Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unravelling inherent electrocatalysis of mixed-conducting oxide activated by metal nanoparticle for fuel cell electrodes

Abstract

Highly active metal nanoparticles are desired to serve in high-temperature electrocatalysis, for example, in solid oxide electrochemical cells. Unfortunately, the low thermal stability of nanosized particles and the sophisticated interface requirement for electrode structures to support concurrent ionic and electronic transport make it hard to identify the exact catalytic role of nanoparticles embedded within complex electrode architectures. Here we present an accurate analysis of the reactivity of oxide electrodes boosted by metal nanoparticles, where all particles participate in the reaction. Monodisperse particles (Pt, Pd, Au and Co), 10 nm in size and stable at high temperature (more than 600 °C), are uniformly distributed onto mixed-conducting oxide electrodes as a model electrochemical cell via self-assembled nanopatterning. We identify how the metal catalysts activate hydrogen electrooxidation on the ceria-based electrode surface and quantify how rapidly the reaction rate increases with proper choice of metal. These results suggest an ideal electrode design for high-temperature electrochemical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A metal-decorated model thin-film electrode.
Fig. 2: Microscopy images of metal nanoparticles on thin-film ceria.
Fig. 3: Electrochemical analysis of metal-decorated SDC electrodes.
Fig. 4: Reaction pathway of H2 electrooxidation on bare SDC and metal-decorated SDC electrodes.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Shao, Z. P. & Haile, S. M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170–173 (2004).

    CAS  Google Scholar 

  2. Wachsman, E. D. & Lee, K. T. Lowering the temperature of solid oxide fuel cells. Science 334, 935–939 (2011).

    CAS  Google Scholar 

  3. Seo, H. G., Choi, Y. & Jung, W. Exceptionally enhanced electrode activity of (Pr,Ce)O2−δ-based cathodes for thin-film solid oxide fuel cells. https://doi.org/10.1002/aenm.201703647 (2018).

  4. Gao, Z. et al. A perspective on low-temperature solid oxide fuel cells. Energy Environ. Sci. 9, 1602–1644 (2016).

    CAS  Google Scholar 

  5. Irvine, J. T. S. et al. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat. Energy 1, 15014 (2016).

    CAS  Google Scholar 

  6. Vayssilov, G. N. et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat. Mater. 10, 310–315 (2011).

    CAS  Google Scholar 

  7. Cargnello, M. et al. Control of metal nanocrystal size reveals metal–support interface role for ceria catalysts. Science 341, 771–773 (2013).

    CAS  Google Scholar 

  8. Lee, S., Seo, J. & Jung, W. Sintering-resistant Pt@CeO2 nanoparticles for high-temperature oxidation catalysis. Nanoscale 8, 10219–10228 (2016).

    CAS  Google Scholar 

  9. Cao, A., Lu, R. & Veser, G. Stabilizing metal nanoparticles for heterogeneous catalysis. Phys. Chem. Chem. Phys. 12, 13499–13510 (2010).

    CAS  Google Scholar 

  10. Cao, A. & Veser, G. Exceptional high-temperature stability through distillation-like self-stabilization in bimetallic nanoparticles. Nat. Mater. 9, 75–81 (2010).

    CAS  Google Scholar 

  11. Gabaldon, J. P., Bore, M. & Datye, A. K. Mesoporous silica supports for improved thermal stability in supported Au catalysts. Top Catal. 44, 253–262 (2007).

    CAS  Google Scholar 

  12. Joo, S. H. et al. Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nat. Mater. 8, 126–131 (2009).

    CAS  Google Scholar 

  13. Prieto, G. et al. Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat. Mater. 12, 34–39 (2013).

    CAS  Google Scholar 

  14. Arnal, P. M., Comotti, M. & Schuth, F. High-temperature-stable catalysts by hollow sphere encapsulation. Angew. Chem. Int. Ed. 45, 8224–8227 (2006).

    CAS  Google Scholar 

  15. Lu, J. L. et al. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science 335, 1205–1208 (2012).

    CAS  Google Scholar 

  16. Uchida, H., Suzuki, H. & Watanabe, M. High-performance electrode for medium-temperature solid oxide fuel cells—effects of composition and microstructures on performance of ceria-based anodes. J. Electrochem. Soc. 145, 615–620 (1998).

    CAS  Google Scholar 

  17. Jung, W., Gu, K. L., Choi, Y. & Haile, S. M. Robust nanostructures with exceptionally high electrochemical reaction activity for high temperature fuel cell electrodes. Energy Environ. Sci. 7, 1685–1692 (2014).

    CAS  Google Scholar 

  18. Kwak, N. W. et al. In situ synthesis of supported metal nanocatalysts through heterogeneous doping. Nat. Commun. 9, 4829 (2018).

    Google Scholar 

  19. Adijanto, L. et al. Synthesis and stability of Pd@CeO2 core–shell catalyst films in solid oxide fuel cell anodes. ACS Catal. 3, 1801–1809 (2013).

    CAS  Google Scholar 

  20. Zhu, Y. L. et al. Promotion of oxygen reduction by exsolved silver nanoparticles on a perovskite scaffold for low-temperature solid oxide duel xells. Nano Lett. 16, 512–518 (2016).

    CAS  Google Scholar 

  21. Kwon, O. et al. Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites. Nat. Commun. 8, 15967 (2017).

    CAS  Google Scholar 

  22. Kwon, O. et al. Self-assembled alloy nanoparticles in a layered double perovskite as a fuel oxidation catalyst for solid oxide fuel cells. J. Mater. Chem. A 6, 15947–15953 (2018).

    CAS  Google Scholar 

  23. Jiang, S. P. Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges. Int. J. Hydrogen Energy 37, 449–470 (2012).

    CAS  Google Scholar 

  24. Connor, P. A. et al. Tailoring SOFC electrode microstructures for improved performance. Adv. Energy Mater. 8, 1800120 (2018).

    Google Scholar 

  25. Myung, J. H., Neagu, D., Miller, D. N. & Irvine, J. T. S. Switching on electrocatalytic activity in solid oxide cells. Nature 537, 528–531 (2016).

    Google Scholar 

  26. Lai, W. & Haile, S. M. Impedance spectroscopy as a tool for chemical and electrochemical analysis of mixed conductors: a case study of ceria. J. Am. Ceram. Soc. 88, 2979–2997 (2005).

    CAS  Google Scholar 

  27. Chueh, W. C., Hao, Y., Jung, W. & Haile, S. M. High electrochemical activity of the oxide phase in model ceria–Pt and ceria–Ni composite anodes. Nat. Mater. 11, 155–161 (2012).

    CAS  Google Scholar 

  28. Choi, Y., Brown, E. C., Haile, S. M. & Jung, W. Electrochemically modified, robust solid oxide fuel cell anode for direct-hydrocarbon utilization. Nano Energy 23, 161–171 (2016).

    CAS  Google Scholar 

  29. Mun, J. H. et al. Monodisperse pattern nanoalloying for synergistic intermetallic catalysis. Nano Lett. 13, 5720–5726 (2013).

    CAS  Google Scholar 

  30. Cha, S. K. et al. Au–Ag core–shell nanoparticle array by block copolymer lithography for synergistic broadband plasmonic properties. ACS Nano 9, 5536–5543 (2015).

    CAS  Google Scholar 

  31. Polezhaeva, O. S., Yaroshinskaya, N. V. & Ivanov, V. K. Formation mechanism of nanocrystalline ceria in aqueous solutions of cerium(iii) nitrate and hexamethylenetetramine. Inorg. Mater. 44, 51–57 (2008).

    CAS  Google Scholar 

  32. Shinjoh, H. Noble metal sintering suppression technology in three-way catalyst: automotive three-way catalysts with the noble metal sintering suppression technology based on the support anchoring effect. Catal. Surv. Asia 13, 184–190 (2009).

    CAS  Google Scholar 

  33. Chen, C., Chen, D., Chueh, W. C. & Ciucci, F. Modeling the impedance response of mixed-conducting thin film electrodes. Phys. Chem. Chem. Phys. 16, 11573–11583 (2014).

    CAS  Google Scholar 

  34. Wang, X., Liu, D. P., Song, S. Y. & Zhang, H. J. Pt@CeO2 multicore@shell self-assembled nanospheres: clean synthesis, structure optimization, and catalytic applications. J. Am. Chem. Soc. 135, 15864–15872 (2013).

    CAS  Google Scholar 

  35. Bruix, A. et al. A new type of strong metal–support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) catalysts. J. Am. Chem. Soc. 134, 8968–8974 (2012).

    CAS  Google Scholar 

  36. Campbell, C. T. Catalyst–support interactions: electronic perturbations. Nat. Chem. 4, 597–598 (2012).

    CAS  Google Scholar 

  37. Lykhach, Y. et al. Counting electrons on supported nanoparticles. Nat. Mater. 15, 284–288 (2016).

    Google Scholar 

  38. Jung, W. et al. High electrode activity of nanostructured, columnar ceria films for solid oxide fuel cells. Energy Environ. Sci. 5, 8682–8689 (2012).

    CAS  Google Scholar 

  39. Kim, H. Y. & Henkelman, G. CO oxidation at the interface of Au nanoclusters and the stepped-CeO2 (111) surface by the Mars–van Krevelen mechanism. J. Phys. Chem. Lett. 4, 216–221 (2013).

    CAS  Google Scholar 

  40. Ha, H., Yoon, S., An, K. & Kim, H. Y. Catalytic CO oxidation over Au nanoparticles supported on CeO2 nanocrystals: effect of the Au–CeO2 interface. ACS Catal. 8, 11491–11501 (2018).

    CAS  Google Scholar 

  41. Zhang, C. J. et al. Mechanistic studies of water electrolysis and hydrogen electro-oxidation on high temperature ceria-based solid oxide electrochemical cells. J. Am. Chem. Soc. 135, 11572–11579 (2013).

    CAS  Google Scholar 

  42. Feng, Z. A. et al. Fast vacancy-mediated oxygen ion incorporation across the ceria–gas electrochemical interface. Nat. Commun. 5, 4374 (2014).

    CAS  Google Scholar 

  43. Lykhach, Y. et al. Oxide-based nanomaterials for fuel cell catalysis: the interplay between supported single Pt atoms and particles. Catal. Sci. Technol. 7, 4315–4345 (2017).

    CAS  Google Scholar 

  44. Karim, W. et al. Catalyst support effects on hydrogen spillover. Nature 541, 68–71 (2017).

    CAS  Google Scholar 

  45. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  46. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Google Scholar 

  47. Dudarev, S. L. et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    CAS  Google Scholar 

  48. Ismail, A., Giorgi, J. B. & Woo, T. K. On the atomistic interactions that direct ion conductivity and defect segregation in the bulk and surface of samarium-doped ceria: a genetic algorithm study. J. Phys. Chem. C 116, 704–713 (2012).

    CAS  Google Scholar 

  49. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    CAS  Google Scholar 

  50. Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    CAS  Google Scholar 

Download references

Acknowledgements

Y.C., S.L. and W.J. were supported financially by the Nano·Material Technology Development Program (NRF-2017M3A7B4049507), the Global Frontier R&D Program (2011-0031569) and the Basic Research Program (2014R1A4A1003712) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning. S.K.C. and S.O.K. were supported financially by the National Creative Research Initiative (CRI) Center for Multi-Dimensional Directed Nanoscale Assembly (2015R1A3A2033061) funded by NRF. H.H. and H.Y.K. acknowledge financial support from National Research Foundation of Korea (NRF) grants funded by the Korea government (MSIP) (2017R1A2B4009829 and 2017R1A4A1015360). H.K.S. and J.Y.L. were supported financially by the Institute for Basic Science (IBS-R004-D1). This research used resources of the Center for Functional Nanomaterials, which is a US DOE Office of Science Facility, and the Scientific Data and Computing Center, a part of the Computational Science Initiative at Brookhaven National Laboratory (contract no. DE-SC0012704).

Author information

Authors and Affiliations

Authors

Contributions

Y.C., S.L. and W.J. conceived the idea for this study. Y.C. prepared the electrode cells and collected the electrocatalytic data. S.K.C. synthesized metal nanoparticles using BCP. H.H. performed DFT calculations. S.L. performed the CO oxidation test. H.K.S. and J.Y.L. performed TEM characterization. W.J., S.O.K. and H.Y.K. supervised the project and wrote the manuscript. All authors commented on the data and the manuscript.

Corresponding authors

Correspondence to Hyun You Kim, Sang Ouk Kim or WooChul Jung.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Discussions, Figures 1–12, Table 1–2 and References.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, Y., Cha, S.K., Ha, H. et al. Unravelling inherent electrocatalysis of mixed-conducting oxide activated by metal nanoparticle for fuel cell electrodes. Nat. Nanotechnol. 14, 245–251 (2019). https://doi.org/10.1038/s41565-019-0367-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-019-0367-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing