google Scholar 

  7. Degen, M. et al. Structural basis of NINJ1-mediated plasma membrane rupture in cell death. Nature 618, 1065–1071 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

    Article  PubMed  CAS  Google Scholar 

  9. Miao, E. A. et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol. 11, 1136–1142 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kovacs, S. B. & Miao, E. A. Gasdermins: effectors of pyroptosis. Trends Cell Biol. 27, 673–684 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Jorgensen, I., Zhang, Y., Krantz, B. A. & Miao, E. A. Pyroptosis triggers pore-induced intracellular traps (PITs) that capture bacteria and lead to their clearance by efferocytosis. J. Exp. Med. 213, 2113–2128 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Johnson, A. G. et al. Bacterial gasdermins reveal an ancient mechanism of cell death. Science 375, 221–225 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Billman, Z. P. et al. Caspase-1 activates gasdermin A in non-mammals. eLife 12, RP92362 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

    Article  PubMed  CAS  Google Scholar 

  15. Ruan, J., Xia, S., Liu, X., Lieberman, J. & Wu, H. Cryo-EM structure of the gasdermin A3 membrane pore. Nature 557, 62–67 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016).

    Article  PubMed  CAS  Google Scholar 

  17. Xia, S. et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature 593, 607–611 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Balasubramanian, A. et al. The palmitoylation of gasdermin D directs its membrane translocation and pore formation during pyroptosis. Sci. Immunol. 9, eadn1452 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Margheritis, E. et al. Gasdermin D cysteine residues synergistically control its palmitoylation-mediated membrane targeting and assembly. EMBO J. 43, 4274–4297 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Du, G. et al. ROS-dependent S-palmitoylation activates cleaved and intact gasdermin D. Nature 630, 437–446 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Liu, Z. et al. Palmitoylation at a conserved cysteine residue facilitates gasdermin D-mediated pyroptosis and cytokine release. Proc. Natl Acad. Sci. USA 121, e2400883121 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zhang, N. et al. A palmitoylation–depalmitoylation relay spatiotemporally controls GSDMD activation in pyroptosis. Nat. Cell Biol. 26, 757–769 (2024).

    Article  PubMed  Google Scholar 

  23. Jiang, X. et al. NU6300 covalently reacts with cysteine-191 of gasdermin D to block its cleavage and palmitoylation. Sci. Adv. 10, eadi9284 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hu, L. et al. Chemotherapy-induced pyroptosis is mediated by BAK/BAX-caspase-3-GSDME pathway and inhibited by 2-bromopalmitate. Cell Death Dis. 11, 281 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Nozaki, K. & Miao, E. A. Bucket lists must be completed during cell death. Trends Cell Biol. 33, 803–815 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153–158 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Defourny, J. et al. Pejvakin-mediated pexophagy protects auditory hair cells against noise-induced damage. Proc. Natl Acad. Sci. USA 116, 8010–8017 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Monteleone, M. et al. Interleukin-1β maturation triggers its relocation to the plasma membrane for gasdermin-D-dependent and -independent secretion. Cell Rep. 24, 1425–1433 (2018).

    Article  PubMed  CAS  Google Scholar 

  29. Nozaki, K., Li, L. & Miao, E. A. Innate sensors trigger regulated cell death to combat intracellular infection. Annu. Rev. Immunol. 40, 469–498 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Cayrol, C. & Girard, J. P. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc. Natl Acad. Sci. USA 106, 9021–9026 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lacey, C. A. & Miao, E. A. Programmed cell death in the evolutionary race against bacterial virulence factors. Cold Spring Harb. Perspect. Biol. 12, a036459 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Aachoui, Y. et al. Caspase-11 protects against bacteria that escape the vacuole. Science 339, 975–978 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Hagar, J. A., Powell, D. A., Aachoui, Y., Ernst, R. K. & Miao, E. A. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341, 1250–1253 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246–1249 (2013).

    Article  PubMed  CAS  Google Scholar 

  35. Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014).

    Article  PubMed  CAS  Google Scholar 

  36. Lee, B. L. et al. Caspase-11 auto-proteolysis is crucial for noncanonical inflammasome activation. J. Exp. Med. 215, 2279–2288 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Wang, K. et al. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell 180, 941–955 e920 (2020).

    Article  PubMed  CAS  Google Scholar 

  38. Gu, Y. et al. Activation of interferon-gamma inducing factor mediated by interleukin-1β converting enzyme. Science 275, 206–209 (1997).

    Article  PubMed  CAS  Google Scholar 

  39. Exconde, P. M. et al. The tetrapeptide sequence of IL-18 and IL-1β regulates their recruitment and activation by inflammatory caspases. Cell Rep. 42, 113581 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Shi, X. et al. Recognition and maturation of IL-18 by caspase-4 noncanonical inflammasome. Nature 624, 442–450 (2023).

    Article  PubMed  CAS  Google Scholar 

  41. Devant, P. et al. Structural insights into cytokine cleavage by inflammatory caspase-4. Nature 624, 451–459 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Annunziato, F., Romagnani, C. & Romagnani, S. The 3 major types of innate and adaptive cell-mediated effector immunity. J. Allergy Clin. Immunol. 135, 626–635 (2015).

    Article  PubMed  CAS  Google Scholar 

  43. Orning, P. et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 362, 1064–1069 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Taabazuing, C. Y., Okondo, M. C. & Bachovchin, D. A. Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages. Cell Chem. Biol. 24, 507–514. e504 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Demarco, B. et al. Caspase-8-dependent gasdermin D cleavage promotes antimicrobial defense but confers susceptibility to TNF-induced lethality. Sci. Adv. 6, eabc3465 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Mihaly, S. R., Ninomiya-Tsuji, J. & Morioka, S. TAK1 control of cell death. Cell Death Differ. 21, 1667–1676 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Sarhan, J. et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc. Natl Acad. Sci. USA 115, E10888–E10897 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Nozaki, K. et al. Caspase-7 activates ASM to repair gasdermin and perforin pores. Nature 606, 960–967 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ruhl, S. et al. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362, 956–960 (2018).

    Article  PubMed  Google Scholar 

  50. Wei, B., Billman, Z. P., Nozaki, K., Goodridge, H. S. & Miao, E. A. NLRP3, NLRP6 and NLRP12 are inflammasomes with distinct expression patterns. Front. Immunol. 15, 1418290 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Chen, K. W. et al. The neutrophil NLRC4 inflammasome selectively promotes IL-1β maturation without pyroptosis during acute Salmonella challenge. Cell Rep. 8, 570–582 (2014).

    Article  PubMed  CAS  Google Scholar 

  52. Ulland, T. K. et al. Nlrp12 mutation causes C57BL/6J strain-specific defect in neutrophil recruitment. Nat. Commun. 7, 13180 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Cai, S., Batra, S., Del Piero, F. & Jeyaseelan, S. NLRP12 modulates host defense through IL-17A–CXCL1 axis. Mucosal Immunol. 9, 503–514 (2016).

    Article  PubMed  CAS  Google Scholar 

  54. Oh, C. et al. Neutrophil inflammasomes sense the subcellular delivery route of translocated bacterial effectors and toxins. Cell Rep. 41, 111688 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Oh, C., Spears, T. J. & Aachoui, Y. Inflammasome-mediated pyroptosis in defense against pathogenic bacteria. Immunol. Rev. 329, e13408 (2025).

    Article  PubMed  CAS  Google Scholar 

  56. Chen, K. W. et al. RIPK1 activates distinct gasdermins in macrophages and neutrophils upon pathogen blockade of innate immune signaling. Proc. Natl Acad.Sci. USA 118, e2101189118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Wang, Y. et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547, 99–103 (2017).

    Article  PubMed  CAS  Google Scholar 

  58. Rogers, C. et al. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat. Commun. 8, 14128 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Zamaraeva, M. V. et al. Cells die with increased cytosolic ATP during apoptosis: a bioluminescence study with intracellular luciferase. Cell Death Differ. 12, 1390–1397 (2005).

    Article  PubMed  CAS  Google Scholar 

  60. Masuda, Y. et al. The potential role of DFNA5, a hearing impairment gene, in p53-mediated cellular response to DNA damage. J. Hum. Genet. 51, 652–664 (2006).

    Article  PubMed  CAS  Google Scholar 

  61. Chen, W. et al. Synthetic lethality of combined ULK1 defection and p53 restoration induce pyroptosis by directly upregulating GSDME transcription and cleavage activation through ROS/NLRP3 signaling. J. Exp. Clin. Cancer Res. 43, 248 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Zhu, Y. P. et al. NET formation is a default epigenetic program controlled by PAD4 in apoptotic neutrophils. Sci. Adv. 9, eadj1397 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Souza, F. W. & Miao, E. A. Neutrophils only die twice. Sci. Adv. 9, eadm8715 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ma, F. et al. Gasdermin E dictates inflammatory responses by controlling the mode of neutrophil death. Nat. Commun. 15, 386 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Zhang, Z. et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 579, 415–420 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Zhou, B. et al. Full-length GSDME mediates pyroptosis independent from cleavage. Nat. Cell Biol. 26, 1545–1557 (2024).

    Article  PubMed  CAS  Google Scholar 

  67. Wu, C. et al. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol. 10, R130 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Das, S. et al. GSDMB induces an asthma phenotype characterized by increased airway responsiveness and remodeling without lung inflammation. Proc. Natl Acad. Sci. USA 113, 13132–13137 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Zhou, Z. et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science 368, eaaz7548 (2020).

    Article  PubMed  CAS  Google Scholar 

  70. Oltra, S. S. et al. Distinct GSDMB protein isoforms and protease cleavage processes differentially control pyroptotic cell death and mitochondrial damage in cancer cells. Cell Death Differ. 30, 1366–1381 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Li, X. et al. Apoptotic caspase-7 activation inhibits non-canonical pyroptosis by GSDMB cleavage. Cell Death Differ. 30, 2120–2134 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Chao, K. L., Kulakova, L. & Herzberg, O. Gene polymorphism linked to increased asthma and IBD risk alters gasdermin-B structure, a sulfatide and phosphoinositide binding protein. Proc. Natl Acad. Sci. USA 114, E1128–E1137 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Zhong, X. et al. Structural mechanisms for regulation of GSDMB pore-forming activity. Nature 616, 598–605 (2023).

    Article  PubMed  CAS  Google Scholar 

  74. Wang, C. et al. Structural basis for GSDMB pore formation and its targeting by IpaH7.8. Nature 616, 590–597 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Hansen, J. M. et al. Pathogenic ubiquitination of GSDMB inhibits NK cell bactericidal functions. Cell 184, 3178–3191.e3118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Xi, R. et al. Up-regulation of gasdermin C in mouse small intestine is associated with lytic cell death in enterocytes in worm-induced type 2 immunity. Proc. Natl Acad. Sci. USA 118, e2026307118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Yang, L. et al. Intraepithelial mast cells drive gasdermin C-mediated type 2 immunity. Immunity 57, 1056–1070 e1055 (2024).

    Article  PubMed  CAS  Google Scholar 

  78. Zhao, M. et al. Epithelial STAT6 O-GlcNAcylation drives a concerted anti-helminth alarmin response dependent on tuft cell hyperplasia and gasdermin C. Immunity 55, 623–638.e625 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Choi, H. W. et al. Loss of bladder epithelium induced by cytolytic mast cell granules. Immunity 45, 1258–1269 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Hou, J. et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat. Cell Biol. 22, 1264–1275 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Zhang, J. Y. et al. The metabolite α-KG induces GSDMC-dependent pyroptosis through death receptor 6-activated caspase-8. Cell Res. 31, 980–997 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Jena, K. K. et al. Type III interferons induce pyroptosis in gut epithelial cells and impair mucosal repair. Cell 187, 7533–7550 e7523 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Luthi, A. U. et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity 31, 84–98 (2009).

    Article  PubMed  CAS  Google Scholar 

  84. LaRock, D. L. et al. Group A Streptococcus induces GSDMA-dependent pyroptosis in keratinocytes. Nature 605, 527–531 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Deng, W. et al. Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers pyroptosis. Nature 602, 496–502 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. LaRock, C. N. et al. IL-1β is an innate immune sensor of microbial proteolysis. Sci. Immunol. 1, eaah3539 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Nelson, D. C., Garbe, J. & Collin, M. Cysteine proteinase SpeB from Streptococcus pyogenes—a potent modifier of immunologically important host and bacterial proteins. Biol. Chem. 392, 1077–1088 (2011).

    Article  PubMed  CAS  Google Scholar 

  88. Persson, H., Vindebro, R. & von Pawel-Rammingen, U. The streptococcal cysteine protease SpeB is not a natural immunoglobulin-cleaving enzyme. Infect. Immun. 81, 2236–2241 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Yin, H. et al. Seneca Valley virus circumvents gasdermin A-mediated inflammation by targeting the pore-formation domain for cleavage. mBio 15, e0168024 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Vander Broek, C. W. & Stevens, J. M. Type III secretion in the melioidosis pathogen Burkholderia pseudomallei. Front. Cell. Infect. Microbiol. 7, 255 (2017).

    Article  Google Scholar 

  91. Szczesna, M. et al. Bacterial esterases reverse lipopolysaccharide ubiquitylation to block host immunity. Cell Host Microbe 32, 913–924 e917 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Hernandez, D., Walsh, S., Saavedra Sanchez, L., Dickinson, M. S. & Coers, J. Interferon-inducible E3 ligase RNF213 facilitates host-protective linear and K63-linked ubiquitylation of Toxoplasma gondii parasitophorous vacuoles. mBio 13, e0188822 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Benanti, E. L., Nguyen, C. M. & Welch, M. D. Virulent Burkholderia species mimic host actin polymerases to drive actin-based motility. Cell 161, 348–360 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Plum, M. T. W. et al. Burkholderia thailandensis uses a type VI secretion system to lyse protrusions without triggering host cell responses. Cell Host Microbe 32, 676–692 e675 (2024).

    Article  PubMed  CAS  Google Scholar 

  95. Kostow, N. & Welch, M. D. Plasma membrane protrusions mediate host cell-cell fusion induced by Burkholderia thailandensis. Mol. Biol. Cell 33, ar70 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Dilucca, M., Ramos, S., Shkarina, K., Santos, J. C. & Broz, P. Guanylate-binding protein-dependent noncanonical inflammasome activation prevents Burkholderia thailandensis-induced multinucleated giant cell formation. mBio 12, e0205421 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Place, D. E. et al. Interferon inducible GBPs restrict Burkholderia thailandensis motility induced cell-cell fusion. PLoS Pathog. 16, e1008364 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Aachoui, Y. et al. Canonical inflammasomes drive IFN-γ to prime caspase-11 in defense against a cytosol-invasive bacterium. Cell Host Microbe 18, 320–332 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Kovacs, S. B. et al. Neutrophil caspase-11 is essential to defend against a cytosol-invasive bacterium. Cell Rep. 32, 107967 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Wang, J. et al. Caspase-11-dependent pyroptosis of lung epithelial cells protects from melioidosis while caspase-1 mediates macrophage pyroptosis and production of IL-18. PLoS Pathog. 14, e1007105 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wang, J., Deobald, K. & Re, F. Gasdermin D protects from melioidosis through pyroptosis and direct killing of bacteria. J. Immunol. 202, 3468–3473 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. DuPont, H. L., Levine, M. M., Hornick, R. B. & Formal, S. B. Inoculum size in shigellosis and implications for expected mode of transmission. J. Infect. Dis. 159, 1126–1128 (1989).

    Article  PubMed  CAS  Google Scholar 

  103. Allaoui, A., Mounier, J., Prévost, M. C., Sansonetti, P. J. & Parsot, C. icsB: a Shigella flexneri virulence gene necessary for the lysis of protrusions during intercellular spread. Mol. Microbiol. 6, 1605–1616 (1992).

    Article  PubMed  CAS  Google Scholar 

  104. Campbell-Valois, F.-X., Sachse, M., Sansonetti, P. J. & Parsot, C. Escape of actively secreting Shigella flexneri from ATG8/LC3-positive vacuoles formed during cell-to-cell spread is facilitated by IcsB and VirA. mBio 6, e02567–14 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Liu, W. et al. N(ε)-fatty acylation of multiple membrane-associated proteins by Shigella IcsB effector to modulate host function. Nat. Microbiol. 3, 996–1009 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Saavedra-Sanchez, L. et al. The Shigella flexneri effector IpaH1.4 facilitates RNF213 degradation and protects cytosolic bacteria against interferon-induced ubiquitylation. eLife 13, RP102714 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Naydenova, K. et al. Shigella flexneri evades LPS ubiquitylation through IpaH1.4-mediated degradation of RNF213. Nat. Struct. Mol. Biol. 32, 1741–1751 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Li, P. et al. Ubiquitination and degradation of GBPs by a Shigella effector to suppress host defence. Nature 551, 378–383 (2017).

    Article  PubMed  CAS  Google Scholar 

  109. Piro, A. S. et al. Detection of cytosolic Shigella flexnerivia a C-terminal triple-arginine motif of GBP1 inhibits actin-based motility. mBio 8, 01979–17 (2017).

    Article  Google Scholar 

  110. Wandel, M. P. et al. GBPs inhibit motility of Shigella flexneri but are targeted for degradation by the bacterial ubiquitin ligase IpaH9.8. Cell Host Microbe 22, 507–518.e505 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Dickinson, M. aryS. et al. LPS-aggregating proteins GBP1 and GBP2 are each sufficient to enhance caspase-4 activation both in cellulo and in vitro. Proc. Natl Acad. Sci. USA 120, e2216028120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Fisch, D. et al. Human GBP1 is a microbe-specific gatekeeper of macrophage apoptosis and pyroptosis. EMBO J. 38, e100926 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Kutsch, M. et al. Direct binding of polymeric GBP1 to LPS disrupts bacterial cell envelope functions. EMBO J. 39, e104926 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Luchetti, G. et al. Shigella ubiquitin ligase IpaH7.8 targets gasdermin D for degradation to prevent pyroptosis and enable infection. Cell Host Microbe 29, 1521–1530.e1510 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Li, Z. et al. Shigella evades pyroptosis by arginine ADP-riboxanation of caspase-11. Nature 599, 290–295 (2021).

    Article  PubMed  CAS  Google Scholar 

  116. Liu, Y. et al. Calmodulin binding activates Chromobacterium CopC effector to ADP-riboxanate host apoptotic caspases. mBio 13, e006922 (2022).

    Article  Google Scholar 

  117. Hou, Y. et al. Structural mechanisms of calmodulin activation of Shigella effector OspC3 to ADP-riboxanate caspase-4/11 and block pyroptosis. Nat. Struct. Mol. Biol. 30, 261–272 (2023).

    Article  PubMed  CAS  Google Scholar 

  118. Kobayashi, T. et al. The Shigella OspC3 effector inhibits caspase-4, antagonizes inflammatory cell death, and promotes epithelial infection. Cell Host Microbe 13, 570–583 (2013).

    Article  PubMed  CAS  Google Scholar 

  119. Ashida, H., Sasakawa, C. & Suzuki, T. A unique bacterial tactic to circumvent the cell death crosstalk induced by blockade of caspase-8. EMBO J. 39, e104469 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Tominaga, A., Mahmoud, M. A., Mukaihara, T. & Enomoto, M. Molecular characterization of intact, but cryptic, flagellin genes in the genus Shigella. Mol. Microbiol. 12, 277–285 (1994).

    Article  PubMed  CAS  Google Scholar 

  121. Turcotte, E. A. et al. Shigella OspF blocks rapid p38-dependent priming of the NAIP-NLRC4 inflammasome. Proc. Natl Acad. Sci. USA 123, e2510950123 (2026).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Mitchell, P. S. et al. NAIP-NLRC4-deficient mice are susceptible to shigellosis. eLife 9, e59022 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Miao, E. A. et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc. Natl Acad. Sci. USA 107, 3076–3080 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Miao, E. A. & Rajan, J. V. Salmonella and caspase-1: a complex interplay of detection and evasion. Front. Microbiol. 2, 85 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Naseer, N. et al. Salmonella enterica serovar Typhimurium induces NAIP/NLRC4- and NLRP3/ASC-independent, caspase-4-dependent inflammasome activation in human intestinal epithelial cells. Infect. Immun. 90, e0066321 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Romberg, N., Vogel, T. P. & Canna, S. W. NLRC4 inflammasomopathies. Curr. Opin. Allergy Clin. Immunol. 17, 398–404 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Knodler, L. A. et al. Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia. Proc. Natl Acad. Sci. USA 107, 17733–17738 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Sellin, M. E. et al. Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. Cell Host Microbe 16, 237–248 (2014).

    Article  PubMed  CAS  Google Scholar 

  129. Knodler, L. A. et al. Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe 16, 249–256 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Rauch, I. et al. NAIP-NLRC4 inflammasomes coordinate intestinal epithelial cell expulsion with eicosanoid and IL-18 release via activation of caspase-1 and -8. Immunity 46, 649–659 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Crowley, S. M. et al. Intestinal restriction of Salmonella Typhimurium requires caspase-1 and caspase-11 epithelial intrinsic inflammasomes. PLoS Pathog. 16, e1008498 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Knodler, L. A., Nair, V. & Steele-Mortimer, O. Quantitative assessment of cytosolic Salmonella in epithelial cells. PLoS ONE 9, e84681 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Knodler, L. A. Salmonella enterica: living a double life in epithelial cells. Curr. Opin. Microbiol. 23, 23–31 (2015).

    Article  PubMed  CAS  Google Scholar 

  134. Powers, T. R. et al. Intracellular niche-specific profiling reveals transcriptional adaptations required for the cytosolic lifestyle of Salmonella enterica. PLoS Pathog. 17, e1009280 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Geiser, P. et al. Salmonella enterica serovar Typhimurium exploits cycling through epithelial cells to colonize human and murine enteroids. mBio 12, e02684–20 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Taylor, S. J. & Winter, S. E. Salmonella finds a way: metabolic versatility of Salmonella enterica serovar Typhimurium in diverse host environments. PLoS Pathog. 16, e1008540 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Batista, J. H. & da Silva Neto, J. F. Chromobacterium violaceum pathogenicity: updates and insights from genome sequencing of novel Chromobacterium species. Front. Microbiol. 8, 2213 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Macher, A. M., Casale, T. B. & Fauci, A. S. Chronic granulomatous disease of childhood and Chromobacterium violaceum infections in the southeastern United States. Ann. Intern. Med. 97, 51–55 (1982).

    Article  PubMed  CAS  Google Scholar 

  139. Maltez, V. I. et al. Inflammasomes coordinate pyroptosis and natural killer cell cytotoxicity to clear infection by a ubiquitous environmental bacterium. Immunity 43, 987–997 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Miki, T. et al. Chromobacterium pathogenicity island 1 type III secretion system is a major virulence determinant for Chromobacterium violaceum-induced cell death in hepatocytes. Mol. Microbiol. 77, 855–872 (2010).

    Article  PubMed  CAS  Google Scholar 

  141. Peng, T. et al. Pathogen hijacks programmed cell death signaling by arginine ADPR-deacylization of caspases. Mol. Cell 82, 1806–1820 e1808 (2022).

    Article  PubMed  CAS  Google Scholar 

  142. Harvest, C. K. et al. An innate granuloma eradicates an environmental pathogen using Gsdmd and Nos2. Nat. Commun. 14, 6686 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Amason, M. E., Beatty, C. J., Harvest, C. K., Saban, D. R. & Miao, E. A. Chemokine expression profile of an innate granuloma. eLife 13, e96425 (2024).

    Article  Google Scholar 

  144. Mayer-Barber, K. D. et al. Caspase-1 independent IL-1β production is critical for host resistance to Mycobacterium tuberculosis and does not require TLR signaling in vivo. J. Immunol. 184, 3326–3330 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. McElvania Tekippe, E. et al. Granuloma formation and host defense in chronic Mycobacterium tuberculosis infection requires PYCARD/ASC but not NLRP3 or caspase-1. PLoS ONE 5, e12320 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Chai, Q. et al. A bacterial phospholipid phosphatase inhibits host pyroptosis by hijacking ubiquitin. Science 378, eabq0132 (2022).

    Article  PubMed  CAS  Google Scholar 

  147. Qu, Z. et al. Mycobacterial EST12 activates a RACK1-NLRP3-gasdermin D pyroptosis-IL-1β immune pathway. Sci. Adv. 6, eaba4733 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Beckwith, K. S. et al. Plasma membrane damage causes NLRP3 activation and pyroptosis during Mycobacterium tuberculosis infection. Nat. Commun. 11, 2270 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Koo, I. C. et al. ESX-1-dependent cytolysis in lysosome secretion and inflammasome activation during mycobacterial infection. Cell. Microbiol. 10, 1866–1878 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Kurenuma, T. et al. The RD1 locus in the Mycobacterium tuberculosis genome contributes to activation of caspase-1 via induction of potassium ion efflux in infected macrophages. Infect. Immun. 77, 3992–4001 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Yao, Q. et al. Lnc-EST12, which is negatively regulated by mycobacterial EST12, suppresses antimycobacterial innate immunity through its interaction with FUBP3. Cell. Mol. Immunol. 19, 883–897 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Koul, A. et al. Serine/threonine protein kinases PknF and PknG of Mycobacterium tuberculosis: characterization and localization. Microbiology 147, 2307–2314 (2001).

    Article  PubMed  CAS  Google Scholar 

  153. Deol, P. et al. Role of Mycobacterium tuberculosis Ser/Thr kinase PknF: implications in glucose transport and cell division. J. Bacteriol. 187, 3415–3420 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Rastogi, S., Ellinwood, S., Augenstreich, J., Mayer-Barber, K. D. & Briken, V. Mycobacterium tuberculosis inhibits the NLRP3 inflammasome activation via its phosphokinase PknF. PLoS Pathog. 17, e1009712 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Master, S. S. et al. Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe 3, 224–232 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Mishra, B. B. et al. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β. Nat. Immunol. 14, 52–60 (2013).

    Article  PubMed  CAS  Google Scholar 

  157. Saiga, H. et al. Critical role of AIM2 in Mycobacterium tuberculosis infection. Int. Immunol. 24, 637–644 (2012).

    Article  PubMed  CAS  Google Scholar 

  158. Shah, S. et al. Cutting edge: Mycobacterium tuberculosis but not nonvirulent Mycobacteria inhibits IFN-β and AIM2 inflammasome-dependent IL-1β production via its ESX-1 secretion system. J. Immunol. 191, 3514–3518 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Araki, T. & Milbrandt, J. Ninjurin, a novel adhesion molecule, is induced by nerve injury and promotes axonal growth. Neuron 17, 353–361 (1996).

    Article  PubMed  CAS  Google Scholar 

  160. David, L. et al. NINJ1 mediates plasma membrane rupture by cutting and releasing membrane disks. Cell 187, 2224–2235 e2216 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Weinberg, J. M., Davis, J. A., Abarzua, M. & Rajan, T. Cytoprotective effects of glycine and glutathione against hypoxic injury to renal tubules. J. Clin. Invest. 80, 1446–1454 (1987).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Borges, J. P. et al. J1 membrane clustering to suppress plasma membrane rupture in cell death. eLife 11, e78609 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Zhu, Y. et al. NINJ1 regulates plasma membrane fragility under mechanical strain. Nature 644, 1088–1096 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Wein, T. et al. CARD domains mediate anti-phage defence in bacterial gasdermin systems. Nature 639, 727–734 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Gao, L. A. et al. Prokaryotic innate immunity through pattern recognition of conserved viral proteins. Science 377, eabm4096 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Xu, H., Yuan, Z., Qin, K., Jiang, S. & Sun, L. The molecular mechanism and evolutionary divergence of caspase 3/7-regulated gasdermin E activation. eLife 12, e89974 (2024).

    Article  Google Scholar 

  167. Liu, J. et al. Chicken gasdermins mediate pyroptosis after the cleavage by caspases. Int. J. Biol. Macromol. 270, 132476 (2024).

    Article  PubMed  CAS  Google Scholar 

  168. Zhao, Y. et al. Activation mechanism of CcGSDMEb-1/2 and regulation for bacterial clearance in common carp (Cyprinus carpio). J. Immunol. 211, 658–672 (2023).

    Article  PubMed  CAS  Google Scholar 

  169. Thurston, T. L. et al. Growth inhibition of cytosolic Salmonella by caspase-1 and caspase-11 precedes host cell death. Nat. Commun. 7, 13292 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Huan, Y., Kong, Q., Mou, H. & Yi, H. Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front. Microbiol. 11, 582779 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Dominguez-Medina, C. C. et al. Outer membrane protein size and LPS O-antigen define protective antibody targeting to the Salmonella surface. Nat. Commun. 11, 851 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Parsons, E. S. et al. Single-molecule kinetics of pore assembly by the membrane attack complex. Nat. Commun. 10, 2066 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Sborgi, L. et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J. 35, 1766–1778 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Mulvihill, E. et al. Mechanism of membrane pore formation by human gasdermin-D. EMBO J. 37, e98321 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Kappelhoff, S. et al. Structure and regulation of GSDMD pores at the plasma membrane of pyroptotic cells. Preprint at bioRxiv https://doi.org/10.1101/2023.10.24.563742 (2023).

  176. Benn, G. et al. Phase separation in the outer membrane of Escherichia coli. Proc. Natl Acad. Sci. USA 118, e2112237118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Lithgow, T., Stubenrauch, C. J. & Stumpf, M. P. H. Surveying membrane landscapes: a new look at the bacterial cell surface. Nat. Rev. Microbiol. 21, 502–518 (2023).

    Article  PubMed  CAS  Google Scholar 

  178. Weindel, C. G. et al. Mitochondrial ROS promotes susceptibility to infection via gasdermin D-mediated necroptosis. Cell 185, 3214–3231 e3223 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Casanova, J. L., MacMicking, J. D. & Nathan, C. F. Interferon-γ and infectious diseases: lessons and prospects. Science 384, eadl2016 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Parker, M. E. et al. c-Maf regulates the plasticity of group 3 innate lymphoid cells by restraining the type 1 program. J. Exp. Med. 217, e20191030 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Bernink, J. H. et al. Interleukin-12 and -23 control plasticity of CD127+ group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity 43, 146–160 (2015).

    Article  PubMed  CAS  Google Scholar 

  182. Victor, A. R. et al. IL-18 drives ILC3 proliferation and promotes IL-22 production via NF-kB. J. Immunol. 199, 2333–2342 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Stone, K. D., Prussin, C. & Metcalfe, D. D. IgE, mast cells, basophils, and eosinophils. J. Allergy Clin. Immunol. 125, S73–S80 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by NIH grants AI175078, AI181815 and AI136920 to E.A.M. and AI175078-02S1 to F.W.S.

Author information

Authors and Affiliations

Authors

Contributions

F.W.S., Y.L., J.T. and E.A.M. contributed to the conception and writing of the paper. Editing, formatting and figure generation were performed by F.W.S. and E.A.M.

Corresponding author

Correspondence to Edward A. Miao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Trude Flo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, F.W., Liu, Y., Trujillo, J. et al. Gasdermins against intracellular bacterial pathogens. Nat Microbiol (2026). https://doi.org/10.1038/s41564-026-02272-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41564-026-02272-z

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology