Extended Data Fig. 2: Higher harmonics in CPR and supercurrent diode effect. | Nature Nanotechnology

Extended Data Fig. 2: Higher harmonics in CPR and supercurrent diode effect.

From: Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions

Extended Data Fig. 2

a, Computed CPR for a short rectangular junction in the presence of selected value of the out-of-plane field Bz. The CPR at Bz = 0 is that described by the Beenakker-Furusaki equation with the parameters characterized in Ref. 13. b, Modulus of the first seven Fourier sine (bn) and cosine (an) coefficients for the Bz = 0 CPR. c, Out-of-plane magnetic field dependence of the modulus of the first three sine coefficients. d, Absolute value of the difference between the measured critical currents in the two direction for By = 75 mT (black symbols). Data are normalized to the value at Bz = 0. The graph refers to the same data as in Fig. 3d. The experimental values are in good approximation described by the product of the critical current Ic and the modulus of the second Fourier coefficient b2 (red line), both computed as a function of Bz. The former factor describes the magnitude of the critical current as a whole, while the latter quantifies how skewed the CPR is, and therefore the strength of the diode effect. Notice that the product Icb2 makes clear why the measured critical current difference goes to zero (i) for multiples of half flux quanta Φ0/2 and (ii) with (alternately) cusp-like and parabolic-like minima.

Source data

Back to article page